Skip to main content
Top

2020 | OriginalPaper | Chapter

5. Microwave Materials for Defense and Aerospace Applications

Authors : J. Varghese, N. Joseph, H. Jantunen, S. K. Behera, H. T. Kim, M. T. Sebastian

Published in: Handbook of Advanced Ceramics and Composites

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Microwave materials are fundamental building blocks for defense and aerospace applications, which have been used as dielectric resonators, radomes, multilayer packages, electromagnetic shield, and so on. These materials and devices made of them should survive in harsh environmental conditions, and hence the availability of suitable materials is limited. Microwave materials are used for signal propagation as well as shielding unwanted signals in military and aerospace applications depending on their properties. The essential material characteristics required for signal propagation applications are very low relative permittivity, low dielectric loss, low-temperature variation of relative permittivity/resonant frequency, and low coefficient of thermal expansion. The materials used for these applications are in the form of substrates, foams, inks, bulk resonators, high-temperature co-fired ceramics (HTCC), low-temperature co-fired ceramics (LTCC), printed circuit boards (PCBs), etc. The materials should absorb or reflect microwaves for electromagnetic interference (EMI) shielding applications. The present chapter gives an overview of microwave material requirements, properties, and their applications in antennas, filters, and oscillators in the military and aerospace sector.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference Okaya A (1960) The rutile microwave resonator. T Proc IRE 48:1921–1921 Okaya A (1960) The rutile microwave resonator. T Proc IRE 48:1921–1921
3.
go back to reference Cohen S (1968) Microwave band pass filters containing high Q dielectric resonators. IEEE Trans Microw Theory Tech MTT-16:1628–1629 Cohen S (1968) Microwave band pass filters containing high Q dielectric resonators. IEEE Trans Microw Theory Tech MTT-16:1628–1629
4.
go back to reference Masse DJ, Purcel RA, Ready DW, Maguire EA, Hartwig C (1971) A new low loss high K temperature compensated dielectric for microwave applications. Proc IEEE 59:1628–1629CrossRef Masse DJ, Purcel RA, Ready DW, Maguire EA, Hartwig C (1971) A new low loss high K temperature compensated dielectric for microwave applications. Proc IEEE 59:1628–1629CrossRef
5.
go back to reference Wakino K, Nishikawa T, Tamura S, Ishikawa Y (1975) Microwave bandpass filters containing dielectric resonators with improved temperature stability and spurious response. IEEE-MTT-S Int Microw Symp Dig, Palo Alton, CA, 63–65 Wakino K, Nishikawa T, Tamura S, Ishikawa Y (1975) Microwave bandpass filters containing dielectric resonators with improved temperature stability and spurious response. IEEE-MTT-S Int Microw Symp Dig, Palo Alton, CA, 63–65
6.
go back to reference Sebastian MT (2008) Dielectric materials for wireless communication. Elsevier, Amsterdam Sebastian MT (2008) Dielectric materials for wireless communication. Elsevier, Amsterdam
7.
go back to reference Sebastian MT, Ubic R, Jantunen H (2017) Microwave materials and applications. Two Volume sets John Wiley & Sons Inc., West SussexCrossRef Sebastian MT, Ubic R, Jantunen H (2017) Microwave materials and applications. Two Volume sets John Wiley & Sons Inc., West SussexCrossRef
8.
go back to reference Sebastian MT, Ubic R, Jantunen H (2015) Low-loss dielectric ceramic materials and their properties. Int Mater Rev 60(7):392–412CrossRef Sebastian MT, Ubic R, Jantunen H (2015) Low-loss dielectric ceramic materials and their properties. Int Mater Rev 60(7):392–412CrossRef
9.
go back to reference Jain T (2013) Technology advancement in wireless communications. Int J Sci Technol Res 2(8):2277–8616 Jain T (2013) Technology advancement in wireless communications. Int J Sci Technol Res 2(8):2277–8616
10.
go back to reference Seraphim DP, Feinberg I (1981) Electronic packaging evolution in IBM. IBM J Res Dev Res Dev 25:617–618CrossRef Seraphim DP, Feinberg I (1981) Electronic packaging evolution in IBM. IBM J Res Dev Res Dev 25:617–618CrossRef
11.
go back to reference Tummula PK (1996) Microelectronic packaging handbook. Springer, New York Tummula PK (1996) Microelectronic packaging handbook. Springer, New York
12.
go back to reference Varghese J (2016) Zircon based hard. LAP LAMBERT Academic Publisher, Soft Microwave Substrates and Devices Varghese J (2016) Zircon based hard. LAP LAMBERT Academic Publisher, Soft Microwave Substrates and Devices
14.
go back to reference Schuh H (2009) X-band T/R-module front-end based on GaN MMICs. Intern J Microw Wirel Technol 1:387–394CrossRef Schuh H (2009) X-band T/R-module front-end based on GaN MMICs. Intern J Microw Wirel Technol 1:387–394CrossRef
16.
go back to reference Jin Y, Wang Z, Chen J (2010) Introduction to microsystem packaging technology. CRC Press, Boca Raton Jin Y, Wang Z, Chen J (2010) Introduction to microsystem packaging technology. CRC Press, Boca Raton
17.
go back to reference Chen L-Y, HiTEC, HiTEN, & CICMT (2014), Vol. 2014, No. HITEC, pp. Dielectr. Perform. a High Purity HTCC Alumina High Temp. – a comparison study with other polycrystalline alumina,” Additional Conferences Device Packaging HiTEC, HiTEN, & CICMT; January 2014, p 000271–7 Chen L-Y, HiTEC, HiTEN, & CICMT (2014), Vol. 2014, No. HITEC, pp. Dielectr. Perform. a High Purity HTCC Alumina High Temp. – a comparison study with other polycrystalline alumina,” Additional Conferences Device Packaging HiTEC, HiTEN, & CICMT; January 2014, p 000271–7
18.
go back to reference Chen L-Y, Neudeck PG, Hunter G (2016) Electrical Performance of a High Temperature 32-I/O HTCC Alumina Package. 21000 Brookpark Road Cleveland, Ohio 44135 2 NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, Ohio 44135 Chen L-Y, Neudeck PG, Hunter G (2016) Electrical Performance of a High Temperature 32-I/O HTCC Alumina Package. 21000 Brookpark Road Cleveland, Ohio 44135 2 NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, Ohio 44135
19.
go back to reference Blackwell E, Raton B (2000) The electronic packaging handbook. Press CRC, Boca Raton Blackwell E, Raton B (2000) The electronic packaging handbook. Press CRC, Boca Raton
20.
go back to reference Harper C (2000) Electronic packaging and interconnection handbook, 3rd edn. McGraw-Hill, New York Harper C (2000) Electronic packaging and interconnection handbook, 3rd edn. McGraw-Hill, New York
21.
go back to reference Varghese J, Vahera T, Ohsato H, Iwata M, Jantunen H (2017) Novel low-temperature sintering ceramic substrate based on indialite/cordierite glass ceramics. Jap J Appl Phys 56:10PE01CrossRef Varghese J, Vahera T, Ohsato H, Iwata M, Jantunen H (2017) Novel low-temperature sintering ceramic substrate based on indialite/cordierite glass ceramics. Jap J Appl Phys 56:10PE01CrossRef
22.
go back to reference Varghese J, Joseph T, Sebastian MT (2011) ZrSiO4 ceramics for microwave integrated circuit applications. Mater Lett 65(7):1092–1094CrossRef Varghese J, Joseph T, Sebastian MT (2011) ZrSiO4 ceramics for microwave integrated circuit applications. Mater Lett 65(7):1092–1094CrossRef
24.
go back to reference Arun S, Sebastian MT, Surendran KP (2017) Li2ZnTi3O8 based high κ LTCC tapes for improved thermal management in hybrid circuit applications. Ceram Int 43(7):5509–5516CrossRef Arun S, Sebastian MT, Surendran KP (2017) Li2ZnTi3O8 based high κ LTCC tapes for improved thermal management in hybrid circuit applications. Ceram Int 43(7):5509–5516CrossRef
27.
go back to reference Thomas D, Abhilash P, Sebastian MT (2013) Casting and characterization of LiMgPO4 glass free LTCC tape for microwave applications. J Eur Ceram Soc 33(1):87–93CrossRef Thomas D, Abhilash P, Sebastian MT (2013) Casting and characterization of LiMgPO4 glass free LTCC tape for microwave applications. J Eur Ceram Soc 33(1):87–93CrossRef
29.
go back to reference Kaneko T, Watanabe H, Akaishi M, Wada K (1999) AlN HTCC super miniaturized millimeter wave transceiver MCMs, the novel structure for the high reliability, the high performance and the mass productivity. IEEE MlT-S Dig 2:449–452. (0–7803–5135–5/99/$10.00 0 1999 IEEE) Kaneko T, Watanabe H, Akaishi M, Wada K (1999) AlN HTCC super miniaturized millimeter wave transceiver MCMs, the novel structure for the high reliability, the high performance and the mass productivity. IEEE MlT-S Dig 2:449–452. (0–7803–5135–5/99/$10.00 0 1999 IEEE)
30.
go back to reference Cressler JD, Mantooth HA (2013) Extreme environment electronics. Chapters 1–5. CRC Press, Boca Raton\Florida, pp 1–47 Cressler JD, Mantooth HA (2013) Extreme environment electronics. Chapters 1–5. CRC Press, Boca Raton\Florida, pp 1–47
31.
go back to reference Spry DJ, Neudeck PG, Chen L, Lukco D, Chang CW, Beheim GM, Krasowski MJ, Prokop N (2016) Processing and characterization of thousand-hour 500 °C durable 4H-SiC JFET integrated circuits. In: Proceedings of the 2016 IMAPs international conference on high temperature electronics (HiTEC 2016). International Albuquerque, New Mexico Spry DJ, Neudeck PG, Chen L, Lukco D, Chang CW, Beheim GM, Krasowski MJ, Prokop N (2016) Processing and characterization of thousand-hour 500 °C durable 4H-SiC JFET integrated circuits. In: Proceedings of the 2016 IMAPs international conference on high temperature electronics (HiTEC 2016). International Albuquerque, New Mexico
33.
go back to reference Dupont (2009) DuPont™ Green Tape™ 951 Technical Datasheet. 2009;3 Dupont (2009) DuPont™ Green Tape™ 951 Technical Datasheet. 2009;3
34.
go back to reference Sebastian MT, Jantunen H (2008) Low loss dielectric materials for LTCC applications: a review. Int Mater Rev 53:57–90CrossRef Sebastian MT, Jantunen H (2008) Low loss dielectric materials for LTCC applications: a review. Int Mater Rev 53:57–90CrossRef
35.
go back to reference Sebastian MT, Wang H, Jantunen H (2016) Low temperature co-fired ceramics with ultra-low sintering temperature: a review. Curr Opin Solid State Mater Sci 20:151–170CrossRef Sebastian MT, Wang H, Jantunen H (2016) Low temperature co-fired ceramics with ultra-low sintering temperature: a review. Curr Opin Solid State Mater Sci 20:151–170CrossRef
36.
go back to reference Suresh EK, Prasad K, Arun NS, Ratheesh R (2016) Synthesis and microwave dielectric properties of A16V18O61 (a = Ba, Sr and ca) ceramics for LTCC applications. J Electron Mater 45(6):2996–3002CrossRef Suresh EK, Prasad K, Arun NS, Ratheesh R (2016) Synthesis and microwave dielectric properties of A16V18O61 (a = Ba, Sr and ca) ceramics for LTCC applications. J Electron Mater 45(6):2996–3002CrossRef
37.
go back to reference Varghese J, Ramachandran P, Sobocinski M, Vahera T, Jantunen H (2019) ULTCC glass composites based on rutile and anatase with co-firing at 400 °C for high frequency applications. ACS Sustain Chem Eng 7(4):4274–4283CrossRef Varghese J, Ramachandran P, Sobocinski M, Vahera T, Jantunen H (2019) ULTCC glass composites based on rutile and anatase with co-firing at 400 °C for high frequency applications. ACS Sustain Chem Eng 7(4):4274–4283CrossRef
38.
go back to reference Joseph N, Varghese J, Teirikangas M, Sebastian MT, Jantunen H (2018) Ultra-low sintering temperature ceramic composites of CuMoO 4 through Ag 2 O addition for microwave applications. Compos Part B 141:214–220CrossRef Joseph N, Varghese J, Teirikangas M, Sebastian MT, Jantunen H (2018) Ultra-low sintering temperature ceramic composites of CuMoO 4 through Ag 2 O addition for microwave applications. Compos Part B 141:214–220CrossRef
39.
go back to reference Joseph N, Varghese J, Teirikangas M, Sebastian MT, Jantunen H (2016) Glass-free CuMoO4 ceramic with excellent dielectric and thermal properties for ultralow temperature co-fired ceramic applications. ACS Sustain Chem Eng 4(10):5632–5639CrossRef Joseph N, Varghese J, Teirikangas M, Sebastian MT, Jantunen H (2016) Glass-free CuMoO4 ceramic with excellent dielectric and thermal properties for ultralow temperature co-fired ceramic applications. ACS Sustain Chem Eng 4(10):5632–5639CrossRef
40.
go back to reference Varghese J, Surendran KP, Sebastian MT (2014) Room temperature curable silica ink. RSC Adv 4(88):47701–47707CrossRef Varghese J, Surendran KP, Sebastian MT (2014) Room temperature curable silica ink. RSC Adv 4(88):47701–47707CrossRef
41.
go back to reference Varghese J, Teirikangas M, Puustinen J, Jantunen H, Sebastian MT (2015) Room temperature curable zirconium silicate dielectric ink for electronic applications. J Mater Chem C 3(35):9240–9246CrossRef Varghese J, Teirikangas M, Puustinen J, Jantunen H, Sebastian MT (2015) Room temperature curable zirconium silicate dielectric ink for electronic applications. J Mater Chem C 3(35):9240–9246CrossRef
42.
go back to reference Joseph AM, Nagendra B, Bhoje Gowd E, Surendran KP (2016a) Screen-printable electronic ink of ultrathin boron nitride Nanosheets. ACS Omega 1(6):1220–1228CrossRef Joseph AM, Nagendra B, Bhoje Gowd E, Surendran KP (2016a) Screen-printable electronic ink of ultrathin boron nitride Nanosheets. ACS Omega 1(6):1220–1228CrossRef
43.
go back to reference Joseph N, Sebastian MT (2016) A facile formulation and excellent electromagnetic absorption of room temperature curable polyaniline nanofiber based inks. J Mater Chem C 4:999–1008CrossRef Joseph N, Sebastian MT (2016) A facile formulation and excellent electromagnetic absorption of room temperature curable polyaniline nanofiber based inks. J Mater Chem C 4:999–1008CrossRef
44.
go back to reference Liu W, Wang H, Zhou D, Li K (2010) Dielectric properties of low-firing Bi2Mo2O9 thick films screen printed on Al foils and alumina substrates. J Am Ceram Soc 93(8):2202–2206CrossRef Liu W, Wang H, Zhou D, Li K (2010) Dielectric properties of low-firing Bi2Mo2O9 thick films screen printed on Al foils and alumina substrates. J Am Ceram Soc 93(8):2202–2206CrossRef
45.
go back to reference Pullanchiyodan A, Surendran KP (2016) Formulation of sol–gel derived bismuth silicate dielectric ink for flexible electronics applications. J Eur Ceram Soc 36(8):1939–1944CrossRef Pullanchiyodan A, Surendran KP (2016) Formulation of sol–gel derived bismuth silicate dielectric ink for flexible electronics applications. J Eur Ceram Soc 36(8):1939–1944CrossRef
46.
go back to reference Sebastian MT, Jantunen H (2010a) Polymer-ceramic composites of 0-3 connectivity for circuits in electronics: a review. Int J Appl Ceram Technol 7(4):415–434 Sebastian MT, Jantunen H (2010a) Polymer-ceramic composites of 0-3 connectivity for circuits in electronics: a review. Int J Appl Ceram Technol 7(4):415–434
47.
go back to reference Wall L (1972) Fluoropolymers. Wiley, New York Wall L (1972) Fluoropolymers. Wiley, New York
48.
go back to reference Willis OR (2008) Characterizing fluroropolymeric materials for microelectronics and MEMS packaging, ProQuest Information and Learning Company, USA Willis OR (2008) Characterizing fluroropolymeric materials for microelectronics and MEMS packaging, ProQuest Information and Learning Company, USA
49.
go back to reference Bur A (1985) Dielectric properties of polymers at microwave frequencies: a review. Polymer (Guildf) 26:963–977CrossRef Bur A (1985) Dielectric properties of polymers at microwave frequencies: a review. Polymer (Guildf) 26:963–977CrossRef
50.
go back to reference Allen F, Robert L, Michael E (1996) Ceramic filled composite polymeric electrical substrate materials exhibiting high dielectric constant and low thermal coefficient of dielectric constant Allen F, Robert L, Michael E (1996) Ceramic filled composite polymeric electrical substrate materials exhibiting high dielectric constant and low thermal coefficient of dielectric constant
51.
go back to reference Allen FHIII (1994) Fluoropolymeric electrical substrate material exhibiting low thermal coefficient of dielectric constant, US Patent No. 5358775 Allen FHIII (1994) Fluoropolymeric electrical substrate material exhibiting low thermal coefficient of dielectric constant, US Patent No. 5358775
52.
go back to reference Sebastian MT, Krupka J, Arun S, Kim CH, Kim HT (2018) Polypropylene-high resistivity silicon composite for high frequency applications. Mater Lett (232):92–94 Sebastian MT, Krupka J, Arun S, Kim CH, Kim HT (2018) Polypropylene-high resistivity silicon composite for high frequency applications. Mater Lett (232):92–94
53.
go back to reference Popielarz R, Chiang C (2007) Polymer composites with dielectric constant comparable to that of barium titanate ceramics. Mater Sci Eng B 139:48–54CrossRef Popielarz R, Chiang C (2007) Polymer composites with dielectric constant comparable to that of barium titanate ceramics. Mater Sci Eng B 139:48–54CrossRef
54.
go back to reference Sun Y, Rogers J (2007) Inorganic semiconductors for flexible electronics. Adv Mater 19:1897–1916CrossRef Sun Y, Rogers J (2007) Inorganic semiconductors for flexible electronics. Adv Mater 19:1897–1916CrossRef
55.
go back to reference Rogers J, Huang Y (2009) A curvy, stretchy future for electronics. Proc Natl Acad Sci 106:10875–10876CrossRef Rogers J, Huang Y (2009) A curvy, stretchy future for electronics. Proc Natl Acad Sci 106:10875–10876CrossRef
56.
go back to reference Seol Y, Noh H, Lee S (2008) Mechanically flexible low-leakage multilayer gate dielectrics for flexible organic thin film transistor. Appl Phys Lett 93:013305–1–013305–3CrossRef Seol Y, Noh H, Lee S (2008) Mechanically flexible low-leakage multilayer gate dielectrics for flexible organic thin film transistor. Appl Phys Lett 93:013305–1–013305–3CrossRef
57.
go back to reference Gubbels F, Jaeger R, Gleria M (2007) Silicones in industrial applications. In: Jaeger R, Gleria M (eds) Inorganic polymers. Nova Science Publishers, New York, pp 61–162 Gubbels F, Jaeger R, Gleria M (2007) Silicones in industrial applications. In: Jaeger R, Gleria M (eds) Inorganic polymers. Nova Science Publishers, New York, pp 61–162
58.
go back to reference Yang S, Jiang K (2012) Elastomer Application in Microsystem and Microfluidics. In: Boczkowska A (ed) Advanced elastomers – technology, properties and applications. InTech. Open Science mind, Rijeka, pp 203–222 Yang S, Jiang K (2012) Elastomer Application in Microsystem and Microfluidics. In: Boczkowska A (ed) Advanced elastomers – technology, properties and applications. InTech. Open Science mind, Rijeka, pp 203–222
59.
go back to reference Sebastian MT, Chameswary J (2016) Flexible and stretchable electronic composites, springer series on polymer and composite materials. In: Ponnamma D (ed) Poly(Isobutylene-co-Isoprene) compos flex electron appl. Springer International Publishing, Switzerland, pp 335–365 Sebastian MT, Chameswary J (2016) Flexible and stretchable electronic composites, springer series on polymer and composite materials. In: Ponnamma D (ed) Poly(Isobutylene-co-Isoprene) compos flex electron appl. Springer International Publishing, Switzerland, pp 335–365
60.
go back to reference Sebastian MT, Ananthalumar S, Subodh G, Juuti J, Teirinkangas M, Jantunen H (2012) Composite electroceramics. In: Nicolais L, Borzacchiello A (eds) Wiley encyclopedia of composites, 2nd edn. Wiley, Inc., Boston Sebastian MT, Ananthalumar S, Subodh G, Juuti J, Teirinkangas M, Jantunen H (2012) Composite electroceramics. In: Nicolais L, Borzacchiello A (eds) Wiley encyclopedia of composites, 2nd edn. Wiley, Inc., Boston
61.
go back to reference Amin A, Sierakowski R (1990) Effect of thermomechanical coupling on the response of elastic solids. AIAA J 28(7):1319–1322CrossRef Amin A, Sierakowski R (1990) Effect of thermomechanical coupling on the response of elastic solids. AIAA J 28(7):1319–1322CrossRef
62.
go back to reference Dasgupta S (2015) Polymer matrix composites for electromagnetic applications in aircraft structures. J Indian Inst Sci 952:75–296 Dasgupta S (2015) Polymer matrix composites for electromagnetic applications in aircraft structures. J Indian Inst Sci 952:75–296
63.
go back to reference Chen F, Shen Q, Zhang L (2010) Electromagnetic optimal design and preparation of broadband ceramic radome material with graded porous structure. Prog Electromagn Res 105:445–461CrossRef Chen F, Shen Q, Zhang L (2010) Electromagnetic optimal design and preparation of broadband ceramic radome material with graded porous structure. Prog Electromagn Res 105:445–461CrossRef
64.
go back to reference Hong T, Song M-Z, Liu Y (2011) RF directional modulation technique using a switched antenna array for communication and direction-finding applications. Prog Electromagn Res 120:195–213CrossRef Hong T, Song M-Z, Liu Y (2011) RF directional modulation technique using a switched antenna array for communication and direction-finding applications. Prog Electromagn Res 120:195–213CrossRef
66.
go back to reference Chauhan S, Abraham M, Choudhary V (2016) Superior EMI shielding performance of thermally stable carbon nanofiber/poly(ether-ketone) composites in 26.5–40 GHz frequency range. J Mater Sci 51:9705–9715CrossRef Chauhan S, Abraham M, Choudhary V (2016) Superior EMI shielding performance of thermally stable carbon nanofiber/poly(ether-ketone) composites in 26.5–40 GHz frequency range. J Mater Sci 51:9705–9715CrossRef
68.
go back to reference Wen B, Cao M, Lu M, Cao W, Long H, Wang X et al (2014) Reduced graphene oxides light weight and high efficiency electromagnetic interference shielding at elevated temperatures. Adv Mater 26:3484–3489CrossRef Wen B, Cao M, Lu M, Cao W, Long H, Wang X et al (2014) Reduced graphene oxides light weight and high efficiency electromagnetic interference shielding at elevated temperatures. Adv Mater 26:3484–3489CrossRef
69.
go back to reference Saville P (2005) Review of Radar Absorbing Materials. RDC Atl. TM 2005-003 Saville P (2005) Review of Radar Absorbing Materials. RDC Atl. TM 2005-003
70.
go back to reference Halpern O (1960) Method and means for minimizing reflection of high frequency radio waves, US Patent No. 2923934 Halpern O (1960) Method and means for minimizing reflection of high frequency radio waves, US Patent No. 2923934
71.
go back to reference Halpern O, Johnson MHJ, Wright RW (1960) Isotropic absorbing layers, US Patent No. 2951247 Halpern O, Johnson MHJ, Wright RW (1960) Isotropic absorbing layers, US Patent No. 2951247
72.
go back to reference Joseph N, Singh S, Sirugudu R, Murthy V, Ananthakumar S, Sebastian MT (2013) Effect of silver incorporation into PVDF-barium titanate composites for EMI shielding applications. Mater Res Bull 48:1681–1687CrossRef Joseph N, Singh S, Sirugudu R, Murthy V, Ananthakumar S, Sebastian MT (2013) Effect of silver incorporation into PVDF-barium titanate composites for EMI shielding applications. Mater Res Bull 48:1681–1687CrossRef
73.
go back to reference Chauhan S, Abrahamand M, Choudhary V (2016) Electromagnetic shielding and mechanical properties of thermally stable poly (ether ketone) multiwalled carbon nanotube composites prepared using twin screw extruder equipped with novel fractional mixing elements. RSC Adv 6(2016):113781–113790CrossRef Chauhan S, Abrahamand M, Choudhary V (2016) Electromagnetic shielding and mechanical properties of thermally stable poly (ether ketone) multiwalled carbon nanotube composites prepared using twin screw extruder equipped with novel fractional mixing elements. RSC Adv 6(2016):113781–113790CrossRef
74.
go back to reference Klemperer C, Maharaj D (2009) Composite electromagnetic interference shielding materials for aerospace applications. Compos Struct 91:467–472CrossRef Klemperer C, Maharaj D (2009) Composite electromagnetic interference shielding materials for aerospace applications. Compos Struct 91:467–472CrossRef
75.
go back to reference Byeon J, Kim J-W (2011) Aerosol based fabrication of a Cu/polymer and its application for electromagnetic interference shielding. Thin Solid Films 520:1048–1052CrossRef Byeon J, Kim J-W (2011) Aerosol based fabrication of a Cu/polymer and its application for electromagnetic interference shielding. Thin Solid Films 520:1048–1052CrossRef
76.
go back to reference Kumar A, Singh A, Kumari S, Dutta P, Dhawan S, Dhar A (2014) Polyaromatic-hydrocarbon-based carbon copper composites for the suppression of electromagnetic pollution. J Mater Chem A 2:16632CrossRef Kumar A, Singh A, Kumari S, Dutta P, Dhawan S, Dhar A (2014) Polyaromatic-hydrocarbon-based carbon copper composites for the suppression of electromagnetic pollution. J Mater Chem A 2:16632CrossRef
77.
go back to reference Al-Ghamdi AA, El-Tantawy F, Aal N, El-Mossalamy E, Mahmoud W (2009) Stability of new electrostatic discharge protection and electromagnetic wave shielding effectiveness from poly(vinyl chloride)/graphite/nickel nanoconducting composites. Polym Degrad Stab 94:980–986CrossRef Al-Ghamdi AA, El-Tantawy F, Aal N, El-Mossalamy E, Mahmoud W (2009) Stability of new electrostatic discharge protection and electromagnetic wave shielding effectiveness from poly(vinyl chloride)/graphite/nickel nanoconducting composites. Polym Degrad Stab 94:980–986CrossRef
78.
go back to reference Al-Ghamdi A, El-Tantawy F (2010) New electromagnetic wave shielding effectiveness at microwave frequency of polyvinyl chloride reinforced graphite/copper nanoparticles. Compos Part A 41:1693–1701CrossRef Al-Ghamdi A, El-Tantawy F (2010) New electromagnetic wave shielding effectiveness at microwave frequency of polyvinyl chloride reinforced graphite/copper nanoparticles. Compos Part A 41:1693–1701CrossRef
79.
go back to reference Shahzad F, Alhabeb M, Hatter C, Anasori B, Hong SM, Koo C et al (2016) Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353:1137–1140CrossRef Shahzad F, Alhabeb M, Hatter C, Anasori B, Hong SM, Koo C et al (2016) Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353:1137–1140CrossRef
80.
go back to reference Skotheim TA, Elsenbaumer R, Reynolds JR (1998) Handbook of conducting polymers. Marcel Dekker, New York Skotheim TA, Elsenbaumer R, Reynolds JR (1998) Handbook of conducting polymers. Marcel Dekker, New York
81.
go back to reference Chaudhary A, Kumari S, Kumar R, Teotia S, Singh B, Singh A et al (2016) Lightweight and easily foldable MCMB-MWCNTs composite paper with exceptional electromagnetic interference shielding. ACS Appl Mater Interfaces 8:10600–10608 Chaudhary A, Kumari S, Kumar R, Teotia S, Singh B, Singh A et al (2016) Lightweight and easily foldable MCMB-MWCNTs composite paper with exceptional electromagnetic interference shielding. ACS Appl Mater Interfaces 8:10600–10608
82.
go back to reference Joseph N, Varghese J, Sebastian MT (2017a) Graphite reinforced polyvinylidene fluoride composites an efficient and sustainable solution for electromagnetic pollution. Compos Part B Eng 123:271–278CrossRef Joseph N, Varghese J, Sebastian MT (2017a) Graphite reinforced polyvinylidene fluoride composites an efficient and sustainable solution for electromagnetic pollution. Compos Part B Eng 123:271–278CrossRef
83.
go back to reference Al-Saleh M (2015) Influence of conductive network structure on the EMI shielding and electrical percolation of carbon nanotube/polymer nanocomposites. Synth Met 205:78–84CrossRef Al-Saleh M (2015) Influence of conductive network structure on the EMI shielding and electrical percolation of carbon nanotube/polymer nanocomposites. Synth Met 205:78–84CrossRef
84.
go back to reference Sun X, Liu X, Shen X, Wu Y, Wang Z, Kim J-K (2016) Graphene foam/carbon nanotube/poly(dimethyl siloxane) composites for exceptional microwave shielding. Compos Part A 85:199–206CrossRef Sun X, Liu X, Shen X, Wu Y, Wang Z, Kim J-K (2016) Graphene foam/carbon nanotube/poly(dimethyl siloxane) composites for exceptional microwave shielding. Compos Part A 85:199–206CrossRef
85.
go back to reference Al-Saleh M, Saadeh W, Sundararaj U (2013) EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study. Carbon NY 60:146–156CrossRef Al-Saleh M, Saadeh W, Sundararaj U (2013) EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study. Carbon NY 60:146–156CrossRef
86.
go back to reference Kumar R, Dhawan S, Singh H, Kaur A (2016) Charge transport mechanism of thermally reduced graphene oxide and their fabrication for high performance shield against electromagnetic pollution. Mater Chem Phys 180:413–421CrossRef Kumar R, Dhawan S, Singh H, Kaur A (2016) Charge transport mechanism of thermally reduced graphene oxide and their fabrication for high performance shield against electromagnetic pollution. Mater Chem Phys 180:413–421CrossRef
87.
go back to reference Goyal R (2013) Cost-efficient high performance polyetheretherketone/expanded graphite nanocomposites with high conductivity for EMI shielding application. Mater Chem Phys 142:195–198CrossRef Goyal R (2013) Cost-efficient high performance polyetheretherketone/expanded graphite nanocomposites with high conductivity for EMI shielding application. Mater Chem Phys 142:195–198CrossRef
88.
go back to reference Modak P, Kondawar S, Nandanwar D (2015) Synthesis and characterization of conducting polyaniline/graphene nanocomposites for electromagnetic interference shielding. Procedia Mater Sci 10:588–594CrossRef Modak P, Kondawar S, Nandanwar D (2015) Synthesis and characterization of conducting polyaniline/graphene nanocomposites for electromagnetic interference shielding. Procedia Mater Sci 10:588–594CrossRef
89.
go back to reference Theilmann P, Yun D-J, Asbeck P, Park S-H (2013) Superior electromagnetic interference shielding and dielectric properties of carbon nanotube composites through the use of high aspect ratio CNTs and three-roll milling. Org Electron 14:1531–1537CrossRef Theilmann P, Yun D-J, Asbeck P, Park S-H (2013) Superior electromagnetic interference shielding and dielectric properties of carbon nanotube composites through the use of high aspect ratio CNTs and three-roll milling. Org Electron 14:1531–1537CrossRef
90.
go back to reference Wang H, Zheng K, Zhang X, Ding X, Zhang Z, Bao C et al (2016) 3D network porous polymeric composites with outstanding electromagnetic interference shielding. Compos Sci Technol 125:22–29CrossRef Wang H, Zheng K, Zhang X, Ding X, Zhang Z, Bao C et al (2016) 3D network porous polymeric composites with outstanding electromagnetic interference shielding. Compos Sci Technol 125:22–29CrossRef
91.
go back to reference Li Y, Shen B, Pei X, Zhang Y, Yi D, Zhai W et al (2016) Ultrathin carbon foams for effective electromagnetic interference shielding. Carbon NY 100:375–385CrossRef Li Y, Shen B, Pei X, Zhang Y, Yi D, Zhai W et al (2016) Ultrathin carbon foams for effective electromagnetic interference shielding. Carbon NY 100:375–385CrossRef
92.
go back to reference Luo X, Chugh R, Biller BC, Hoi Y, Chung D (2002) Electronic applications of flexible graphite. J Electron Mater 31(5):535–544CrossRef Luo X, Chugh R, Biller BC, Hoi Y, Chung D (2002) Electronic applications of flexible graphite. J Electron Mater 31(5):535–544CrossRef
93.
go back to reference Luo X, Chung D (1996) Electromagnetic interference shielding reaching 130 dB using flexible graphite. Carbon NY 34:1293–1299CrossRef Luo X, Chung D (1996) Electromagnetic interference shielding reaching 130 dB using flexible graphite. Carbon NY 34:1293–1299CrossRef
94.
go back to reference Al-Ghamdi A, Al-Ghamdi A, Al-Turki Y, Yakuphanoglu F, El-Tantawy F (2016) Electromagnetic shielding properties of graphene/acrylonitrile butadiene rubber nanocomposites for portable and flexible electronic devices. Compos Part B 88:212–219CrossRef Al-Ghamdi A, Al-Ghamdi A, Al-Turki Y, Yakuphanoglu F, El-Tantawy F (2016) Electromagnetic shielding properties of graphene/acrylonitrile butadiene rubber nanocomposites for portable and flexible electronic devices. Compos Part B 88:212–219CrossRef
95.
go back to reference Gupta A, Varshney S, Goyal A, Sambyal P, Gupta B, Dhawan S (2015) Enhanced electromagnetic shielding behavior of multilayer graphene anchored luminescent TiO2 in PPY matrix. Mater Lett 158:167–169CrossRef Gupta A, Varshney S, Goyal A, Sambyal P, Gupta B, Dhawan S (2015) Enhanced electromagnetic shielding behavior of multilayer graphene anchored luminescent TiO2 in PPY matrix. Mater Lett 158:167–169CrossRef
96.
go back to reference Verma P, Saini P, Malik R, Choudhary V (2015) Excellent electromagnetic interference shielding and mechanical properties of high loading carbon nanotubes/polymer composites designed using melt recirculation equipped twin-screw extruder. Carbon NY 89:308–317CrossRef Verma P, Saini P, Malik R, Choudhary V (2015) Excellent electromagnetic interference shielding and mechanical properties of high loading carbon nanotubes/polymer composites designed using melt recirculation equipped twin-screw extruder. Carbon NY 89:308–317CrossRef
97.
go back to reference Mishra M, Singh A, Dhawan S (2013) Expanded graphite–nanoferrite–fly ash composites for shielding of electromagnetic pollution. J Alloys Compd 557:244–251CrossRef Mishra M, Singh A, Dhawan S (2013) Expanded graphite–nanoferrite–fly ash composites for shielding of electromagnetic pollution. J Alloys Compd 557:244–251CrossRef
98.
go back to reference Zhang L, Alvarez N, Zhang M, Haase M, Malik R, Mast D et al (2015) Preparation and characterization of graphene paper for electromagnetic interference shielding. Carbon N Y 82:353–359CrossRef Zhang L, Alvarez N, Zhang M, Haase M, Malik R, Mast D et al (2015) Preparation and characterization of graphene paper for electromagnetic interference shielding. Carbon N Y 82:353–359CrossRef
99.
go back to reference Dhawan R, Kumari S, Kumar R, Dhawan S, Dhakate S (2015) Mesocarbon microsphere composites with Fe3O4 nanoparticles for outstanding electromagnetic interference shielding effectiveness. RSC Adv 5:43279CrossRef Dhawan R, Kumari S, Kumar R, Dhawan S, Dhakate S (2015) Mesocarbon microsphere composites with Fe3O4 nanoparticles for outstanding electromagnetic interference shielding effectiveness. RSC Adv 5:43279CrossRef
100.
go back to reference Farhan S, Wang R, Li K (2016) Electromagnetic interference shielding effectiveness of carbon foam containing in situ grown silicon carbide nanowires. Ceram Int 42:11330–11340CrossRef Farhan S, Wang R, Li K (2016) Electromagnetic interference shielding effectiveness of carbon foam containing in situ grown silicon carbide nanowires. Ceram Int 42:11330–11340CrossRef
101.
go back to reference Kaur A (2012) Ishpal, Dhawan S. tuning of EMI shielding properties of polypyrrole nanoparticles with surfactant concentration. Synth Met 162:1471–1477CrossRef Kaur A (2012) Ishpal, Dhawan S. tuning of EMI shielding properties of polypyrrole nanoparticles with surfactant concentration. Synth Met 162:1471–1477CrossRef
102.
go back to reference Joseph N, Varghese J, Sebastian MT (2015) Self-assembled polyaniline nanofibers withenhanced electromagnetic shielding properties. RSC Adv 5:20459–20466CrossRef Joseph N, Varghese J, Sebastian MT (2015) Self-assembled polyaniline nanofibers withenhanced electromagnetic shielding properties. RSC Adv 5:20459–20466CrossRef
103.
go back to reference Bayat M, Yang H, Ko F, Michelson D, Mei A (2014) Electromagnetic interference shielding effectiveness of hybrid multifunctional Fe3O4/carbon nanofiber composite. Polymer (Guildf). 55:936–943CrossRef Bayat M, Yang H, Ko F, Michelson D, Mei A (2014) Electromagnetic interference shielding effectiveness of hybrid multifunctional Fe3O4/carbon nanofiber composite. Polymer (Guildf). 55:936–943CrossRef
104.
go back to reference Cabrera C, Miranda F (2015) Advanced nanomaterials for aerospace applications. CRC press, Taylor and Francis group Cabrera C, Miranda F (2015) Advanced nanomaterials for aerospace applications. CRC press, Taylor and Francis group
105.
go back to reference Joseph N, Janardhanan C, Sebastian MT (2014) Electromagnetic interference shielding properties of butyl rubber-single walled carbon nanotube composites. Compos Sci Technol 1:139–144CrossRef Joseph N, Janardhanan C, Sebastian MT (2014) Electromagnetic interference shielding properties of butyl rubber-single walled carbon nanotube composites. Compos Sci Technol 1:139–144CrossRef
106.
go back to reference Tong X (2009) Advanced materials and design for electromagnetic interference shielding. CRC Press, Taylor and Francis group, Now York Tong X (2009) Advanced materials and design for electromagnetic interference shielding. CRC Press, Taylor and Francis group, Now York
107.
go back to reference Joseph N, Varghese J, Sebastian MT (2016) A facile formulation and excellent electromagnetic absorption of room temperature curable polyaniline nanofiber based inks. J Mater Chem C 4:999–1008CrossRef Joseph N, Varghese J, Sebastian MT (2016) A facile formulation and excellent electromagnetic absorption of room temperature curable polyaniline nanofiber based inks. J Mater Chem C 4:999–1008CrossRef
108.
go back to reference Joseph N, Varghese J, Sebastian MT (2017b) In situ polymerized polyaniline nanofiber-based functional cotton and nylon fabrics as millimeter-wave absorbers. Nat Polym 49:391–399 Joseph N, Varghese J, Sebastian MT (2017b) In situ polymerized polyaniline nanofiber-based functional cotton and nylon fabrics as millimeter-wave absorbers. Nat Polym 49:391–399
109.
go back to reference Zhou P, Chen J, Liu M, Jiang P, Li B, Hou X-M (2017) Microwave absorption properties of SiC@SiO2@Fe3O4 hybrids in the 2–18 GHz range. Int J Miner Metall Mater 24:804–813CrossRef Zhou P, Chen J, Liu M, Jiang P, Li B, Hou X-M (2017) Microwave absorption properties of SiC@SiO2@Fe3O4 hybrids in the 2–18 GHz range. Int J Miner Metall Mater 24:804–813CrossRef
110.
go back to reference Kong L, Li Z, Liu L, Huang R, Abshinova M, Yang Z et al (2013) Recent progress in some composite materials and structures for specific, electromagnetic applications. Int Mater Rev 58:203CrossRef Kong L, Li Z, Liu L, Huang R, Abshinova M, Yang Z et al (2013) Recent progress in some composite materials and structures for specific, electromagnetic applications. Int Mater Rev 58:203CrossRef
111.
go back to reference Folgueras L, Alves M, Rezende M (2010) Microwave absorbing paints and sheets based on carbonyl iron and polyaniline: measurement and simulation of their properties. J Aerosp Technol Manag 1:63–70CrossRef Folgueras L, Alves M, Rezende M (2010) Microwave absorbing paints and sheets based on carbonyl iron and polyaniline: measurement and simulation of their properties. J Aerosp Technol Manag 1:63–70CrossRef
112.
go back to reference Kajfez D, Guillon P (1986) Dielectric resonators. Artech House, Norwood Kajfez D, Guillon P (1986) Dielectric resonators. Artech House, Norwood
113.
go back to reference Mcallister M, Long S (1983) Rectangular dielectric resonator antenna. IEEE Electron Lett 19:218–219CrossRef Mcallister M, Long S (1983) Rectangular dielectric resonator antenna. IEEE Electron Lett 19:218–219CrossRef
114.
go back to reference Luk K, Leung K (2002) Dielectric resonator antennas. Electronic & electrical engineering research studies series. Research Studies Press, Taunton Luk K, Leung K (2002) Dielectric resonator antennas. Electronic & electrical engineering research studies series. Research Studies Press, Taunton
115.
go back to reference Petosa A (2007) Dielectric resonator antenna handbook. Artech House, Boston Petosa A (2007) Dielectric resonator antenna handbook. Artech House, Boston
116.
go back to reference Garg R, Bhartia P, Bahl I, Ittipiboon A (2000) Microstrip antenna design hand book. Artech house Inc., Norwood Garg R, Bhartia P, Bahl I, Ittipiboon A (2000) Microstrip antenna design hand book. Artech house Inc., Norwood
117.
go back to reference Garg R (2001) Microstrip antenna design handbook. Artech house Inc., Norwood Garg R (2001) Microstrip antenna design handbook. Artech house Inc., Norwood
118.
go back to reference Imbriale W (ed) (2006) Spaceborne antennas for planetary exploration. Wiley, Hoboken Imbriale W (ed) (2006) Spaceborne antennas for planetary exploration. Wiley, Hoboken
119.
go back to reference Kumar G, Ray K (2003) Broadband microstrip antennas. Artech House, Boston Kumar G, Ray K (2003) Broadband microstrip antennas. Artech House, Boston
120.
go back to reference Pozar D, Schaube D (eds) (1995) Microstrip antennas: the analysis and design of microstrip antennas and arrays. Institute of Electrical and Electronics Engineers, New York Pozar D, Schaube D (eds) (1995) Microstrip antennas: the analysis and design of microstrip antennas and arrays. Institute of Electrical and Electronics Engineers, New York
121.
go back to reference Petoso A, Ittipiboon A (2010) Dielectric resonator antennas. A historical review and the current state of the art. IEEE Antennas Propag Mag 52:91–116CrossRef Petoso A, Ittipiboon A (2010) Dielectric resonator antennas. A historical review and the current state of the art. IEEE Antennas Propag Mag 52:91–116CrossRef
122.
go back to reference Soren D, Ghatak R, Mishra R, Poddar D (2014) Dielectric resonator antennas: designs and advances. Progr Electromag Res B 60:195–213CrossRef Soren D, Ghatak R, Mishra R, Poddar D (2014) Dielectric resonator antennas: designs and advances. Progr Electromag Res B 60:195–213CrossRef
123.
go back to reference Ozzaim C (2014) Monopole antenna loaded by stacked annular ring dielectric resonators for ultrawide bandwidth. Microw Opt Technol Lett 56:2395–2398CrossRef Ozzaim C (2014) Monopole antenna loaded by stacked annular ring dielectric resonators for ultrawide bandwidth. Microw Opt Technol Lett 56:2395–2398CrossRef
124.
go back to reference Kingley S, OKeefe S (1999) Beam steering and monopulse processing of probe fed dielectric resonator antenna. Proc Rada Sonar Navig 3:121–125CrossRef Kingley S, OKeefe S (1999) Beam steering and monopulse processing of probe fed dielectric resonator antenna. Proc Rada Sonar Navig 3:121–125CrossRef
125.
go back to reference Svedin J, Huss L, Karlen D, Enoksson P, Rusu C (2007) A micromachined 94 GHz dielectric resonator antenna for focal plane array applications. In: IEEE international microwave symposium, Honolulu, –IEEE MTT-S, pp 1375–1378 Svedin J, Huss L, Karlen D, Enoksson P, Rusu C (2007) A micromachined 94 GHz dielectric resonator antenna for focal plane array applications. In: IEEE international microwave symposium, Honolulu, –IEEE MTT-S, pp 1375–1378
127.
go back to reference Bijumon P, Menon S, Lethakumari B, Sebastian MT, Mohanan P (2006) Broad band elliptical dielectric resonator antennas excited with geometry modified microstrip lines. Microw Opt Technol Lett 48:65–67CrossRef Bijumon P, Menon S, Lethakumari B, Sebastian MT, Mohanan P (2006) Broad band elliptical dielectric resonator antennas excited with geometry modified microstrip lines. Microw Opt Technol Lett 48:65–67CrossRef
128.
go back to reference Kumari R, Behera S (2014) Investigation on log periodic dielectric resonator antenna array for Ku band applications electromagnetics. Electromagnetics 34(1):19–33. Taylor FrancisCrossRef Kumari R, Behera S (2014) Investigation on log periodic dielectric resonator antenna array for Ku band applications electromagnetics. Electromagnetics 34(1):19–33. Taylor FrancisCrossRef
129.
go back to reference Kumari R, Behera S (2013b) Nine element frequency independent dielectric resonator array for X- band applications. Microw Opt Technol Lett 55(2):400–403CrossRef Kumari R, Behera S (2013b) Nine element frequency independent dielectric resonator array for X- band applications. Microw Opt Technol Lett 55(2):400–403CrossRef
130.
go back to reference Menon S, Lethakumary B, Bijumon P, Sebastian M, Mohanan P (2005) L-strip fed wide band rectangular dielectric resonator antenna. Microw Opt Technol Lett 45:227–228CrossRef Menon S, Lethakumary B, Bijumon P, Sebastian M, Mohanan P (2005) L-strip fed wide band rectangular dielectric resonator antenna. Microw Opt Technol Lett 45:227–228CrossRef
131.
go back to reference Suma M, Menon S, Bijumon P, Sebastian M, Mohanan P (2005) Rectangular dielectric resonator antenna on a conductor -backed co-planar waveguide. Microw Opt Technol Lett 45(2):154–156CrossRef Suma M, Menon S, Bijumon P, Sebastian M, Mohanan P (2005) Rectangular dielectric resonator antenna on a conductor -backed co-planar waveguide. Microw Opt Technol Lett 45(2):154–156CrossRef
132.
go back to reference Caloz C, Itoh T (2006) Electromagnetic metamaterials: transmission line theory and microwave applications. Piscataway, Wiley Caloz C, Itoh T (2006) Electromagnetic metamaterials: transmission line theory and microwave applications. Piscataway, Wiley
133.
go back to reference Ganguly D, Guha D, George S, Kumar C, Sebastian M, Antar Y (2017) New design approach for hybrid monopole antenna to achieve increased ultra-wide bandwidth. IEEE Antennas Propag Mag 11:139–144 Ganguly D, Guha D, George S, Kumar C, Sebastian M, Antar Y (2017) New design approach for hybrid monopole antenna to achieve increased ultra-wide bandwidth. IEEE Antennas Propag Mag 11:139–144
134.
go back to reference Ghosh S, Chakrabarty A (2008) Ultrawide band performance of dielectric loaded T-shaped monopole transmit and receive antenna/EMI sensor. IEEE Antennas Wirel Propag Lett 7:358–361CrossRef Ghosh S, Chakrabarty A (2008) Ultrawide band performance of dielectric loaded T-shaped monopole transmit and receive antenna/EMI sensor. IEEE Antennas Wirel Propag Lett 7:358–361CrossRef
135.
go back to reference Guha D, Gupta B, Antar Y (2012) Hybrid monopole-DRAs using hemispherical/conical-shaped dielectric ring resonators: improved ultrawide band designs. IEEE Trans Antennas Propag 60:393–398CrossRef Guha D, Gupta B, Antar Y (2012) Hybrid monopole-DRAs using hemispherical/conical-shaped dielectric ring resonators: improved ultrawide band designs. IEEE Trans Antennas Propag 60:393–398CrossRef
136.
go back to reference Guha D, Gupta B, Antar Y (2009) New pawn-shaped dielectric ring resonator loaded hybrid monopole antenna for improved ultrawide bandwidth. IEEE Antennas Wirel Propag Lett 8:1178–1181CrossRef Guha D, Gupta B, Antar Y (2009) New pawn-shaped dielectric ring resonator loaded hybrid monopole antenna for improved ultrawide bandwidth. IEEE Antennas Wirel Propag Lett 8:1178–1181CrossRef
137.
go back to reference Guha D, Antar Y, Ittipiboon A, Petosa A, Lee D (2006) Improved design guidelines for the ultra wideband monopole-dielectric resonator antenna. EEE Antennas Wirel Propag Lett 5:373–377CrossRef Guha D, Antar Y, Ittipiboon A, Petosa A, Lee D (2006) Improved design guidelines for the ultra wideband monopole-dielectric resonator antenna. EEE Antennas Wirel Propag Lett 5:373–377CrossRef
138.
go back to reference Jazi M, Denidni T (2008) A new hybrid skirt monopole dielectric resonator antenna. In: Proceedings of the IEEE antennas propagation society international symposium, pp 1–4 Jazi M, Denidni T (2008) A new hybrid skirt monopole dielectric resonator antenna. In: Proceedings of the IEEE antennas propagation society international symposium, pp 1–4
139.
go back to reference Kumari R, Behera S (2013c) Mushroom shaped dielectric resonator antenna for WiMAX applications. Microw Opt Technol Lett 55:1360–1365CrossRef Kumari R, Behera S (2013c) Mushroom shaped dielectric resonator antenna for WiMAX applications. Microw Opt Technol Lett 55:1360–1365CrossRef
140.
go back to reference Ozzaim C, Ustuner S, Tarim N (2013) Stacked conical ring dielectric resonator antenna excited by a monopole for improved ultrawide bandwidth. IEEE Trans Antennas Propag 61:1435–1438CrossRef Ozzaim C, Ustuner S, Tarim N (2013) Stacked conical ring dielectric resonator antenna excited by a monopole for improved ultrawide bandwidth. IEEE Trans Antennas Propag 61:1435–1438CrossRef
141.
go back to reference Sheeja K, Behera S, Sahu P (2012) Bandwidth improvement of a zeroth order resonant antenna for WiMax applications. Int J RF Microw Comput Eng 22(4):569–574CrossRef Sheeja K, Behera S, Sahu P (2012) Bandwidth improvement of a zeroth order resonant antenna for WiMax applications. Int J RF Microw Comput Eng 22(4):569–574CrossRef
142.
go back to reference Ullah U, Ain M, Mahyuddin N, Othman M, Ahmad Z, Abdullah M et al (2015) Antenna in LTCC technologies: a review and the current state of the art. IEEE Antennas Propag Mag 57:241–260CrossRef Ullah U, Ain M, Mahyuddin N, Othman M, Ahmad Z, Abdullah M et al (2015) Antenna in LTCC technologies: a review and the current state of the art. IEEE Antennas Propag Mag 57:241–260CrossRef
143.
go back to reference Kim D, Kang D, Shin M, Jung H, Lim J (2016) Design of a low temperature co-fired ceramic (LTCC) based antenna with broadband and high gain at 60 GHz bands. In: IEEE international conference on consumer electronics Asia. ICCE-Asia, pp 1–3 Kim D, Kang D, Shin M, Jung H, Lim J (2016) Design of a low temperature co-fired ceramic (LTCC) based antenna with broadband and high gain at 60 GHz bands. In: IEEE international conference on consumer electronics Asia. ICCE-Asia, pp 1–3
144.
go back to reference Abbosh A, Bialkowski M, Jacob M, Mazierska J (2005) Investigations into an LTCC based ultra-wide band antenna. In: Asia-Pacific microwave conference (APMC), p 4 Abbosh A, Bialkowski M, Jacob M, Mazierska J (2005) Investigations into an LTCC based ultra-wide band antenna. In: Asia-Pacific microwave conference (APMC), p 4
145.
go back to reference Imbert M (2017) Assessment of LTCC based dielectric flat lens antennas and switched beam arrays for future 5G millimeter – wave communication systems. IEEE Trans Antennas Propag 65:6453–6473CrossRef Imbert M (2017) Assessment of LTCC based dielectric flat lens antennas and switched beam arrays for future 5G millimeter – wave communication systems. IEEE Trans Antennas Propag 65:6453–6473CrossRef
146.
go back to reference Li J, Zhan Y, Qin W, Wu Y, Chen J-X (2017) Differential dielectric resonator filters. IEEE Trans Compon Packag Manuf Technol 7:637–645CrossRef Li J, Zhan Y, Qin W, Wu Y, Chen J-X (2017) Differential dielectric resonator filters. IEEE Trans Compon Packag Manuf Technol 7:637–645CrossRef
147.
go back to reference Qin W, Chen J-X (2017) Balanced/balun filters based on dielectric resonators. In: IEEE global symposium on millimeter-waves Qin W, Chen J-X (2017) Balanced/balun filters based on dielectric resonators. In: IEEE global symposium on millimeter-waves
148.
go back to reference Wang ZK (2007) Dielectric resonators and filters. IEEE Microw Mag 8:115–127CrossRef Wang ZK (2007) Dielectric resonators and filters. IEEE Microw Mag 8:115–127CrossRef
149.
go back to reference Zhu L, Mansour R, Yu M (2017) Triple-band dielectric resonator bandpass filters. In: IEEE MTT-S international microwave symposium. pp 745–747 Zhu L, Mansour R, Yu M (2017) Triple-band dielectric resonator bandpass filters. In: IEEE MTT-S international microwave symposium. pp 745–747
150.
go back to reference Webster J (1999) Dielectric resonator oscillators. In: Wiley encyclopedia of electrical and electronics engineering. Wiley, ChichesterCrossRef Webster J (1999) Dielectric resonator oscillators. In: Wiley encyclopedia of electrical and electronics engineering. Wiley, ChichesterCrossRef
151.
go back to reference Ugurlu S (2011) Dielectric resonator oscillator design and realization at 4.25 GHz. In: International conference 2011, p II-205-II-208 Ugurlu S (2011) Dielectric resonator oscillator design and realization at 4.25 GHz. In: International conference 2011, p II-205-II-208
152.
go back to reference Hamed K, Freundorfer A, Antar Y (2007) A monolithic differential coupling mechanism for dielectric resonators excitation in conductive silicon substrates. IEEE Microw Wirel Components Lett 17:25–27CrossRef Hamed K, Freundorfer A, Antar Y (2007) A monolithic differential coupling mechanism for dielectric resonators excitation in conductive silicon substrates. IEEE Microw Wirel Components Lett 17:25–27CrossRef
Metadata
Title
Microwave Materials for Defense and Aerospace Applications
Authors
J. Varghese
N. Joseph
H. Jantunen
S. K. Behera
H. T. Kim
M. T. Sebastian
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-16347-1_9

Premium Partners