Skip to main content
Top

2017 | OriginalPaper | Chapter

12. Mikroströmungen

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Excerpt

Strömungs- und Transportprozesse in Mikrokanälen oder um Mikroobjekte werden durch den Fortschritt der Fertigungstechnologien für technische Anwendungen relevant. Moderne Fertigungsverfahren erlauben kleinste Strukturen von deutlich unter einem Millimeter in verschiedenem Material wie Silizium, Glas, Metall oder Kunststoff herzustellen. Damit entstehen Mikrokanäle oder Mikroobjekte, in und um welche Strömungs- und Transportprozesse ablaufen, um komplexe Funktionen auf kleinstem Raum zu realisieren. Es zeigt sich, abhängig vom Fluid, dass die kontinuumsmechanische Behandlung von Strömungen in und um sehr kleine Geometrien in vielen Fällen nicht ohne weiteres möglich ist. Gegebenenfalls werden Korrekturen der kontinuumsmechanischen Gleichungen oder gar molekulare Methoden notwendig, um die Physik der Strömung auf solch kleinen Längenskalen korrekt wiederzugeben. …

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abraham, F.F.: The interfacial density profile of a lennard-jones fluid in contact with a (100) Lennard-Jones wall and its relationship to idealized fluid/wall systems: a Monte Carlo simulation. J. Chem. Phys. 68, 3713 (1978)CrossRef Abraham, F.F.: The interfacial density profile of a lennard-jones fluid in contact with a (100) Lennard-Jones wall and its relationship to idealized fluid/wall systems: a Monte Carlo simulation. J. Chem. Phys. 68, 3713 (1978)CrossRef
go back to reference Adams, T.M., Abdel-Khalik, S.I., Jeter, S.M., Qureshi, Z.H.: An experimental investigation of single-phase forced convection in microchannels. Int. J. Heat Mass Transf. 41, 851–857 (1998)CrossRef Adams, T.M., Abdel-Khalik, S.I., Jeter, S.M., Qureshi, Z.H.: An experimental investigation of single-phase forced convection in microchannels. Int. J. Heat Mass Transf. 41, 851–857 (1998)CrossRef
go back to reference Barz, D.P.J.: Ein Beitrag zur Modellierung und Simulation elektrokinetischer Transportprozesse in mikrofluidischen Einheiten. Dissertation, Universität Karlsruhe (2005) Barz, D.P.J.: Ein Beitrag zur Modellierung und Simulation elektrokinetischer Transportprozesse in mikrofluidischen Einheiten. Dissertation, Universität Karlsruhe (2005)
go back to reference Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (2005)MATH Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (2005)MATH
go back to reference Bird, G.A.: Molecular Gas Dynamics. Claredon Press, Oxford (1976) Bird, G.A.: Molecular Gas Dynamics. Claredon Press, Oxford (1976)
go back to reference Brutin, D., Topin, F., Tadrist, L.: Transient method for the liquid laminar flow friction factor in microtubes. AIChE J. 49, 2759–2767 (2003)CrossRef Brutin, D., Topin, F., Tadrist, L.: Transient method for the liquid laminar flow friction factor in microtubes. AIChE J. 49, 2759–2767 (2003)CrossRef
go back to reference Burgreen, D., Nakache, F.: Electrokinetic flow in ultrafine capillary slits. J. Phys. Chem. 68, 1084–1091 (1964)CrossRef Burgreen, D., Nakache, F.: Electrokinetic flow in ultrafine capillary slits. J. Phys. Chem. 68, 1084–1091 (1964)CrossRef
go back to reference Chan, D.Y.C., Horn, R.G.: The drainage of thin liquid films between solid surfaces. J. Chem. Phys. 83, 5311–5324 (1985)CrossRef Chan, D.Y.C., Horn, R.G.: The drainage of thin liquid films between solid surfaces. J. Chem. Phys. 83, 5311–5324 (1985)CrossRef
go back to reference Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-Uniform Gases. Cambridge University Press, Cambridge (1970)MATH Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-Uniform Gases. Cambridge University Press, Cambridge (1970)MATH
go back to reference Celata, G.P., Cumo, M., Marconi, V., McPhail, S.J., Zummo, G.: Microtube liquid single-phase heat transfer in laminar flow. Int. J. Heat Mass Transf. 49, 3538–3546 (2006)CrossRef Celata, G.P., Cumo, M., Marconi, V., McPhail, S.J., Zummo, G.: Microtube liquid single-phase heat transfer in laminar flow. Int. J. Heat Mass Transf. 49, 3538–3546 (2006)CrossRef
go back to reference Celata, G.P., Cumo, M., McPhail, S.J., Zummo, G.: Single-phase laminar and turbulent heat transfer in smooth and rough microtubes. Microfluid Nanofluid 3, 697–707 (2007)CrossRef Celata, G.P., Cumo, M., McPhail, S.J., Zummo, G.: Single-phase laminar and turbulent heat transfer in smooth and rough microtubes. Microfluid Nanofluid 3, 697–707 (2007)CrossRef
go back to reference Choi, S.B., Barron, R.F., Warrington, R.O.: Fluid flow and heat transfer in microtubes. ASME AMD-DSC 32, 123–134 (1991) Choi, S.B., Barron, R.F., Warrington, R.O.: Fluid flow and heat transfer in microtubes. ASME AMD-DSC 32, 123–134 (1991)
go back to reference Craig, V.S.J., Neto, C., Williams, D.R.M.: Shear-dependent boundary slip in an aqueous Newtonian liquid. Phys. Rev. Lett. 87 (5), 054504 (2001)CrossRef Craig, V.S.J., Neto, C., Williams, D.R.M.: Shear-dependent boundary slip in an aqueous Newtonian liquid. Phys. Rev. Lett. 87 (5), 054504 (2001)CrossRef
go back to reference de Gennes, P.G.: Wetting: Statistics and dynamics. Rev. Mod. Phys. 57, 827 (1985)CrossRef de Gennes, P.G.: Wetting: Statistics and dynamics. Rev. Mod. Phys. 57, 827 (1985)CrossRef
go back to reference Debye, P., Hückel, E.: Zur Theorie der Elektrolyte. Gefrierpunktserniedrigung und verwandte Erscheinungen. Physikalische Z. 24, 185–206 (1923)MATH Debye, P., Hückel, E.: Zur Theorie der Elektrolyte. Gefrierpunktserniedrigung und verwandte Erscheinungen. Physikalische Z. 24, 185–206 (1923)MATH
go back to reference Derzko, N.A.: Review of Monte Carlo methods in kinetic theory. UTIAS Review 35, University of Toronto (1972) Derzko, N.A.: Review of Monte Carlo methods in kinetic theory. UTIAS Review 35, University of Toronto (1972)
go back to reference Dongqing, Li: Electrokinetics in Microfluidics. Elsevier, London (2004) Dongqing, Li: Electrokinetics in Microfluidics. Elsevier, London (2004)
go back to reference Dussan, E.B.: On the spreading of liquids on solid surfaces: static and dynamic contact lines. Ann. Rev. Fluid Mech. 11, 371 (1979)CrossRef Dussan, E.B.: On the spreading of liquids on solid surfaces: static and dynamic contact lines. Ann. Rev. Fluid Mech. 11, 371 (1979)CrossRef
go back to reference Dussan, E.B., Davis, S.H.: On the motion of a fluid-fluid interface along a solid surface. J. Fluid Mech. 50, 977 (1974)MATH Dussan, E.B., Davis, S.H.: On the motion of a fluid-fluid interface along a solid surface. J. Fluid Mech. 50, 977 (1974)MATH
go back to reference Fritz, G.: Über den dynamischen Randwinkel im Fall der vollständigen Benetzung. Z. Angew. Physik 19, 374 (1965) Fritz, G.: Über den dynamischen Randwinkel im Fall der vollständigen Benetzung. Z. Angew. Physik 19, 374 (1965)
go back to reference Gad-el-Hak, M.: The fluid mechanics of microdevices – the Freeman scholar lecture. J. Fluids Engineering 121, 5–33 (1999)CrossRef Gad-el-Hak, M.: The fluid mechanics of microdevices – the Freeman scholar lecture. J. Fluids Engineering 121, 5–33 (1999)CrossRef
go back to reference Gad-el-Hak, M.: Flow physics. In: Gad-el-Hak, M. (Hrsg.) The MEMS Handbook: Introduction and Fundamentals, 2. CRC, Boca Raton (2006) Gad-el-Hak, M.: Flow physics. In: Gad-el-Hak, M. (Hrsg.) The MEMS Handbook: Introduction and Fundamentals, 2. CRC, Boca Raton (2006)
go back to reference Gee, M.L., McGuiggan, P.M., Israelachvili, J.N., Homola, A.M.: Liquid to solidlike transition of molecularly thin films under shear. J. Chem. Phys. 93, 1895–1906 (1990)CrossRef Gee, M.L., McGuiggan, P.M., Israelachvili, J.N., Homola, A.M.: Liquid to solidlike transition of molecularly thin films under shear. J. Chem. Phys. 93, 1895–1906 (1990)CrossRef
go back to reference Green, H.: The Structure of Liquids. S. Flügge, (Hrsg.), Handbuch der Physik, Bd. 10. Springer, Berlin (2002) Green, H.: The Structure of Liquids. S. Flügge, (Hrsg.), Handbuch der Physik, Bd. 10. Springer, Berlin (2002)
go back to reference Herwig, H.: Flow and heat transfer in micro systems: is everything different or just smaller? Z. Angew. Math. Mech. 82, 579–586 (2002)MathSciNetCrossRefMATH Herwig, H.: Flow and heat transfer in micro systems: is everything different or just smaller? Z. Angew. Math. Mech. 82, 579–586 (2002)MathSciNetCrossRefMATH
go back to reference Hetsroni, G., Mosyak, A., Pogrebnyak, E., Yarin, L.P.: Fluid flow in micro-channels. Int. J. Heat Mass Transf. 48, 1982–1998 (2005a)CrossRef Hetsroni, G., Mosyak, A., Pogrebnyak, E., Yarin, L.P.: Fluid flow in micro-channels. Int. J. Heat Mass Transf. 48, 1982–1998 (2005a)CrossRef
go back to reference Hetsroni, G., Mosyak, A., Pogrebnyak, E., Yarin, L.P.: Heat transfer in micro-channels: comparison of experiments with theory and numerical results. Int. J. Heat Mass Transf. 48, 5580–5601 (2005b)CrossRef Hetsroni, G., Mosyak, A., Pogrebnyak, E., Yarin, L.P.: Heat transfer in micro-channels: comparison of experiments with theory and numerical results. Int. J. Heat Mass Transf. 48, 5580–5601 (2005b)CrossRef
go back to reference Hoffman, R.L.: A study of the advancing interface. I. Interface shape in liquid-gas system. J. Colloid Interface Sci. 50, 228 (1975)CrossRef Hoffman, R.L.: A study of the advancing interface. I. Interface shape in liquid-gas system. J. Colloid Interface Sci. 50, 228 (1975)CrossRef
go back to reference Hunter, R.J.: Zeta Potential in Colloid Science: Principles and Applications. Accademic, London (1981) Hunter, R.J.: Zeta Potential in Colloid Science: Principles and Applications. Accademic, London (1981)
go back to reference Ivanov, M.S., Rogasinsky, S.V.: Theoretical analysis of traditional and modern schemes of the DSMC method. In: Proceedings of the 17th RGD Symposium, Bd. 1, Verlag Chemie, Aachen (1991) Ivanov, M.S., Rogasinsky, S.V.: Theoretical analysis of traditional and modern schemes of the DSMC method. In: Proceedings of the 17th RGD Symposium, Bd. 1, Verlag Chemie, Aachen (1991)
go back to reference Joseph, P., Tabeling, P.: Direct measurement of the apparent slip length. Phys. Rev. E 71, 035303 (2005)CrossRef Joseph, P., Tabeling, P.: Direct measurement of the apparent slip length. Phys. Rev. E 71, 035303 (2005)CrossRef
go back to reference Judy, J., Maynes, D., Webb, B.W.: Characterization of frictional pressure drop for liquid flows through microchannels. Int. J. Heat Mass Transf. 45, 3477–3489 (2002)CrossRef Judy, J., Maynes, D., Webb, B.W.: Characterization of frictional pressure drop for liquid flows through microchannels. Int. J. Heat Mass Transf. 45, 3477–3489 (2002)CrossRef
go back to reference Karniadakis, G.E., Beskok, A.: Micro Flows. Fundamentals and Simulation. Springer, New York (2004)MATH Karniadakis, G.E., Beskok, A.: Micro Flows. Fundamentals and Simulation. Springer, New York (2004)MATH
go back to reference Koplik, P.J., Banavar, J.R.: Continuum deductions from molecular hydrodynamics. Ann. Rev. Fluid Mech. 27, 257–292 (1995)CrossRef Koplik, P.J., Banavar, J.R.: Continuum deductions from molecular hydrodynamics. Ann. Rev. Fluid Mech. 27, 257–292 (1995)CrossRef
go back to reference Li, Z.X., Du, D.X., Guo, Z.Y.: Experimental study on flow characteristics of liquid in circular micro-tubes. Microscale Thermophys. Eng. 7 (3), 253–265 (2003)CrossRef Li, Z.X., Du, D.X., Guo, Z.Y.: Experimental study on flow characteristics of liquid in circular micro-tubes. Microscale Thermophys. Eng. 7 (3), 253–265 (2003)CrossRef
go back to reference Li, H., Yoda, M.: An experimental study of slip considering the effects of non-uniform colloidal tracer distributions. J. Fluid Mech. 662, 269–287 (2010)CrossRefMATH Li, H., Yoda, M.: An experimental study of slip considering the effects of non-uniform colloidal tracer distributions. J. Fluid Mech. 662, 269–287 (2010)CrossRefMATH
go back to reference Lin, T.-Y., Yang, C.-Y.: An experimental investigation on forced convection heat transfer performance in micro tubes by the method of liquid crystal thermography. Int. J. Heat Mass Transf. 50, 4736–4742 (2007)CrossRef Lin, T.-Y., Yang, C.-Y.: An experimental investigation on forced convection heat transfer performance in micro tubes by the method of liquid crystal thermography. Int. J. Heat Mass Transf. 50, 4736–4742 (2007)CrossRef
go back to reference Löfdahl, L., Gad-el-Hak, M.: Sensors and actuators for turbulent flows. In: Gad-el-Hak, M. (Hrsg.) The MEMS Handbook: Applications, 2. CRC, Boca Raton (2006) Löfdahl, L., Gad-el-Hak, M.: Sensors and actuators for turbulent flows. In: Gad-el-Hak, M. (Hrsg.) The MEMS Handbook: Applications, 2. CRC, Boca Raton (2006)
go back to reference Loose, W., Hess, S.: Rheology of dense model fluids via nonequilibrium molecular dynamics: shear thinning and ordering transition. Rheologica Acta 28, 91–101 (1989)CrossRef Loose, W., Hess, S.: Rheology of dense model fluids via nonequilibrium molecular dynamics: shear thinning and ordering transition. Rheologica Acta 28, 91–101 (1989)CrossRef
go back to reference Maier, C.: Techniken der Hochgeschwindigkeitsmikrokinematographie zur Bewertung von Mikrodosiersystemen und Mikrotropfen. Fortschritts-Bericht 1037, VDI (2004). Dissertation Universität Ulm Maier, C.: Techniken der Hochgeschwindigkeitsmikrokinematographie zur Bewertung von Mikrodosiersystemen und Mikrotropfen. Fortschritts-Bericht 1037, VDI (2004). Dissertation Universität Ulm
go back to reference Manz, A., Becker, H.: Microsystem Technology in Chemistry and Life Sciences. Springer, Berlin (1999) Manz, A., Becker, H.: Microsystem Technology in Chemistry and Life Sciences. Springer, Berlin (1999)
go back to reference Maxwell, J.: On stresses in rarefied gases arising from inequalities of temperature. Philos. Trans. R. Soc. 170 (1), 231–256 (1879)CrossRefMATH Maxwell, J.: On stresses in rarefied gases arising from inequalities of temperature. Philos. Trans. R. Soc. 170 (1), 231–256 (1879)CrossRefMATH
go back to reference Meisel, I., Ehrhard, P.: Electrically-excited (electroosmotic) flows in microchannels for mixing applications. Eur. J. Mech. B: Fluids 25, 491–504 (2006)MathSciNetCrossRefMATH Meisel, I., Ehrhard, P.: Electrically-excited (electroosmotic) flows in microchannels for mixing applications. Eur. J. Mech. B: Fluids 25, 491–504 (2006)MathSciNetCrossRefMATH
go back to reference Moss, J.N., Bird, G.A.: Direct simulation of transitional flow for hypersonic reentry conditions. 84-0223, AIAA (1984) Moss, J.N., Bird, G.A.: Direct simulation of transitional flow for hypersonic reentry conditions. 84-0223, AIAA (1984)
go back to reference Nanbu, K.: Numerical simulation of Boltzmann flows of real gases – accuracy of models used in the Monte Carlo method. Rep. Inst. Fluid Science 4, Tohoku University, Sendai (1992) Nanbu, K.: Numerical simulation of Boltzmann flows of real gases – accuracy of models used in the Monte Carlo method. Rep. Inst. Fluid Science 4, Tohoku University, Sendai (1992)
go back to reference Oertel, H., jr.: Aerothermodynamik. Springer, Berlin/Heidelberg (1994). Universitätsverlag, Karlsruhe (2005) Oertel, H., jr.: Aerothermodynamik. Springer, Berlin/Heidelberg (1994). Universitätsverlag, Karlsruhe (2005)
go back to reference Oron, A.: Physics of thin liquid films. In: Gad-el-Hak, M. (Hrsg.) The MEMS Handbook: Introduction and Fundamentals, 2. CRC, Boca Raton (2006) Oron, A.: Physics of thin liquid films. In: Gad-el-Hak, M. (Hrsg.) The MEMS Handbook: Introduction and Fundamentals, 2. CRC, Boca Raton (2006)
go back to reference Oron, A., Davis, S.H., Bankoff, S.G.: Long-scale evolution of thin liquid films. Rev. Modern Phys. 69, 931–980 (1997)CrossRef Oron, A., Davis, S.H., Bankoff, S.G.: Long-scale evolution of thin liquid films. Rev. Modern Phys. 69, 931–980 (1997)CrossRef
go back to reference Overbeek, J.T.G.: Electrokinetic phenomena. In: Kruyt, H.R. (Hrsg.) Colloid Science, Bd. 1. Elsevier, Amsterdam (1952) Overbeek, J.T.G.: Electrokinetic phenomena. In: Kruyt, H.R. (Hrsg.) Colloid Science, Bd. 1. Elsevier, Amsterdam (1952)
go back to reference Ramos, A., Morgan, H., Green, N.G., Castellanos, A.: AC electrokinetics: a review of forces in microelectrode structures. J. Phys. D: Appl. Phys. 31, 2338–2353 (1998)CrossRef Ramos, A., Morgan, H., Green, N.G., Castellanos, A.: AC electrokinetics: a review of forces in microelectrode structures. J. Phys. D: Appl. Phys. 31, 2338–2353 (1998)CrossRef
go back to reference Rice, C.L., Whitehead, R.: Electrokinetic flow in a narrow cylindrical capillary. J. Phys. Chem. 69, 4017–4024 (1965)CrossRef Rice, C.L., Whitehead, R.: Electrokinetic flow in a narrow cylindrical capillary. J. Phys. Chem. 69, 4017–4024 (1965)CrossRef
go back to reference Rose, W., Heins, R.W.: Moving interfaces and contact angle rate-dependency. J. Colloid Sci. 17, 39 (1962)CrossRef Rose, W., Heins, R.W.: Moving interfaces and contact angle rate-dependency. J. Colloid Sci. 17, 39 (1962)CrossRef
go back to reference Schaaf, S.A., Chambré, P.L.: Flow of Rarefied Gases. Princeton University Press, Princeton (1961)MATH Schaaf, S.A., Chambré, P.L.: Flow of Rarefied Gases. Princeton University Press, Princeton (1961)MATH
go back to reference Schubert, K., Brandner, J.J., Fichtner, M., Linder, G., Schygulla, U., Wenka, A.: Microstructure devices for applications in thermal and chemical process engineering. J. Microscale Thermophys. Eng. 5, 17–39 (2001)CrossRef Schubert, K., Brandner, J.J., Fichtner, M., Linder, G., Schygulla, U., Wenka, A.: Microstructure devices for applications in thermal and chemical process engineering. J. Microscale Thermophys. Eng. 5, 17–39 (2001)CrossRef
go back to reference Schwartz, A.M., Tajeda, S.B.: Studies of dynamic contact angles on solids. J. Colloid Interface Sci. 38, 359 (1972)CrossRef Schwartz, A.M., Tajeda, S.B.: Studies of dynamic contact angles on solids. J. Colloid Interface Sci. 38, 359 (1972)CrossRef
go back to reference Sharp, K.V., Adrian, R.J.: Transition from laminar to turbulent flow in liquid filled microtubes. Exp. Fluids 36, 741–747 (2004)CrossRef Sharp, K.V., Adrian, R.J.: Transition from laminar to turbulent flow in liquid filled microtubes. Exp. Fluids 36, 741–747 (2004)CrossRef
go back to reference Sharp, K.V., Adrian, R.J., Santiago, J.G., Molho, J.I.: Liquid flows in microchannels. In: Gad-el-Hak, M. (Hrsg.) The MEMS Handbook: Introduction and Fundamentals, 2. CRC, Boca Raton (2006) Sharp, K.V., Adrian, R.J., Santiago, J.G., Molho, J.I.: Liquid flows in microchannels. In: Gad-el-Hak, M. (Hrsg.) The MEMS Handbook: Introduction and Fundamentals, 2. CRC, Boca Raton (2006)
go back to reference Shih, J.C., Ho, C.-M., Liu, J., Tai, Y.-C.: Non-linear pressure distribution in uniform microchannels. ASME AMD-MD, 238 (1995) Shih, J.C., Ho, C.-M., Liu, J., Tai, Y.-C.: Non-linear pressure distribution in uniform microchannels. ASME AMD-MD, 238 (1995)
go back to reference Sobhan, C., Garimella, S.V.: A comparative analysis of studies on heat transfer and fluid flow in microchannels. J. Microscale Thermophys. Eng. 5, 293–311 (2001)CrossRef Sobhan, C., Garimella, S.V.: A comparative analysis of studies on heat transfer and fluid flow in microchannels. J. Microscale Thermophys. Eng. 5, 293–311 (2001)CrossRef
go back to reference Tanner, L.H.: The spreading of silicone oil drops on horizontal surfaces. J. Phys. D: Appl. Phys. 12, 1473 (1979)CrossRef Tanner, L.H.: The spreading of silicone oil drops on horizontal surfaces. J. Phys. D: Appl. Phys. 12, 1473 (1979)CrossRef
go back to reference Thompson, P.A., Troian, S.M.: A general boundary condition for liquid flow at solid surfaces. Nature 389, 360–362 (1997)CrossRef Thompson, P.A., Troian, S.M.: A general boundary condition for liquid flow at solid surfaces. Nature 389, 360–362 (1997)CrossRef
go back to reference Tretheway, D.C., Meinhart, C.D.: Apparent fluid slip at hydrophobic microchannel walls. Phys. Fluids 14, L9–L12 (2002)CrossRef Tretheway, D.C., Meinhart, C.D.: Apparent fluid slip at hydrophobic microchannel walls. Phys. Fluids 14, L9–L12 (2002)CrossRef
go back to reference Vallet, M., Berge, B., Vovelle, L.: Electrowetting of water and aqueous solutions on Polyethylene Terephthalate insulating films. Polymer 37, 2465–2470 (1996)CrossRef Vallet, M., Berge, B., Vovelle, L.: Electrowetting of water and aqueous solutions on Polyethylene Terephthalate insulating films. Polymer 37, 2465–2470 (1996)CrossRef
go back to reference Young, T.: An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 95, 65–87 (1805)CrossRef Young, T.: An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 95, 65–87 (1805)CrossRef
go back to reference Yu, D., Warrington, R., Barron, R., Anieel, T.: An experimental and theoretical investigation of fluid flow and heat transfer in microtubes. In: Proceedings of the ASME/JSME Thermal Engineering Conference, Hawaii, Bd. 1, 523–530 (1995) Yu, D., Warrington, R., Barron, R., Anieel, T.: An experimental and theoretical investigation of fluid flow and heat transfer in microtubes. In: Proceedings of the ASME/JSME Thermal Engineering Conference, Hawaii, Bd. 1, 523–530 (1995)
go back to reference Zheng, S., Tai, Y.C.: Streamline based design of a MEMS device for continuous blood cell separation. In: Twelth Hilton Head Workshop on the Science and Technology of Solid-state Sensors, Actuators, and Microsystems, Hilton Head, Bd. 1 (2006) Zheng, S., Tai, Y.C.: Streamline based design of a MEMS device for continuous blood cell separation. In: Twelth Hilton Head Workshop on the Science and Technology of Solid-state Sensors, Actuators, and Microsystems, Hilton Head, Bd. 1 (2006)
Metadata
Title
Mikroströmungen
Author
Peter Ehrhard
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-658-08627-5_12

Premium Partners