Skip to main content
Top

2021 | OriginalPaper | Chapter

6. Millimeter-Wave and Terahertz Spectrum for 6G Wireless

Authors : Shuchi Tripathi, Nithin V. Sabu, Abhishek K. Gupta, Harpreet S. Dhillon

Published in: 6G Mobile Wireless Networks

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With the standardization of 5G, commercial millimeter wave (mmWave) communications has become a reality despite all the concerns about the unfavorable propagation characteristics of these frequencies. Even though the 5G systems are still being rolled out, it is argued that their gigabits per second rates may fall short in supporting many emerging applications, such as 3D gaming and extended reality. Such applications will require several hundreds of gigabits per second to several terabits per second data rates with low latency and high reliability, which are expected to be the design goals of the next generation 6G communications systems. Given the potential of terahertz (THz) communications systems to provide such data rates over short distances, they are widely regarded to be the next frontier for the wireless communications research. The primary goal of this chapter is to equip readers with sufficient background about the mmWave and THz bands so that they are able to both appreciate the necessity of using these bands for commercial communications in the current wireless landscape and to reason the key design considerations for the communications systems operating in these bands. Towards this goal, this chapter provides a unified treatment of these bands with particular emphasis on their propagation characteristics, channel models, design and implementation considerations, and potential applications to 6G wireless. A brief summary of the current standardization activities related to the use of these bands for commercial communications applications is also provided.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T.S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G.N. Wong, J.K. Schulz, M. Samimi, F. Gutierrez, Millimeter wave mobile communications for 5G cellular: It will work!. IEEE Access 1, 335–349 (2013)CrossRef T.S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G.N. Wong, J.K. Schulz, M. Samimi, F. Gutierrez, Millimeter wave mobile communications for 5G cellular: It will work!. IEEE Access 1, 335–349 (2013)CrossRef
2.
go back to reference H. Sarieddeen, N. Saeed, T.Y. Al-Naffouri, M.-S. Alouini, Next generation terahertz communications: A rendezvous of sensing, imaging, and localization. IEEE Commun. Mag. 58(5), 69–75 (2020)CrossRef H. Sarieddeen, N. Saeed, T.Y. Al-Naffouri, M.-S. Alouini, Next generation terahertz communications: A rendezvous of sensing, imaging, and localization. IEEE Commun. Mag. 58(5), 69–75 (2020)CrossRef
3.
go back to reference F. Khan, Z. Pi, S. Rajagopal, Millimeter-wave mobile broadband with large scale spatial processing for 5G mobile communication, in 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton) (IEEE, 2012), pp. 1517–1523 F. Khan, Z. Pi, S. Rajagopal, Millimeter-wave mobile broadband with large scale spatial processing for 5G mobile communication, in 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton) (IEEE, 2012), pp. 1517–1523
4.
go back to reference K.L. Lueth, IoT 2019 in Review: The 10 Most Relevant IoT Developments of the Year (2020) K.L. Lueth, IoT 2019 in Review: The 10 Most Relevant IoT Developments of the Year (2020)
5.
go back to reference International Telecommunication Union, IMT traffic estimates for the years 2020 to 2030. Report ITU, pp. 2370–0 (2015) International Telecommunication Union, IMT traffic estimates for the years 2020 to 2030. Report ITU, pp. 2370–0 (2015)
6.
go back to reference N.M. Karie, N.M. Sahri, P. Haskell-Dowland, IoT threat detection advances, challenges and future directions, in 2020 Workshop on Emerging Technologies for Security in IoT (IEEE, 2020), pp. 22–29 N.M. Karie, N.M. Sahri, P. Haskell-Dowland, IoT threat detection advances, challenges and future directions, in 2020 Workshop on Emerging Technologies for Security in IoT (IEEE, 2020), pp. 22–29
7.
go back to reference H.S. Dhillon, H. Huang, H. Viswanathan, Wide-area wireless communication challenges for the internet of things. IEEE Commun. Mag. 55(2), 168–174 (2017)CrossRef H.S. Dhillon, H. Huang, H. Viswanathan, Wide-area wireless communication challenges for the internet of things. IEEE Commun. Mag. 55(2), 168–174 (2017)CrossRef
8.
go back to reference A.K. Gupta, A. Banerjee, Spectrum above radio bands, Spectrum Sharing: The Next Frontier in Wireless Networks, pp. 75–96 (2020) A.K. Gupta, A. Banerjee, Spectrum above radio bands, Spectrum Sharing: The Next Frontier in Wireless Networks, pp. 75–96 (2020)
9.
go back to reference J.G. Andrews, S. Buzzi, W. Choi, S.V. Hanly, A. Lozano, A.C. Soong, J.C. Zhang, What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014)CrossRef J.G. Andrews, S. Buzzi, W. Choi, S.V. Hanly, A. Lozano, A.C. Soong, J.C. Zhang, What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014)CrossRef
10.
go back to reference A.K. Gupta, N.V. Sabu, H.S. Dhillon, Fundamentals of network densification, in 5G and Beyond: Fundamentals and Standards (Springer, 2020) A.K. Gupta, N.V. Sabu, H.S. Dhillon, Fundamentals of network densification, in 5G and Beyond: Fundamentals and Standards (Springer, 2020)
11.
go back to reference J.G. Andrews, X. Zhang, G.D. Durgin, A.K. Gupta, Are we approaching the fundamental limits of wireless network densification? IEEE Commun. Mag. 54, 184–190 (2016)CrossRef J.G. Andrews, X. Zhang, G.D. Durgin, A.K. Gupta, Are we approaching the fundamental limits of wireless network densification? IEEE Commun. Mag. 54, 184–190 (2016)CrossRef
12.
go back to reference C. Han, Y. Wu, Z. Chen, X. Wang, Terahertz Communications (TeraCom): Challenges and Impact on 6G Wireless Systems, pp. 1–8 (2019). arXiv:1912.06040 C. Han, Y. Wu, Z. Chen, X. Wang, Terahertz Communications (TeraCom): Challenges and Impact on 6G Wireless Systems, pp. 1–8 (2019). arXiv:1912.06040
13.
go back to reference W. Saad, M. Bennis, M. Chen, A vision of 6G wireless systems: Applications, trends, technologies, and open research problems. IEEE Network 34(3), 134–142 (2019)CrossRef W. Saad, M. Bennis, M. Chen, A vision of 6G wireless systems: Applications, trends, technologies, and open research problems. IEEE Network 34(3), 134–142 (2019)CrossRef
14.
go back to reference J.G. Andrews, T. Bai, M.N. Kulkarni, A. Alkhateeb, A.K. Gupta, R.W. Heath, Modeling and analyzing millimeter wave cellular systems. IEEE Trans. Commun. 65(1), 403–430 (2016) J.G. Andrews, T. Bai, M.N. Kulkarni, A. Alkhateeb, A.K. Gupta, R.W. Heath, Modeling and analyzing millimeter wave cellular systems. IEEE Trans. Commun. 65(1), 403–430 (2016)
15.
go back to reference I. Akyildiz, J. Jornet, The internet of nano-things. IEEE Wireless Commun. 17(6), 58–63 (2010)CrossRef I. Akyildiz, J. Jornet, The internet of nano-things. IEEE Wireless Commun. 17(6), 58–63 (2010)CrossRef
16.
go back to reference K. Yang, D. Bi, Y. Deng, R. Zhang, M.M.U. Rahman, N.A. Ali, M.A. Imran, J.M. Jornet, Q.H. Abbasi, A. Alomainy, A comprehensive survey on hybrid communication in context of molecular communication and terahertz communication for body-centric nanonetworks. IEEE Trans. Mol. Biol. Multi-Scale Commun., 1–1 (2020) K. Yang, D. Bi, Y. Deng, R. Zhang, M.M.U. Rahman, N.A. Ali, M.A. Imran, J.M. Jornet, Q.H. Abbasi, A. Alomainy, A comprehensive survey on hybrid communication in context of molecular communication and terahertz communication for body-centric nanonetworks. IEEE Trans. Mol. Biol. Multi-Scale Commun., 1–1 (2020)
17.
go back to reference N.V. Sabu, A.K. Gupta, Analysis of diffusion based molecular communication with multiple transmitters having individual random information bits. IEEE Trans. Mol. Biol. Multi-Scale Commun. 5(3), 176–188 (2019)CrossRef N.V. Sabu, A.K. Gupta, Analysis of diffusion based molecular communication with multiple transmitters having individual random information bits. IEEE Trans. Mol. Biol. Multi-Scale Commun. 5(3), 176–188 (2019)CrossRef
18.
go back to reference J. ITU, Provisional final acts, in World Radiocommunication Conference 2019 (ITU Publications, 2019) J. ITU, Provisional final acts, in World Radiocommunication Conference 2019 (ITU Publications, 2019)
19.
go back to reference T. Kurner, A. Hirata, On the impact of the results of WRC 2019 on THz communications, in Third International Workshop on Mobile Terahertz System (IEEE, 2020), pp. 1–3 T. Kurner, A. Hirata, On the impact of the results of WRC 2019 on THz communications, in Third International Workshop on Mobile Terahertz System (IEEE, 2020), pp. 1–3
20.
go back to reference P.F. Acts, in World Radiocommunication Conference (WRC-15) (ITU, 2015) P.F. Acts, in World Radiocommunication Conference (WRC-15) (ITU, 2015)
21.
go back to reference E. Dahlman, S. Parkvall, J. Skold, 5G NR: The Next Generation Wireless Access Technology (Academic Press, 2020) E. Dahlman, S. Parkvall, J. Skold, 5G NR: The Next Generation Wireless Access Technology (Academic Press, 2020)
22.
go back to reference F. Boccardi, R.W. Heath, A. Lozano, T.L. Marzetta, P. Popovski, Five disruptive technology directions for 5G. IEEE Commun. Mag. 52(2), 74–80 (2014)CrossRef F. Boccardi, R.W. Heath, A. Lozano, T.L. Marzetta, P. Popovski, Five disruptive technology directions for 5G. IEEE Commun. Mag. 52(2), 74–80 (2014)CrossRef
23.
go back to reference I.A. Hemadeh, K. Satyanarayana, M. El-Hajjar, L. Hanzo, Millimeter-wave communications: Physical channel models, design considerations, antenna constructions, and link-budget. IEEE Commun. Surv. Tutorials 20(2), 870–913 (2017)CrossRef I.A. Hemadeh, K. Satyanarayana, M. El-Hajjar, L. Hanzo, Millimeter-wave communications: Physical channel models, design considerations, antenna constructions, and link-budget. IEEE Commun. Surv. Tutorials 20(2), 870–913 (2017)CrossRef
24.
go back to reference S. Rangan, T.S. Rappaport, E. Erkip, Millimeter-wave cellular wireless networks: Potentials and challenges. Proc. IEEE 102(3), 366–385 (2014)CrossRef S. Rangan, T.S. Rappaport, E. Erkip, Millimeter-wave cellular wireless networks: Potentials and challenges. Proc. IEEE 102(3), 366–385 (2014)CrossRef
25.
go back to reference V. Petrov, M. Komarov, D. Moltchanov, J.M. Jornet, Y. Koucheryavy, Interference and SINR in millimeter wave and terahertz communication systems with blocking and directional antennas. IEEE Trans. Wireless Commun. 16(3), 1791–1808 (2017)CrossRef V. Petrov, M. Komarov, D. Moltchanov, J.M. Jornet, Y. Koucheryavy, Interference and SINR in millimeter wave and terahertz communication systems with blocking and directional antennas. IEEE Trans. Wireless Commun. 16(3), 1791–1808 (2017)CrossRef
26.
go back to reference M.L. Attiah, A.A.M. Isa, Z. Zakaria, M. Abdulhameed, M.K. Mohsen, I. Ali, A survey of mmWave user association mechanisms and spectrum sharing approaches: An overview, open issues and challenges, future research trends. J. Wireless Netw. 26(4), 2487–2514 (2020)CrossRef M.L. Attiah, A.A.M. Isa, Z. Zakaria, M. Abdulhameed, M.K. Mohsen, I. Ali, A survey of mmWave user association mechanisms and spectrum sharing approaches: An overview, open issues and challenges, future research trends. J. Wireless Netw. 26(4), 2487–2514 (2020)CrossRef
27.
go back to reference M. Marcus, B. Pattan, Millimeter wave propagation: Spectrum management implications. IEEE Microwave Mag. 6(2), 54–62 (2005)CrossRef M. Marcus, B. Pattan, Millimeter wave propagation: Spectrum management implications. IEEE Microwave Mag. 6(2), 54–62 (2005)CrossRef
29.
go back to reference A. Tharek, J. McGeehan, Propagation and bit error rate measurements within buildings in the millimeter wave band about 60 GHz, in 8th European Conference on Electrotechnics, Conference Proceedings on Area Communication (IEEE, 1988), pp. 318–321 A. Tharek, J. McGeehan, Propagation and bit error rate measurements within buildings in the millimeter wave band about 60 GHz, in 8th European Conference on Electrotechnics, Conference Proceedings on Area Communication (IEEE, 1988), pp. 318–321
30.
go back to reference G. Allen, A. Hammoudeh, 60 GHz propagation measurements within a building, in 1990 20th European Microwave Conference, vol. 2 (IEEE, 1990), pp. 1431–1436 G. Allen, A. Hammoudeh, 60 GHz propagation measurements within a building, in 1990 20th European Microwave Conference, vol. 2 (IEEE, 1990), pp. 1431–1436
31.
go back to reference G. Allen, A. Hammoudeh, Frequency diversity propagation measurements for an indoor 60 GHz mobile radio link, in 1991 Seventh International Conference on Antennas and Propagation (IET, 1991), pp. 298–301 G. Allen, A. Hammoudeh, Frequency diversity propagation measurements for an indoor 60 GHz mobile radio link, in 1991 Seventh International Conference on Antennas and Propagation (IET, 1991), pp. 298–301
32.
go back to reference R. Davies, M. Bensebti, M. Beach, J. McGeehan, Wireless propagation measurements in indoor multipath environments at 1.7 GHz and 60 GHz for small cell systems, in [1991 Proceedings] 41st IEEE Vehicular Technology Conference (IEEE, 1991), pp. 589–593 R. Davies, M. Bensebti, M. Beach, J. McGeehan, Wireless propagation measurements in indoor multipath environments at 1.7 GHz and 60 GHz for small cell systems, in [1991 Proceedings] 41st IEEE Vehicular Technology Conference (IEEE, 1991), pp. 589–593
33.
go back to reference H. Yang, M.H. Herben, P.F. Smulders, Impact of antenna pattern and reflective environment on 60 GHz indoor radio channel characteristics. IEEE Antennas Wireless Propag. Lett. 4, 300–303 (2005)CrossRef H. Yang, M.H. Herben, P.F. Smulders, Impact of antenna pattern and reflective environment on 60 GHz indoor radio channel characteristics. IEEE Antennas Wireless Propag. Lett. 4, 300–303 (2005)CrossRef
34.
go back to reference G. Allen, A. Hammoudeh, Outdoor narrow band characterisation of millimetre wave mobile radio signals, in IEEE Colloquium on Radiocommunications in the Range 30–60 GHz (IET, 1991), pp. 4–1 G. Allen, A. Hammoudeh, Outdoor narrow band characterisation of millimetre wave mobile radio signals, in IEEE Colloquium on Radiocommunications in the Range 30–60 GHz (IET, 1991), pp. 4–1
35.
go back to reference N. Daniele, D. Chagnot, C. Fort, Outdoor millimetre-wave propagation measurements with line of sight obstructed by natural elements. Electronics Letters 30(18), 1533–1534 (1994)CrossRef N. Daniele, D. Chagnot, C. Fort, Outdoor millimetre-wave propagation measurements with line of sight obstructed by natural elements. Electronics Letters 30(18), 1533–1534 (1994)CrossRef
36.
go back to reference F. Wang, K. Sarabandi, An enhanced millimeter-wave foliage propagation model. IEEE Trans. Antennas Propag. 53(7), 2138–2145 (2005)CrossRef F. Wang, K. Sarabandi, An enhanced millimeter-wave foliage propagation model. IEEE Trans. Antennas Propag. 53(7), 2138–2145 (2005)CrossRef
37.
go back to reference B. Fong, A. Fong, G. Hong, H. Ryu, Measurement of attenuation and phase on 26-GHz wide-band point-to-multipoint signals under the influence of rain. IEEE Antennas Wireless Propag. Lett. 4, 20–21 (2005)CrossRef B. Fong, A. Fong, G. Hong, H. Ryu, Measurement of attenuation and phase on 26-GHz wide-band point-to-multipoint signals under the influence of rain. IEEE Antennas Wireless Propag. Lett. 4, 20–21 (2005)CrossRef
38.
go back to reference E. Ben-Dor, T.S. Rappaport, Y. Qiao, S.J. Lauffenburger, Millimeter-wave 60 GHz outdoor and vehicle AOA propagation measurements using a broadband channel sounder, in 2011 IEEE Global Telecommunications Conference-GLOBECOM 2011 (IEEE, 2011), pp. 1–6 E. Ben-Dor, T.S. Rappaport, Y. Qiao, S.J. Lauffenburger, Millimeter-wave 60 GHz outdoor and vehicle AOA propagation measurements using a broadband channel sounder, in 2011 IEEE Global Telecommunications Conference-GLOBECOM 2011 (IEEE, 2011), pp. 1–6
39.
go back to reference T.S. Rappaport, F. Gutierrez, E. Ben-Dor, J.N. Murdock, Y. Qiao, J.I. Tamir, Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications. IEEE Trans. Antennas Propag. 61(4), 1850–1859 (2012)CrossRef T.S. Rappaport, F. Gutierrez, E. Ben-Dor, J.N. Murdock, Y. Qiao, J.I. Tamir, Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications. IEEE Trans. Antennas Propag. 61(4), 1850–1859 (2012)CrossRef
40.
go back to reference A. Hirata, H. Takahashi, J. Takeuchi, N. Kukutsu, D. Kim, J. Hirokawa, 120-GHz-band antenna technologies for over-10-Gbps wireless data transmission, in 2012 6th European Conference on Antennas and Propagation (EUCAP), pp. 2564–2568 (2012) A. Hirata, H. Takahashi, J. Takeuchi, N. Kukutsu, D. Kim, J. Hirokawa, 120-GHz-band antenna technologies for over-10-Gbps wireless data transmission, in 2012 6th European Conference on Antennas and Propagation (EUCAP), pp. 2564–2568 (2012)
41.
go back to reference W. Keusgen, R.J. Weiler, M. Peter, M. Wisotzki, B. Göktepe, Propagation measurements and simulations for millimeter-wave mobile access in a busy urban environment, in 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (IEEE, 2014), pp. 1–3 W. Keusgen, R.J. Weiler, M. Peter, M. Wisotzki, B. Göktepe, Propagation measurements and simulations for millimeter-wave mobile access in a busy urban environment, in 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (IEEE, 2014), pp. 1–3
42.
go back to reference R.J. Weiler, M. Peter, W. Keusgen, M. Wisotzki, Measuring the busy urban 60 GHz outdoor access radio channel, in 2014 IEEE International Conference on Ultra-WideBand (ICUWB) (IEEE, 2014), pp. 166–170 R.J. Weiler, M. Peter, W. Keusgen, M. Wisotzki, Measuring the busy urban 60 GHz outdoor access radio channel, in 2014 IEEE International Conference on Ultra-WideBand (ICUWB) (IEEE, 2014), pp. 166–170
43.
go back to reference K. Guan, B. Ai, B. Peng, D. He, G. Li, J. Yang, Z. Zhong, T. Kürner, Towards realistic high-speed train channels at 5G millimeter-wave band - part I: Paradigm, significance analysis, and scenario reconstruction. IEEE Trans. Veh. Technol. 67(10), 9112–9128 (2018)CrossRef K. Guan, B. Ai, B. Peng, D. He, G. Li, J. Yang, Z. Zhong, T. Kürner, Towards realistic high-speed train channels at 5G millimeter-wave band - part I: Paradigm, significance analysis, and scenario reconstruction. IEEE Trans. Veh. Technol. 67(10), 9112–9128 (2018)CrossRef
44.
go back to reference C.U. Bas, R. Wang, S. Sangodoyin, T. Choi, S. Hur, K. Whang, J. Park, C.J. Zhang, A.F. Molisch, Outdoor to indoor propagation channel measurements at 28 GHz. IEEE Trans. Wireless Commun. 18(3), 1477–1489 (2019)CrossRef C.U. Bas, R. Wang, S. Sangodoyin, T. Choi, S. Hur, K. Whang, J. Park, C.J. Zhang, A.F. Molisch, Outdoor to indoor propagation channel measurements at 28 GHz. IEEE Trans. Wireless Commun. 18(3), 1477–1489 (2019)CrossRef
45.
go back to reference J. Ma, R. Shrestha, L. Moeller, D.M. Mittleman, Invited article: Channel performance for indoor and outdoor terahertz wireless links. APL Photonics 3(5), 1–12 (2018)CrossRef J. Ma, R. Shrestha, L. Moeller, D.M. Mittleman, Invited article: Channel performance for indoor and outdoor terahertz wireless links. APL Photonics 3(5), 1–12 (2018)CrossRef
46.
go back to reference J.F. Federici, J. Ma, L. Moeller, Review of weather impact on outdoor terahertz wireless communication links. Nano Commun. Netw. 10, 13–26 (2016)CrossRef J.F. Federici, J. Ma, L. Moeller, Review of weather impact on outdoor terahertz wireless communication links. Nano Commun. Netw. 10, 13–26 (2016)CrossRef
47.
go back to reference S. Priebe, D.M. Britz, M. Jacob, S. Sarkozy, K.M.K.H. Leong, J.E. Logan, B.S. Gorospe, T. Kurner, Interference investigations of active communications and passive earth exploration services in the THz frequency range. IEEE Trans. Terahertz Sci. Technol. 2(5), 525–537 (2012)CrossRef S. Priebe, D.M. Britz, M. Jacob, S. Sarkozy, K.M.K.H. Leong, J.E. Logan, B.S. Gorospe, T. Kurner, Interference investigations of active communications and passive earth exploration services in the THz frequency range. IEEE Trans. Terahertz Sci. Technol. 2(5), 525–537 (2012)CrossRef
48.
go back to reference B. Heile, ITU-R liaison request RE: active services in the band above 275 GHz, IEEE standard 802.15-14-439-00-0THz (2015) B. Heile, ITU-R liaison request RE: active services in the band above 275 GHz, IEEE standard 802.15-14-439-00-0THz (2015)
49.
go back to reference K. Guan, B. Peng, D. He, J.M. Eckhardt, S. Rey, B. Ai, Z. Zhong, T. Kurner, Channel characterization for intra-wagon communication at 60 and 300 GHz bands. IEEE Trans. Veh. Technol. 68(6), 5193–5207 (2019)CrossRef K. Guan, B. Peng, D. He, J.M. Eckhardt, S. Rey, B. Ai, Z. Zhong, T. Kurner, Channel characterization for intra-wagon communication at 60 and 300 GHz bands. IEEE Trans. Veh. Technol. 68(6), 5193–5207 (2019)CrossRef
50.
go back to reference J.M. Jornet, I.F. Akyildiz, Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band. IEEE Trans. Wireless Commun. 10(10), 3211–3221 (2011)CrossRef J.M. Jornet, I.F. Akyildiz, Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band. IEEE Trans. Wireless Commun. 10(10), 3211–3221 (2011)CrossRef
51.
go back to reference T.S. Rappaport, Y. Xing, O. Kanhere, S. Ju, A. Madanayake, S. Mandal, A. Alkhateeb, G.C. Trichopoulos, Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond. IEEE Access 7, 78,729–78,757 (2019)CrossRef T.S. Rappaport, Y. Xing, O. Kanhere, S. Ju, A. Madanayake, S. Mandal, A. Alkhateeb, G.C. Trichopoulos, Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond. IEEE Access 7, 78,729–78,757 (2019)CrossRef
52.
go back to reference J. Kokkoniemi, J. Lehtomäki, M. Juntti, A discussion on molecular absorption noise in the terahertz band. Nano Commun. Netw. 8, 35–45 (2016)CrossRef J. Kokkoniemi, J. Lehtomäki, M. Juntti, A discussion on molecular absorption noise in the terahertz band. Nano Commun. Netw. 8, 35–45 (2016)CrossRef
53.
go back to reference A.H. Lettington, I.M. Blankson, M.F. Attia, D. Dunn, Review of imaging architecture. Infrared Passive Millimeter Wave Imag. Syst. Des. Anal. Modell. Test. 4719, 327 (2002) A.H. Lettington, I.M. Blankson, M.F. Attia, D. Dunn, Review of imaging architecture. Infrared Passive Millimeter Wave Imag. Syst. Des. Anal. Modell. Test. 4719, 327 (2002)
54.
go back to reference K. Haneda, J. Zhang, L. Tan, G. Liu, Y. Zheng, H. Asplund, J. Li, Y. Wang, D. Steer, C. Li, et al., 5G 3GPP-like channel models for outdoor urban microcellular and macrocellular environments, in 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring) (IEEE, 2016), pp. 1–7 K. Haneda, J. Zhang, L. Tan, G. Liu, Y. Zheng, H. Asplund, J. Li, Y. Wang, D. Steer, C. Li, et al., 5G 3GPP-like channel models for outdoor urban microcellular and macrocellular environments, in 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring) (IEEE, 2016), pp. 1–7
55.
go back to reference M.K. Samimi, T.S. Rappaport, G.R. MacCartney, Probabilistic omnidirectional path loss models for millimeter-wave outdoor communications. IEEE Wireless Commun. Lett. 4(4), 357–360 (2015)CrossRef M.K. Samimi, T.S. Rappaport, G.R. MacCartney, Probabilistic omnidirectional path loss models for millimeter-wave outdoor communications. IEEE Wireless Commun. Lett. 4(4), 357–360 (2015)CrossRef
56.
go back to reference T. Bai, R. Vaze, R.W. Heath, Analysis of blockage effects on urban cellular networks. IEEE Trans. Wireless Commun. 13(9), 5070–5083 (2014)CrossRef T. Bai, R. Vaze, R.W. Heath, Analysis of blockage effects on urban cellular networks. IEEE Trans. Wireless Commun. 13(9), 5070–5083 (2014)CrossRef
57.
go back to reference T. Bai, R.W. Heath, Coverage and rate analysis for millimeter-wave cellular networks. IEEE Trans. Wireless Commun. 14(2), 1100–1114 (2014)CrossRef T. Bai, R.W. Heath, Coverage and rate analysis for millimeter-wave cellular networks. IEEE Trans. Wireless Commun. 14(2), 1100–1114 (2014)CrossRef
58.
go back to reference M. Gapeyenko, A. Samuylov, M. Gerasimenko, D. Moltchanov, S. Singh, E. Aryafar, S. Yeh, N. Himayat, S. Andreev, Y. Koucheryavy, Analysis of human-body blockage in urban millimeter-wave cellular communications, in 2016 IEEE International Conference on Communications (ICC) (IEEE, 2016), pp. 1–7 M. Gapeyenko, A. Samuylov, M. Gerasimenko, D. Moltchanov, S. Singh, E. Aryafar, S. Yeh, N. Himayat, S. Andreev, Y. Koucheryavy, Analysis of human-body blockage in urban millimeter-wave cellular communications, in 2016 IEEE International Conference on Communications (ICC) (IEEE, 2016), pp. 1–7
59.
go back to reference K. Venugopal, R.W. Heath, Millimeter wave networked wearables in dense indoor environments. IEEE Access 4, 1205–1221 (2016)CrossRef K. Venugopal, R.W. Heath, Millimeter wave networked wearables in dense indoor environments. IEEE Access 4, 1205–1221 (2016)CrossRef
60.
go back to reference T. Bai, R.W. Heath, Analysis of self-body blocking effects in millimeter wave cellular networks, in 2014 48th Asilomar Conference on Signals, Systems and Computers (IEEE, 2014), pp. 1921–1925 T. Bai, R.W. Heath, Analysis of self-body blocking effects in millimeter wave cellular networks, in 2014 48th Asilomar Conference on Signals, Systems and Computers (IEEE, 2014), pp. 1921–1925
61.
go back to reference S. Ju, S.H.A. Shah, M.A. Javed, J. Li, G. Palteru, J. Robin, Y. Xing, O. Kanhere, T.S. Rappaport, Scattering mechanisms and modeling for terahertz wireless communications, in Proceedings of ICC (IEEE, 2019), pp. 1–7 S. Ju, S.H.A. Shah, M.A. Javed, J. Li, G. Palteru, J. Robin, Y. Xing, O. Kanhere, T.S. Rappaport, Scattering mechanisms and modeling for terahertz wireless communications, in Proceedings of ICC (IEEE, 2019), pp. 1–7
62.
go back to reference J. Jarvelainen, K. Haneda, M. Kyro, V.-M. Kolmonen, J.-i. Takada, H. Hagiwara, 60 GHz radio wave propagation prediction in a hospital environment using an accurate room structural model, in 2012 Loughbrgh. Antennas and Propagation Conference (IEEE, 2012), pp. 1–4 J. Jarvelainen, K. Haneda, M. Kyro, V.-M. Kolmonen, J.-i. Takada, H. Hagiwara, 60 GHz radio wave propagation prediction in a hospital environment using an accurate room structural model, in 2012 Loughbrgh. Antennas and Propagation Conference (IEEE, 2012), pp. 1–4
63.
go back to reference V. Degli-Esposti, F. Fuschini, E.M. Vitucci, G. Falciasecca, Measurement and modelling of scattering from buildings. IEEE Trans. Antennas Propag. 55(1), 143–153 (2007)CrossRef V. Degli-Esposti, F. Fuschini, E.M. Vitucci, G. Falciasecca, Measurement and modelling of scattering from buildings. IEEE Trans. Antennas Propag. 55(1), 143–153 (2007)CrossRef
64.
go back to reference M.N. Kulkarni, E. Visotsky, J.G. Andrews, Correction factor for analysis of MIMO wireless networks with highly directional beamforming. IEEE Wireless Commun. Lett. 7(5), 756–759 (2018)CrossRef M.N. Kulkarni, E. Visotsky, J.G. Andrews, Correction factor for analysis of MIMO wireless networks with highly directional beamforming. IEEE Wireless Commun. Lett. 7(5), 756–759 (2018)CrossRef
65.
go back to reference J. Kokkoniemi, P. Rintanen, J. Lehtomaki, M. Juntti, Diffraction effects in terahertz band - Measurements and analysis, in Proceedings in GLOBECOM (IEEE, 2016), pp. 1–6 J. Kokkoniemi, P. Rintanen, J. Lehtomaki, M. Juntti, Diffraction effects in terahertz band - Measurements and analysis, in Proceedings in GLOBECOM (IEEE, 2016), pp. 1–6
66.
go back to reference J. Federici, L. Moeller, Review of terahertz and subterahertz wireless communications. J. Appl. Phys. 107(11), 1–23 (2010)CrossRef J. Federici, L. Moeller, Review of terahertz and subterahertz wireless communications. J. Appl. Phys. 107(11), 1–23 (2010)CrossRef
67.
go back to reference L. Bao, H. Zhao, G. Zheng, X. Ren, Scintillation of THz transmission by atmospheric turbulence near the ground, in Fifth International Conference on Advanced Computational Intelligence (IEEE, 2012), pp. 932–936 L. Bao, H. Zhao, G. Zheng, X. Ren, Scintillation of THz transmission by atmospheric turbulence near the ground, in Fifth International Conference on Advanced Computational Intelligence (IEEE, 2012), pp. 932–936
68.
go back to reference C.A. Balanis, Antenna Theory: Analysis and Design (Wiley, 2016) C.A. Balanis, Antenna Theory: Analysis and Design (Wiley, 2016)
69.
go back to reference X. Yu, J. Zhang, M. Haenggi, K.B. Letaief, Coverage analysis for millimeter wave networks: The impact of directional antenna arrays. IEEE J. Sel. Areas Commun. 35(7), 1498–1512 (2017)CrossRef X. Yu, J. Zhang, M. Haenggi, K.B. Letaief, Coverage analysis for millimeter wave networks: The impact of directional antenna arrays. IEEE J. Sel. Areas Commun. 35(7), 1498–1512 (2017)CrossRef
70.
go back to reference W. Lu, M. Di Renzo, Stochastic geometry modeling of cellular networks: Analysis, simulation and experimental validation, in Proceedings of the 18th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, pp. 179–188 (2015) W. Lu, M. Di Renzo, Stochastic geometry modeling of cellular networks: Analysis, simulation and experimental validation, in Proceedings of the 18th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, pp. 179–188 (2015)
71.
go back to reference M. Di Renzo, W. Lu, P. Guan, The intensity matching approach: A tractable stochastic geometry approximation to system-level analysis of cellular networks. IEEE Trans. Wireless Commun. 15(9), 5963–5983 (2016)CrossRef M. Di Renzo, W. Lu, P. Guan, The intensity matching approach: A tractable stochastic geometry approximation to system-level analysis of cellular networks. IEEE Trans. Wireless Commun. 15(9), 5963–5983 (2016)CrossRef
72.
go back to reference A. Maltsev, A. Pudeyev, I. Bolotin, G. Morozov, I. Karls, M. Faerber, I. Siaud, A. Ulmer-Moll, J. Conrat, R. Weiler, et al., MiWEBA D5.1: Channel modeling and characterization. Tech. Rep. (2014) A. Maltsev, A. Pudeyev, I. Bolotin, G. Morozov, I. Karls, M. Faerber, I. Siaud, A. Ulmer-Moll, J. Conrat, R. Weiler, et al., MiWEBA D5.1: Channel modeling and characterization. Tech. Rep. (2014)
73.
go back to reference A. Thornburg, R.W. Heath, Ergodic capacity in mmWave Ad Hoc network with imperfect beam alignment, in MILCOM 2015–2015 IEEE Military Communications Conference (IEEE, 2015), pp. 1479–1484 A. Thornburg, R.W. Heath, Ergodic capacity in mmWave Ad Hoc network with imperfect beam alignment, in MILCOM 2015–2015 IEEE Military Communications Conference (IEEE, 2015), pp. 1479–1484
74.
go back to reference N. Deng, M. Haenggi, A novel approximate antenna pattern for directional antenna arrays. IEEE Wireless Commun. Lett. 7(5), 832–835 (2018)CrossRef N. Deng, M. Haenggi, A novel approximate antenna pattern for directional antenna arrays. IEEE Wireless Commun. Lett. 7(5), 832–835 (2018)CrossRef
75.
go back to reference Z. Chen, X. Ma, B. Zhang, Y. Zhang, Z. Niu, N. Kuang, W. Chen, L. Li, S. Li, A survey on terahertz communications. China Communication 16(2), 1–35 (2019) Z. Chen, X. Ma, B. Zhang, Y. Zhang, Z. Niu, N. Kuang, W. Chen, L. Li, S. Li, A survey on terahertz communications. China Communication 16(2), 1–35 (2019)
76.
go back to reference M.A. Jamshed, A. Nauman, M.A.B. Abbasi, S.W. Kim, Antenna selection and designing for THz applications: Suitability and performance evaluation: A survey. IEEE Access 8, 113,246–113,261 (2020)CrossRef M.A. Jamshed, A. Nauman, M.A.B. Abbasi, S.W. Kim, Antenna selection and designing for THz applications: Suitability and performance evaluation: A survey. IEEE Access 8, 113,246–113,261 (2020)CrossRef
77.
go back to reference Y. He, Y. Chen, L. Zhang, S.-W. Wong, Z.N. Chen, An overview of terahertz antennas. China Communication 17(7), 124–165 (2020)CrossRef Y. He, Y. Chen, L. Zhang, S.-W. Wong, Z.N. Chen, An overview of terahertz antennas. China Communication 17(7), 124–165 (2020)CrossRef
78.
go back to reference S. Sun, G.R. MacCartney, T.S. Rappaport, A novel millimeter-wave channel simulator and applications for 5G wireless communications, in 2017 IEEE International Conference on Communications (ICC) (IEEE, 2017), pp. 1–7 S. Sun, G.R. MacCartney, T.S. Rappaport, A novel millimeter-wave channel simulator and applications for 5G wireless communications, in 2017 IEEE International Conference on Communications (ICC) (IEEE, 2017), pp. 1–7
79.
go back to reference A. Faisal, H. Sarieddeen, H. Dahrouj, T.Y. Al-Naffouri, M.-S. Alouini, Ultramassive MIMO systems at terahertz bands: Prospects and challenges. IEEE Veh. Technol. Mag. 15(4), 33–42 (2020)CrossRef A. Faisal, H. Sarieddeen, H. Dahrouj, T.Y. Al-Naffouri, M.-S. Alouini, Ultramassive MIMO systems at terahertz bands: Prospects and challenges. IEEE Veh. Technol. Mag. 15(4), 33–42 (2020)CrossRef
80.
go back to reference K. Tekbiyik, A.R. Ekti, G.K. Kurt, A. Gorcin, Terahertz band communication systems: Challenges, novelties and standardization efforts. J. Phys. Commun. 35, 53–62 (2019) K. Tekbiyik, A.R. Ekti, G.K. Kurt, A. Gorcin, Terahertz band communication systems: Challenges, novelties and standardization efforts. J. Phys. Commun. 35, 53–62 (2019)
81.
go back to reference C. Han, A.O. Bicen, I.F. Akyildiz, Multi-ray channel modeling and wideband characterization for wireless communications in the terahertz band. IEEE Trans. Wireless Commun. 14(5), 2402–2412 (2015)CrossRef C. Han, A.O. Bicen, I.F. Akyildiz, Multi-ray channel modeling and wideband characterization for wireless communications in the terahertz band. IEEE Trans. Wireless Commun. 14(5), 2402–2412 (2015)CrossRef
82.
go back to reference S. Priebe, M. Kannicht, M. Jacob, T. Kurner, Ultra broadband indoor channel measurements and calibrated ray tracing propagation modeling at THz frequencies. J. Commun. Netw. 15(6), 547–558 (2013)CrossRef S. Priebe, M. Kannicht, M. Jacob, T. Kurner, Ultra broadband indoor channel measurements and calibrated ray tracing propagation modeling at THz frequencies. J. Commun. Netw. 15(6), 547–558 (2013)CrossRef
83.
go back to reference A. Moldovan, M.A. Ruder, I.F. Akyildiz, W.H. Gerstacker, LOS and NLOS channel modeling for terahertz wireless communication with scattered rays, in IEEE GLOBECOM Workshop (IEEE, 2014), pp. 388–392 A. Moldovan, M.A. Ruder, I.F. Akyildiz, W.H. Gerstacker, LOS and NLOS channel modeling for terahertz wireless communication with scattered rays, in IEEE GLOBECOM Workshop (IEEE, 2014), pp. 388–392
84.
go back to reference Z. Hossain, C. Mollica, J.M. Jornet, Stochastic multipath channel modeling and power delay profile analysis for terahertz-band communication, in Proceedings of the 4th ACM International Conference on Nanoscale Computing and Communication, ser. NanoCom ’17 (Association for Computing Machinery, New York, NY, USA, 2017). [Online]. Available: https://doi.org/10.1145/3109453.3109473 Z. Hossain, C. Mollica, J.M. Jornet, Stochastic multipath channel modeling and power delay profile analysis for terahertz-band communication, in Proceedings of the 4th ACM International Conference on Nanoscale Computing and Communication, ser. NanoCom ’17 (Association for Computing Machinery, New York, NY, USA, 2017). [Online]. Available: https://​doi.​org/​10.​1145/​3109453.​3109473
85.
go back to reference S. Priebe, T. Kurner, Stochastic modeling of THz indoor radio channels. IEEE Trans. Wireless Commun. 12(9), 4445–4455 (2013)CrossRef S. Priebe, T. Kurner, Stochastic modeling of THz indoor radio channels. IEEE Trans. Wireless Commun. 12(9), 4445–4455 (2013)CrossRef
86.
go back to reference S. Kim, A. Zajic, Statistical modeling of THz scatter channels, in Ninth European Conference on Antennas and Propagation (2015) S. Kim, A. Zajic, Statistical modeling of THz scatter channels, in Ninth European Conference on Antennas and Propagation (2015)
87.
go back to reference S. Kim, A. Zajic, Statistical modeling and simulation of short-range device-to-device communication channels at sub-THz frequencies. IEEE Trans. Wireless Commun. 15(9), 6423–6433 (2016)CrossRef S. Kim, A. Zajic, Statistical modeling and simulation of short-range device-to-device communication channels at sub-THz frequencies. IEEE Trans. Wireless Commun. 15(9), 6423–6433 (2016)CrossRef
88.
go back to reference H. Elayan, R.M. Shubair, J.M. Jornet, P. Johari, Terahertz channel model and link budget analysis for intrabody nanoscale communication. IEEE Trans. Nanobioscience 16(6), 491–503 (2017)CrossRef H. Elayan, R.M. Shubair, J.M. Jornet, P. Johari, Terahertz channel model and link budget analysis for intrabody nanoscale communication. IEEE Trans. Nanobioscience 16(6), 491–503 (2017)CrossRef
89.
go back to reference H. Elayan, C. Stefanini, R.M. Shubair, J.M. Jornet, End-to-end noise model for intra-body terahertz nanoscale communication. IEEE Trans. Nanobioscience 17(4), 464–473 (2018)CrossRef H. Elayan, C. Stefanini, R.M. Shubair, J.M. Jornet, End-to-end noise model for intra-body terahertz nanoscale communication. IEEE Trans. Nanobioscience 17(4), 464–473 (2018)CrossRef
90.
go back to reference C.H. Y. Chen, Channel modeling and analysis for wireless networks-on-chip communications in the millimeter wave and terahertz bands, in Proceedings of INFOCOM, pp. 651–656 (2018) C.H. Y. Chen, Channel modeling and analysis for wireless networks-on-chip communications in the millimeter wave and terahertz bands, in Proceedings of INFOCOM, pp. 651–656 (2018)
91.
go back to reference R.W. Heath, N. Gonzalez-Prelcic, S. Rangan, W. Roh, A.M. Sayeed, An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J. Sel. Top. Sig. Process. 10(3), 436–453 (2016)CrossRef R.W. Heath, N. Gonzalez-Prelcic, S. Rangan, W. Roh, A.M. Sayeed, An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J. Sel. Top. Sig. Process. 10(3), 436–453 (2016)CrossRef
92.
go back to reference M.N. Kulkarni, A. Ghosh, J.G. Andrews, A comparison of MIMO techniques in downlink millimeter wave cellular networks with hybrid beamforming. IEEE Trans. Commun. 64(5), 1952–1967 (2016)CrossRef M.N. Kulkarni, A. Ghosh, J.G. Andrews, A comparison of MIMO techniques in downlink millimeter wave cellular networks with hybrid beamforming. IEEE Trans. Commun. 64(5), 1952–1967 (2016)CrossRef
93.
go back to reference J. Kokkoniemi, J. Lehtomaki, M. Juntti, Stochastic geometry analysis for mean interference power and outage probability in THz networks. IEEE Trans. Wireless Commun. 16(5), 3017–3028 (2017)CrossRef J. Kokkoniemi, J. Lehtomaki, M. Juntti, Stochastic geometry analysis for mean interference power and outage probability in THz networks. IEEE Trans. Wireless Commun. 16(5), 3017–3028 (2017)CrossRef
94.
go back to reference J. Kokkoniemi, J. Lehtomaeki, M. Juntti, Stochastic geometry analysis for band-limited terahertz band communications. IEEE Veh. Technol. Conf., 1–5 (2018) J. Kokkoniemi, J. Lehtomaeki, M. Juntti, Stochastic geometry analysis for band-limited terahertz band communications. IEEE Veh. Technol. Conf., 1–5 (2018)
95.
go back to reference Z. Pi, F. Khan, An introduction to millimeter-wave mobile broadband systems. IEEE Commun. Mag. 49(6), 101–107 (2011)CrossRef Z. Pi, F. Khan, An introduction to millimeter-wave mobile broadband systems. IEEE Commun. Mag. 49(6), 101–107 (2011)CrossRef
96.
go back to reference R. Sun, P.B. Papazian, J. Senic, C. Gentile, K.A. Remley, in Angle- and Delay-Dispersion Characteristics in a Hallway and Lobby at 60 GHz (2018) R. Sun, P.B. Papazian, J. Senic, C. Gentile, K.A. Remley, in Angle- and Delay-Dispersion Characteristics in a Hallway and Lobby at 60 GHz (2018)
97.
go back to reference R. Sun, C.A. Gentile, J. Senic, P. Vouras, P.B. Papazian, N.T. Golmie, K.A. Remley, Millimeter-wave radio channels vs. synthetic beamwidth. IEEE Commun. Mag. 56(12), 53–59 (2018) R. Sun, C.A. Gentile, J. Senic, P. Vouras, P.B. Papazian, N.T. Golmie, K.A. Remley, Millimeter-wave radio channels vs. synthetic beamwidth. IEEE Commun. Mag. 56(12), 53–59 (2018)
98.
go back to reference N. Yang, L. Wang, G. Geraci, M. Elkashlan, J. Yuan, M. Di Renzo, Safeguarding 5G wireless communication networks using physical layer security. IEEE Commun. Mag. 53(4), 20–27 (2015)CrossRef N. Yang, L. Wang, G. Geraci, M. Elkashlan, J. Yuan, M. Di Renzo, Safeguarding 5G wireless communication networks using physical layer security. IEEE Commun. Mag. 53(4), 20–27 (2015)CrossRef
99.
go back to reference C. Wang, H.-M. Wang, Physical layer security in millimeter wave cellular networks. IEEE Trans. Wireless Commun. 15(8), 5569–5585 (2016)CrossRef C. Wang, H.-M. Wang, Physical layer security in millimeter wave cellular networks. IEEE Trans. Wireless Commun. 15(8), 5569–5585 (2016)CrossRef
100.
go back to reference Y. Zhu, L. Wang, K.-K. Wong, R.W. Heath, Secure communications in millimeter wave Ad Hoc networks. IEEE Trans. Wireless Commun. 16(5), 3205–3217 (2017)CrossRef Y. Zhu, L. Wang, K.-K. Wong, R.W. Heath, Secure communications in millimeter wave Ad Hoc networks. IEEE Trans. Wireless Commun. 16(5), 3205–3217 (2017)CrossRef
101.
go back to reference Q. Xue, P. Zhou, X. Fang, M. Xiao, Performance analysis of interference and eavesdropping immunity in narrow beam mmWave networks. IEEE Access 6, 67,611–67,624 (2018)CrossRef Q. Xue, P. Zhou, X. Fang, M. Xiao, Performance analysis of interference and eavesdropping immunity in narrow beam mmWave networks. IEEE Access 6, 67,611–67,624 (2018)CrossRef
102.
go back to reference A.K. Gupta, J.G. Andrews, R.W. Heath, Macrodiversity in cellular networks with random blockages. IEEE Trans. Wireless Commun. 17(2), 996–1010 (2017)CrossRef A.K. Gupta, J.G. Andrews, R.W. Heath, Macrodiversity in cellular networks with random blockages. IEEE Trans. Wireless Commun. 17(2), 996–1010 (2017)CrossRef
103.
go back to reference I.K. Jain, R. Kumar, S.S. Panwar, The impact of mobile blockers on millimeter wave cellular systems. IEEE J. Sel. Areas Commun. 37(4), 854–868 (2019)CrossRef I.K. Jain, R. Kumar, S.S. Panwar, The impact of mobile blockers on millimeter wave cellular systems. IEEE J. Sel. Areas Commun. 37(4), 854–868 (2019)CrossRef
104.
go back to reference Y. Zhu, Q. Zhang, Z. Niu, J. Zhu, Leveraging multi-AP diversity for transmission resilience in wireless networks: Architecture and performance analysis. IEEE Trans. Wireless Commun. 8(10), 5030–5040 (2009)CrossRef Y. Zhu, Q. Zhang, Z. Niu, J. Zhu, Leveraging multi-AP diversity for transmission resilience in wireless networks: Architecture and performance analysis. IEEE Trans. Wireless Commun. 8(10), 5030–5040 (2009)CrossRef
105.
go back to reference M. Giordani, M. Polese, A. Roy, D. Castor, M. Zorzi, Standalone and non-standalone beam management for 3GPP NR at mmWaves. IEEE Commun. Mag. 57(4), 123–129 (2019)CrossRef M. Giordani, M. Polese, A. Roy, D. Castor, M. Zorzi, Standalone and non-standalone beam management for 3GPP NR at mmWaves. IEEE Commun. Mag. 57(4), 123–129 (2019)CrossRef
106.
go back to reference Y. Niu, Y. Li, D. Jin, L. Su, A.V. Vasilakos, A survey of millimeter wave (mmWave) communications for 5G: Opportunities and challenges. J. Wireless Netw. 21(8), 2657–2676 (2015)CrossRef Y. Niu, Y. Li, D. Jin, L. Su, A.V. Vasilakos, A survey of millimeter wave (mmWave) communications for 5G: Opportunities and challenges. J. Wireless Netw. 21(8), 2657–2676 (2015)CrossRef
107.
go back to reference A.K. Gupta, J.G. Andrews, R.W. Heath, On the feasibility of sharing spectrum licenses in mmWave cellular systems. IEEE Trans. Commun. 64, 3981–3995 (2016)CrossRef A.K. Gupta, J.G. Andrews, R.W. Heath, On the feasibility of sharing spectrum licenses in mmWave cellular systems. IEEE Trans. Commun. 64, 3981–3995 (2016)CrossRef
108.
go back to reference A.K. Gupta, A. Alkhateeb, J.G. Andrews, R.W. Heath, Gains of restricted secondary licensing in millimeter wave cellular systems. IEEE J. Sel. Areas Commun. 34(11), 2935–2950 (2016)CrossRef A.K. Gupta, A. Alkhateeb, J.G. Andrews, R.W. Heath, Gains of restricted secondary licensing in millimeter wave cellular systems. IEEE J. Sel. Areas Commun. 34(11), 2935–2950 (2016)CrossRef
109.
go back to reference A. Alkhateeb, S. Alex, P. Varkey, Y. Li, Q. Qu, D. Tujkovic, Deep learning coordinated beamforming for highly-mobile millimeter wave systems. IEEE Access 6, 37,328–37,348 (2018)CrossRef A. Alkhateeb, S. Alex, P. Varkey, Y. Li, Q. Qu, D. Tujkovic, Deep learning coordinated beamforming for highly-mobile millimeter wave systems. IEEE Access 6, 37,328–37,348 (2018)CrossRef
110.
go back to reference T. Nitsche, C. Cordeiro, A.B. Flores, E.W. Knightly, E. Perahia, J.C. Widmer, IEEE 802.11 ad: Directional 60 GHz communication for multi-Gigabit-per-second Wi-Fi. IEEE Commun. Mag. 52(12), 132–141 (2014) T. Nitsche, C. Cordeiro, A.B. Flores, E.W. Knightly, E. Perahia, J.C. Widmer, IEEE 802.11 ad: Directional 60 GHz communication for multi-Gigabit-per-second Wi-Fi. IEEE Commun. Mag. 52(12), 132–141 (2014)
111.
go back to reference Y. Ghasempour, C.R. da Silva, C. Cordeiro, E.W. Knightly, IEEE 802.11 ay: Next-generation 60 GHz communication for 100 Gb/s Wi-Fi. IEEE Commun. Mag. 55(12), 186–192 (2017) Y. Ghasempour, C.R. da Silva, C. Cordeiro, E.W. Knightly, IEEE 802.11 ay: Next-generation 60 GHz communication for 100 Gb/s Wi-Fi. IEEE Commun. Mag. 55(12), 186–192 (2017)
112.
go back to reference Y. Liu, Y. Jian, R. Sivakumar, D.M. Blough, On the potential benefits of mobile access points in mmWave wireless LANs, in 2020 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN) (IEEE, 2020), pp. 1–6 Y. Liu, Y. Jian, R. Sivakumar, D.M. Blough, On the potential benefits of mobile access points in mmWave wireless LANs, in 2020 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN) (IEEE, 2020), pp. 1–6
113.
go back to reference K. Aldubaikhy, W. Wu, N. Zhang, N. Cheng, X.S. Shen, Mmwave IEEE 802.11 ay for 5G fixed wireless access. IEEE Wireless Commun. 27(2), 88–95 (2020) K. Aldubaikhy, W. Wu, N. Zhang, N. Cheng, X.S. Shen, Mmwave IEEE 802.11 ay for 5G fixed wireless access. IEEE Wireless Commun. 27(2), 88–95 (2020)
114.
go back to reference H.S. Dhillon, G. Caire, Wireless backhaul networks: Capacity bound, scalability analysis and design guidelines. IEEE Trans. Wireless Commun. 14(11), 6043–6056 (2015)CrossRef H.S. Dhillon, G. Caire, Wireless backhaul networks: Capacity bound, scalability analysis and design guidelines. IEEE Trans. Wireless Commun. 14(11), 6043–6056 (2015)CrossRef
115.
go back to reference C. Saha, M. Afshang, H.S. Dhillon, Bandwidth partitioning and downlink analysis in millimeter wave integrated access and backhaul for 5G. IEEE Trans. Wireless Commun. 17(12), 8195–8210 (2018)CrossRef C. Saha, M. Afshang, H.S. Dhillon, Bandwidth partitioning and downlink analysis in millimeter wave integrated access and backhaul for 5G. IEEE Trans. Wireless Commun. 17(12), 8195–8210 (2018)CrossRef
116.
go back to reference C. Saha, H.S. Dhillon, Millimeter wave integrated access and backhaul in 5G: Performance analysis and design insights. IEEE J. Sel. Areas Commun. 37(12), 2669–2684 (2019)CrossRef C. Saha, H.S. Dhillon, Millimeter wave integrated access and backhaul in 5G: Performance analysis and design insights. IEEE J. Sel. Areas Commun. 37(12), 2669–2684 (2019)CrossRef
117.
go back to reference R. Lombardi, Wireless backhaul for IMT 2020 / 5G: Overview and introduction, in In Proceedings of the Workshop on Evolution of Fixed Service in Backhaul Support of IMT 2020/5G, Geneva, Switzerland, 29 (2019) R. Lombardi, Wireless backhaul for IMT 2020 / 5G: Overview and introduction, in In Proceedings of the Workshop on Evolution of Fixed Service in Backhaul Support of IMT 2020/5G, Geneva, Switzerland, 29 (2019)
118.
go back to reference M. Jaber, M.A. Imran, R. Tafazolli, A. Tukmanov, 5G backhaul challenges and emerging research directions: A survey. IEEE Access 4, 1743–1766 (2016)CrossRef M. Jaber, M.A. Imran, R. Tafazolli, A. Tukmanov, 5G backhaul challenges and emerging research directions: A survey. IEEE Access 4, 1743–1766 (2016)CrossRef
119.
go back to reference T.S. Rappaport, R.W. Heath Jr., R.C. Daniels, J.N. Murdock, Millimeter Wave Wireless Communications (Pearson Education, 2015) T.S. Rappaport, R.W. Heath Jr., R.C. Daniels, J.N. Murdock, Millimeter Wave Wireless Communications (Pearson Education, 2015)
120.
go back to reference S. Barberis, D. Disco, R. Vallauri, T. Tomura, J. Hirokawa, Millimeter wave antenna for information shower: Design choices and performance, in 2019 European Conference on Networks and Communications (EuCNC) (IEEE, 2019), pp. 128–132 S. Barberis, D. Disco, R. Vallauri, T. Tomura, J. Hirokawa, Millimeter wave antenna for information shower: Design choices and performance, in 2019 European Conference on Networks and Communications (EuCNC) (IEEE, 2019), pp. 128–132
121.
go back to reference S. Jaswal, D. Yadav, D.P. Bhatt, M. Tiwari, in MmWave Technology: An Impetus for Smart City Initiatives (IET, 2019) S. Jaswal, D. Yadav, D.P. Bhatt, M. Tiwari, in MmWave Technology: An Impetus for Smart City Initiatives (IET, 2019)
122.
go back to reference H.S. Dhillon, V.V. Chetlur, Poisson Line Cox Process: Foundations and Applications to Vehicular Networks (Morgan & Claypool, 2020) H.S. Dhillon, V.V. Chetlur, Poisson Line Cox Process: Foundations and Applications to Vehicular Networks (Morgan & Claypool, 2020)
123.
go back to reference P. Kumari, N. Gonzalez-Prelcic, R.W. Heath, Investigating the IEEE 802.11 ad standard for millimeter wave automotive radar, in 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall) (IEEE, 2015), pp. 1–5 P. Kumari, N. Gonzalez-Prelcic, R.W. Heath, Investigating the IEEE 802.11 ad standard for millimeter wave automotive radar, in 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall) (IEEE, 2015), pp. 1–5
124.
go back to reference J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel, C. Waldschmidt, Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band. IEEE Trans. Microwave Theory Tech. 60(3), 845–860 (2012)CrossRef J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel, C. Waldschmidt, Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band. IEEE Trans. Microwave Theory Tech. 60(3), 845–860 (2012)CrossRef
125.
go back to reference Y. Han, E. Ekici, H. Kremo, O. Altintas, Automotive radar and communications sharing of the 79-GHz band, in Proceedings of the First ACM International Workshop on Smart, Autonomous, and Connected Vehicular Systems and Services, pp. 6–13 (2016) Y. Han, E. Ekici, H. Kremo, O. Altintas, Automotive radar and communications sharing of the 79-GHz band, in Proceedings of the First ACM International Workshop on Smart, Autonomous, and Connected Vehicular Systems and Services, pp. 6–13 (2016)
126.
go back to reference V. Petrov, J. Kokkoniemi, D. Moltchanov, J. Lehtomäki, M. Juntti, Y. Koucheryavy, The impact of interference from the side lanes on mmWave/THz band V2V communication systems with directional antennas. IEEE Trans. Veh. Technol. 67(6), 5028–5041 (2018)CrossRef V. Petrov, J. Kokkoniemi, D. Moltchanov, J. Lehtomäki, M. Juntti, Y. Koucheryavy, The impact of interference from the side lanes on mmWave/THz band V2V communication systems with directional antennas. IEEE Trans. Veh. Technol. 67(6), 5028–5041 (2018)CrossRef
127.
go back to reference V. Petrov, G. Fodor, J. Kokkoniemi, D. Moltchanov, J. Lehtomaki, S. Andreev, Y. Koucheryavy, M. Juntti, M. Valkama, On unified vehicular communications and radar sensing in millimeter-wave and low terahertz bands. IEEE Wireless Commun. 26(3), 146–153 (2019)CrossRef V. Petrov, G. Fodor, J. Kokkoniemi, D. Moltchanov, J. Lehtomaki, S. Andreev, Y. Koucheryavy, M. Juntti, M. Valkama, On unified vehicular communications and radar sensing in millimeter-wave and low terahertz bands. IEEE Wireless Commun. 26(3), 146–153 (2019)CrossRef
128.
go back to reference I.F. Akyildiz, J.M. Jornet, C. Han, Terahertz band: Next frontier for wireless communications. J. Phys. Commun. 12, 16–32 (2014)CrossRef I.F. Akyildiz, J.M. Jornet, C. Han, Terahertz band: Next frontier for wireless communications. J. Phys. Commun. 12, 16–32 (2014)CrossRef
129.
go back to reference R. Singh, D. Sicker, Parameter modeling for small-scale mobility in indoor THz communication, in Proceedings of GLOBECOM (IEEE, 2019), pp. 1–6 R. Singh, D. Sicker, Parameter modeling for small-scale mobility in indoor THz communication, in Proceedings of GLOBECOM (IEEE, 2019), pp. 1–6
130.
go back to reference T. Kürner, S. Priebe, Towards THz communications - Status in research, standardization and regulation. J. Infrared Millimeter Terahertz Waves 35(1), 53–62 (2014)CrossRef T. Kürner, S. Priebe, Towards THz communications - Status in research, standardization and regulation. J. Infrared Millimeter Terahertz Waves 35(1), 53–62 (2014)CrossRef
131.
go back to reference A. Saeed, O. Gurbuz, M.A. Akkas, Terahertz communications at various atmospheric altitudes. J. Phys. Commun. 41, 101–113 (2020) A. Saeed, O. Gurbuz, M.A. Akkas, Terahertz communications at various atmospheric altitudes. J. Phys. Commun. 41, 101–113 (2020)
132.
go back to reference I. Rasheed, F. Hu, Intelligent super-fast vehicle-to-everything 5G communications with predictive switching between mmWave and THz links. Vehicular Communication, 100303 (2020) I. Rasheed, F. Hu, Intelligent super-fast vehicle-to-everything 5G communications with predictive switching between mmWave and THz links. Vehicular Communication, 100303 (2020)
133.
go back to reference I. Akyildiz, M. Pierobon, S. Balasubramaniam, Y. Koucheryavy, The internet of bio-nano things. IEEE Commun. Mag. 53(3), 32–40 (2015)CrossRef I. Akyildiz, M. Pierobon, S. Balasubramaniam, Y. Koucheryavy, The internet of bio-nano things. IEEE Commun. Mag. 53(3), 32–40 (2015)CrossRef
134.
go back to reference S. Abadal, E. Alarcón, A. Cabellos-Aparicio, M. Lemme, M. Nemirovsky, Graphene-enabled wireless communication for massive multicore architectures. IEEE Commun. Mag. 51(11), 137–143 (2013)CrossRef S. Abadal, E. Alarcón, A. Cabellos-Aparicio, M. Lemme, M. Nemirovsky, Graphene-enabled wireless communication for massive multicore architectures. IEEE Commun. Mag. 51(11), 137–143 (2013)CrossRef
135.
go back to reference N. Al-Falahy, O.Y. Alani, Millimetre wave frequency band as a candidate spectrum for 5G network architecture: A survey. J. Phys. Commun. 32, 120–144 (2019)CrossRef N. Al-Falahy, O.Y. Alani, Millimetre wave frequency band as a candidate spectrum for 5G network architecture: A survey. J. Phys. Commun. 32, 120–144 (2019)CrossRef
136.
go back to reference P. Zhou, K. Cheng, X. Han, X. Fang, Y. Fang, R. He, Y. Long, Y. Liu, IEEE 802.11 ay-based mmWave WLANs: Design challenges and solutions. IEEE Commun. Surv. Tutorials 20(3), 1654–1681 (2018) P. Zhou, K. Cheng, X. Han, X. Fang, Y. Fang, R. He, Y. Long, Y. Liu, IEEE 802.11 ay-based mmWave WLANs: Design challenges and solutions. IEEE Commun. Surv. Tutorials 20(3), 1654–1681 (2018)
137.
go back to reference J. Peisa, P. Persson, S. Parkvall, E. Dahlman, A. Grovlen, C. Hoymann, D. Gerstenberger, 5G evolution: 3GPP releases 16 & 17 overview. Ericsson Technology Revisions 9, 1–5 (2020) J. Peisa, P. Persson, S. Parkvall, E. Dahlman, A. Grovlen, C. Hoymann, D. Gerstenberger, 5G evolution: 3GPP releases 16 & 17 overview. Ericsson Technology Revisions 9, 1–5 (2020)
138.
go back to reference IEEE P1906.1/Draft 1.0, Recommended Practice for Nanoscale and Molecular Communication Framework (2014) IEEE P1906.1/Draft 1.0, Recommended Practice for Nanoscale and Molecular Communication Framework (2014)
139.
go back to reference H. Elayan, O. Amin, B. Shihada, R.M. Shubair, M.-s. Alouini, Terahertz band: The last piece of RF spectrum puzzle for communication systems. IEEE Open J. Commun. Soc. 1, 1–32 (2020)CrossRef H. Elayan, O. Amin, B. Shihada, R.M. Shubair, M.-s. Alouini, Terahertz band: The last piece of RF spectrum puzzle for communication systems. IEEE Open J. Commun. Soc. 1, 1–32 (2020)CrossRef
Metadata
Title
Millimeter-Wave and Terahertz Spectrum for 6G Wireless
Authors
Shuchi Tripathi
Nithin V. Sabu
Abhishek K. Gupta
Harpreet S. Dhillon
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-72777-2_6

Premium Partner