Skip to main content
Top

2023 | OriginalPaper | Chapter

6. Mimicked Physical and Mechanical Functions in Scaffolds

Author : Jirut Meesane

Published in: Mimicked Tissue Engineering Scaffolds for Maxillofacial and Articular Cartilage Surgery

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Physical and mechanical functions are an important point to consider for the mimicking of scaffolds similar to natural tissue, so mimicked physical and mechanical function, as that of natural tissue, is used in the guidance to create scaffolds. There are many different tissues in the organs of the human body, and each tissue has different physical and mechanical functions, which fit to their organs and systems. For instance, bone tissue has more mechanical strength and stiffness than skin tissue. This is because bone tissue in the skeletal system, which has to resist high mechanical force during the movement of the body. Therefore, to understand the physical and mechanical properties of each tissue is the guidance to mimic performance scaffolds. In this chapter, mimicked physical and mechanical functions of the tissues is explained, and approaches for mimicking physical and mechanical functions in scaffolds are described.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Jaipaew, J., Wangkulangkul, P., Meesane, J., Raungrut, P., Puttawibul, P.: Mimicked cartilage scaffolds of silk fibroin/hyaluronic acid with stem cells for osteoarthritis surgery: Morphological, mechanical, and physical clues. Mater. Sci. Eng. C—Mater. 64, 173–182 (2016) Jaipaew, J., Wangkulangkul, P., Meesane, J., Raungrut, P., Puttawibul, P.: Mimicked cartilage scaffolds of silk fibroin/hyaluronic acid with stem cells for osteoarthritis surgery: Morphological, mechanical, and physical clues. Mater. Sci. Eng. C—Mater. 64, 173–182 (2016)
2.
go back to reference Sang, L., Luo, D., Xu, S., Wang, X., Li, X.: Fabrication and evaluation of biomimetic scaffolds by using collagen–alginate fibrillar gels for potential tissue engineering applications. Mater. Sci. Eng. C—Mater 31, 262–271 (2011) Sang, L., Luo, D., Xu, S., Wang, X., Li, X.: Fabrication and evaluation of biomimetic scaffolds by using collagen–alginate fibrillar gels for potential tissue engineering applications. Mater. Sci. Eng. C—Mater 31, 262–271 (2011)
3.
go back to reference Zhang, K., Song, L., Wang, J., Yan, S., Li, G., Cui, L., Yin, J.: Strategy for constructing vascularized adipose units in poly(l-glutamic acid) hydrogel porous scaffold through inducing in-situ formation of ASCs spheroids. Acta Biomater. 51, 246–257 (2017)CrossRef Zhang, K., Song, L., Wang, J., Yan, S., Li, G., Cui, L., Yin, J.: Strategy for constructing vascularized adipose units in poly(l-glutamic acid) hydrogel porous scaffold through inducing in-situ formation of ASCs spheroids. Acta Biomater. 51, 246–257 (2017)CrossRef
4.
go back to reference Kreimendahl, F., Köpf, M., Thiebes, A.L., Campos, D.F.D., Blaeser, A., Schmitz-Rode, T., Apel, C., Jockenhoevel, S., Fischer, H.: Three-dimensional printing and angiogenesis: tailored agarose-type I collagen blends comprise three-dimensional printability and angiogenesis potential for tissue-engineered substitutes. Tissue Eng. C-Me 23, 604–615 (2017)CrossRef Kreimendahl, F., Köpf, M., Thiebes, A.L., Campos, D.F.D., Blaeser, A., Schmitz-Rode, T., Apel, C., Jockenhoevel, S., Fischer, H.: Three-dimensional printing and angiogenesis: tailored agarose-type I collagen blends comprise three-dimensional printability and angiogenesis potential for tissue-engineered substitutes. Tissue Eng. C-Me 23, 604–615 (2017)CrossRef
5.
go back to reference Agarwal, T., Kumar, T., Sudip, M., Ghosh, K.: Decellularized caprine liver-derived biomimetic and pro-angiogenic scaffolds for liver tissue engineering. Mater. Sci. Eng. C-Mater. 98, 939–948 (2019)CrossRef Agarwal, T., Kumar, T., Sudip, M., Ghosh, K.: Decellularized caprine liver-derived biomimetic and pro-angiogenic scaffolds for liver tissue engineering. Mater. Sci. Eng. C-Mater. 98, 939–948 (2019)CrossRef
6.
go back to reference Wangkulangkul, P., Jaipaew, J., Puttawibul, P., Meesane, J.: Constructed silk fibroin scaffolds to mimic adipose tissue as engineered implantation materials in post-subcutaneous tumor removal. Mater. Design 106, 428–435 (2016)CrossRef Wangkulangkul, P., Jaipaew, J., Puttawibul, P., Meesane, J.: Constructed silk fibroin scaffolds to mimic adipose tissue as engineered implantation materials in post-subcutaneous tumor removal. Mater. Design 106, 428–435 (2016)CrossRef
7.
go back to reference Kreimendahl, F., Köpf, M., Thiebes, A.L., Campos, D.F.D., Blaeser, A., Schmitz-Rode, T., Apel, C., Jockenhoevel, S., Fischer, H.: Three-dimensional printing and angiogenesis: tailored agarose-type I collagen blends comprise three-dimensional printability and angiogenesis potential for tissue-engineered substitutes. Tissue Eng. C-Me 23, 604–615 (2017)CrossRef Kreimendahl, F., Köpf, M., Thiebes, A.L., Campos, D.F.D., Blaeser, A., Schmitz-Rode, T., Apel, C., Jockenhoevel, S., Fischer, H.: Three-dimensional printing and angiogenesis: tailored agarose-type I collagen blends comprise three-dimensional printability and angiogenesis potential for tissue-engineered substitutes. Tissue Eng. C-Me 23, 604–615 (2017)CrossRef
8.
go back to reference Asadi, N., Alizadeh, E., Bakhshayesh, A.R.D., Mostafavi, E., Akbarzadeh, A., Soodabeh, D.S.: Fabrication and in vitro evaluation of nanocomposite hydrogel scaffolds based on gelatin/PCL–PEG–PCL for cartilage tissue engineering. ACS Omega 4(1), 449–457 (2019)CrossRef Asadi, N., Alizadeh, E., Bakhshayesh, A.R.D., Mostafavi, E., Akbarzadeh, A., Soodabeh, D.S.: Fabrication and in vitro evaluation of nanocomposite hydrogel scaffolds based on gelatin/PCL–PEG–PCL for cartilage tissue engineering. ACS Omega 4(1), 449–457 (2019)CrossRef
9.
go back to reference Tsai, M.C., Hung, K.C., Hung, S.C., Hsu, S.H.: Evaluation of biodegradable elastic scaffolds made of anionic polyurethane for cartilage tissue engineering. Colloids Surf. B Biointerf. 125, 34–44 (2015)CrossRef Tsai, M.C., Hung, K.C., Hung, S.C., Hsu, S.H.: Evaluation of biodegradable elastic scaffolds made of anionic polyurethane for cartilage tissue engineering. Colloids Surf. B Biointerf. 125, 34–44 (2015)CrossRef
10.
go back to reference Farokhi, M., Shariatzadeh, F.J., Solouk, A., Hamid, M.H.: Alginate based scaffolds for cartilage tissue engineering: a review. Int. J. Polym. Mater. Po 69, 230–247 (2020)CrossRef Farokhi, M., Shariatzadeh, F.J., Solouk, A., Hamid, M.H.: Alginate based scaffolds for cartilage tissue engineering: a review. Int. J. Polym. Mater. Po 69, 230–247 (2020)CrossRef
11.
go back to reference Flynn, L., Semple, J.L., Woodhouse, K.A.: Decellularized placental matrices for adipose tissue engineering. J. Biomed. Mater. Res. A 79A, 359–369 (2006)CrossRef Flynn, L., Semple, J.L., Woodhouse, K.A.: Decellularized placental matrices for adipose tissue engineering. J. Biomed. Mater. Res. A 79A, 359–369 (2006)CrossRef
12.
go back to reference Lee, S., Lee, H.S., Chung, J.J., Kim, S.H., Park, J.W., Lee, K., Jung, Y.: Enhanced regeneration of vascularized adipose tissue with dual 3D-printed elastic polymer/dECM hydrogel complex. Int. J. Mol. Sci. 22, 2886 (2021)CrossRef Lee, S., Lee, H.S., Chung, J.J., Kim, S.H., Park, J.W., Lee, K., Jung, Y.: Enhanced regeneration of vascularized adipose tissue with dual 3D-printed elastic polymer/dECM hydrogel complex. Int. J. Mol. Sci. 22, 2886 (2021)CrossRef
13.
go back to reference Negrini, N.C., Tarsini, P., Tanzi, M.C., Farè, S.: Chemically crosslinked gelatin hydrogels as scaffolding materials for adipose tissue engineering. J. Appl. Polym. Sci. 136, 47104 (2019)CrossRef Negrini, N.C., Tarsini, P., Tanzi, M.C., Farè, S.: Chemically crosslinked gelatin hydrogels as scaffolding materials for adipose tissue engineering. J. Appl. Polym. Sci. 136, 47104 (2019)CrossRef
14.
go back to reference Chang, K.H., Liao, H.T., Chen, J.P.: Preparation and characterization of gelatin/hyaluronic acid cryogels for adipose tissue engineering: In vitro and in vivo studies. Acta Biomater. 9, 9012–9026 (2013)CrossRef Chang, K.H., Liao, H.T., Chen, J.P.: Preparation and characterization of gelatin/hyaluronic acid cryogels for adipose tissue engineering: In vitro and in vivo studies. Acta Biomater. 9, 9012–9026 (2013)CrossRef
15.
go back to reference Matinfar, M., Mesgar, A.S., Mohammadi, Z.: Evaluation of physicochemical, mechanical and biological properties of chitosan/carboxymethyl cellulose reinforced with multiphasic calcium phosphate whisker-like fibers for bone tissue engineering. Mater. Sci. Eng. C-Mater. 100, 341–353 (2019)CrossRef Matinfar, M., Mesgar, A.S., Mohammadi, Z.: Evaluation of physicochemical, mechanical and biological properties of chitosan/carboxymethyl cellulose reinforced with multiphasic calcium phosphate whisker-like fibers for bone tissue engineering. Mater. Sci. Eng. C-Mater. 100, 341–353 (2019)CrossRef
16.
go back to reference Chen, Y., Kawazo, N., Chen, G.: Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering. Acta Biomater. 67, 341–353 (2018)CrossRef Chen, Y., Kawazo, N., Chen, G.: Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering. Acta Biomater. 67, 341–353 (2018)CrossRef
17.
go back to reference Nie, L., Chen, D., JSuo, J., Zou, P., Feng, S., Yang, Q., Yang, S., Ye, S.: Physicochemical characterization and biocompatibility in vitro of biphasic calcium phosphate/polyvinyl alcohol scaffolds prepared by freeze-drying method for bone tissue engineering applications. Colloid Surf. B 100, 169–176 (2012) Nie, L., Chen, D., JSuo, J., Zou, P., Feng, S., Yang, Q., Yang, S., Ye, S.: Physicochemical characterization and biocompatibility in vitro of biphasic calcium phosphate/polyvinyl alcohol scaffolds prepared by freeze-drying method for bone tissue engineering applications. Colloid Surf. B 100, 169–176 (2012)
18.
go back to reference Narayan, B., Vivek, S., Sarada, V., Mallick, P., Jain, Y., Sinh, S., Rastogi, A., Srivastava, P.: Design and evaluation of chitosan/chondroitin sulfate/nano-bioglass based composite scaffold for bone tissue engineering. Int. J. Biol. Macromol. 133, 817–830 (2019)CrossRef Narayan, B., Vivek, S., Sarada, V., Mallick, P., Jain, Y., Sinh, S., Rastogi, A., Srivastava, P.: Design and evaluation of chitosan/chondroitin sulfate/nano-bioglass based composite scaffold for bone tissue engineering. Int. J. Biol. Macromol. 133, 817–830 (2019)CrossRef
19.
go back to reference Singh, B.N., Veeresh, V., Mallick, S.P., Sinh, S., Rastogi, A., Srivastava, P.: Generation of scaffold incorporated with nanobioglass encapsulated in chitosan/chondroitin sulfate complex for bone tissue engineering. Inter J Biol Macromol 153, 1–16 (2020)CrossRef Singh, B.N., Veeresh, V., Mallick, S.P., Sinh, S., Rastogi, A., Srivastava, P.: Generation of scaffold incorporated with nanobioglass encapsulated in chitosan/chondroitin sulfate complex for bone tissue engineering. Inter J Biol Macromol 153, 1–16 (2020)CrossRef
20.
go back to reference Olad, A., Hagh, H.B.K., Mirmohseni, A., Azhar, F.F.: Graphene oxide and montmorillonite enriched natural polymeric scaffold for bone tissue engineering. Ceram Inter. 45, 15609–15619 (2019)CrossRef Olad, A., Hagh, H.B.K., Mirmohseni, A., Azhar, F.F.: Graphene oxide and montmorillonite enriched natural polymeric scaffold for bone tissue engineering. Ceram Inter. 45, 15609–15619 (2019)CrossRef
21.
go back to reference Jaipaew, J, Wangkulangkul, P., Meesane, J., Raungrut, P., Puttawibul, P.: Mimicked cartilage scaffolds of silk fibroin/hyaluronic acid with stem cells for osteoarthritis surgery: morphological, mechanical, and physical clues. Mater. Sci. Eng. C-Mater. 64, 173–182 (2016) Jaipaew, J, Wangkulangkul, P., Meesane, J., Raungrut, P., Puttawibul, P.: Mimicked cartilage scaffolds of silk fibroin/hyaluronic acid with stem cells for osteoarthritis surgery: morphological, mechanical, and physical clues. Mater. Sci. Eng. C-Mater. 64, 173–182 (2016)
22.
go back to reference Banerjee, A., Arha, M., Choudhary, S., Ashton, R.S., Bhatia, S.R., Schaffer, D.V., Kane, R.S.: The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials 30, 4695–4699 (2009)CrossRef Banerjee, A., Arha, M., Choudhary, S., Ashton, R.S., Bhatia, S.R., Schaffer, D.V., Kane, R.S.: The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials 30, 4695–4699 (2009)CrossRef
23.
go back to reference Griffin, M.F., Butler, P.E., Seifalian, A.M., Kalaskar, D.M.: Control of stem cell fate by engineering their micro and nanoenvironment. World J. Stem Cells 7(1), 37–50 (2015)CrossRef Griffin, M.F., Butler, P.E., Seifalian, A.M., Kalaskar, D.M.: Control of stem cell fate by engineering their micro and nanoenvironment. World J. Stem Cells 7(1), 37–50 (2015)CrossRef
24.
go back to reference Davidenkoa, N., Campbell, J.J., Thiana, E.S., Watson, C.J., Cameron, R.E.: Collagen–hyaluronic acid scaffolds for adipose tissue engineering. Acta Biomater. 6, 3957–3968 (2010)CrossRef Davidenkoa, N., Campbell, J.J., Thiana, E.S., Watson, C.J., Cameron, R.E.: Collagen–hyaluronic acid scaffolds for adipose tissue engineering. Acta Biomater. 6, 3957–3968 (2010)CrossRef
25.
go back to reference Frydrych, M., Román, S., MacNeil, S., Chen, B.: Biomimetic poly(glycerol sebacate)/poly(l-lactic acid) blend scaffolds for adipose tissue engineering. Acta Biomater. 18, 40–49 (2015)CrossRef Frydrych, M., Román, S., MacNeil, S., Chen, B.: Biomimetic poly(glycerol sebacate)/poly(l-lactic acid) blend scaffolds for adipose tissue engineering. Acta Biomater. 18, 40–49 (2015)CrossRef
26.
go back to reference Gleeson, J.P., Plunkett, N.A., O’Brien, F.J.: Addition of hydroxyapatite improves stiffness, interconnectivity and osteogenetic potential of a highly porous collagen-based scaffold for bone tissue regeneration. Eur. Cells. Mater. 20, 218–230 (2010)CrossRef Gleeson, J.P., Plunkett, N.A., O’Brien, F.J.: Addition of hydroxyapatite improves stiffness, interconnectivity and osteogenetic potential of a highly porous collagen-based scaffold for bone tissue regeneration. Eur. Cells. Mater. 20, 218–230 (2010)CrossRef
27.
go back to reference Xu, C., Su, P., Chen, X., Meng, C., Yu, W., Xiang, A.P., Wang, Y.: Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering. Biomaterials 32, 1051–1058 (2011)CrossRef Xu, C., Su, P., Chen, X., Meng, C., Yu, W., Xiang, A.P., Wang, Y.: Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering. Biomaterials 32, 1051–1058 (2011)CrossRef
28.
go back to reference Hung, B.P., Hutton, D.L., Grayson, W.L.: Mechanical control of tissue-engineered bone. Stem Cell. Res. Ther. 4, 10 (2013)CrossRef Hung, B.P., Hutton, D.L., Grayson, W.L.: Mechanical control of tissue-engineered bone. Stem Cell. Res. Ther. 4, 10 (2013)CrossRef
29.
go back to reference Breuls, R.G.M., Jiya, T.U., Smit, T.H.: Scaffold stiffness influences cell behavior: opportunities for skeletal tissue engineering. Open Orthop. J. 2, 103–109 (2008)CrossRef Breuls, R.G.M., Jiya, T.U., Smit, T.H.: Scaffold stiffness influences cell behavior: opportunities for skeletal tissue engineering. Open Orthop. J. 2, 103–109 (2008)CrossRef
30.
go back to reference Engler, A.J., Sen, S., Sweeney, H.L., Discher, D.E.: Matrix elasticity directs stem cell lineage specification. Cell 126(4), 677–689 (2006)CrossRef Engler, A.J., Sen, S., Sweeney, H.L., Discher, D.E.: Matrix elasticity directs stem cell lineage specification. Cell 126(4), 677–689 (2006)CrossRef
31.
go back to reference Coenen, A.M.J., Bernaerts, K.V., Harings, J.A.W., Jockenhoevel, S., Ghazanfari, S.: Elastic materials for tissue engineering applications: Natural, synthetic, and hybrid polymers. Acta Biomater. 79, 60–82 (2018)CrossRef Coenen, A.M.J., Bernaerts, K.V., Harings, J.A.W., Jockenhoevel, S., Ghazanfari, S.: Elastic materials for tissue engineering applications: Natural, synthetic, and hybrid polymers. Acta Biomater. 79, 60–82 (2018)CrossRef
32.
go back to reference Makrani, N., Ammari, A., Benrekaa, N., Rodrigu, D., Giroux, Y.: Dynamics of the α-relaxation during the crystallization of PLLA and the effect of thermal annealing under humid atmosphere. Polym. Degrad. Stabil. 164, 90–101 (2019)CrossRef Makrani, N., Ammari, A., Benrekaa, N., Rodrigu, D., Giroux, Y.: Dynamics of the α-relaxation during the crystallization of PLLA and the effect of thermal annealing under humid atmosphere. Polym. Degrad. Stabil. 164, 90–101 (2019)CrossRef
33.
go back to reference Nguyen, H.K., Kawaguchi, D., Tanaka, K.: Effect of molecular architecture on conformational relaxation of polymer chains at interfaces. Macromol. Rapid Comm. 41, 2000096 (2020)CrossRef Nguyen, H.K., Kawaguchi, D., Tanaka, K.: Effect of molecular architecture on conformational relaxation of polymer chains at interfaces. Macromol. Rapid Comm. 41, 2000096 (2020)CrossRef
34.
go back to reference Abhari, R.E., Mouthuy, P.A., Zargar, N., Brown, C., Carr, A.: Effect of annealing on the mechanical properties and the degradation of electrospun polydioxanone filaments. J. Mech. Behav. Biomed. 67, 127–134 (2017)CrossRef Abhari, R.E., Mouthuy, P.A., Zargar, N., Brown, C., Carr, A.: Effect of annealing on the mechanical properties and the degradation of electrospun polydioxanone filaments. J. Mech. Behav. Biomed. 67, 127–134 (2017)CrossRef
35.
go back to reference Ozdil, D., Aydin, H.M.: Polymers for medical and tissue engineering applications. J. Chem Technol. Biot. 89, 1793–1810 (2014)CrossRef Ozdil, D., Aydin, H.M.: Polymers for medical and tissue engineering applications. J. Chem Technol. Biot. 89, 1793–1810 (2014)CrossRef
36.
go back to reference Onyishi, H.O., Oluah, C.K.: Effect of stretch ratio on the induced crystallinity and mechanical properties of biaxially stretched PET. Phase Tran. 93, 924–934 (2020)CrossRef Onyishi, H.O., Oluah, C.K.: Effect of stretch ratio on the induced crystallinity and mechanical properties of biaxially stretched PET. Phase Tran. 93, 924–934 (2020)CrossRef
37.
go back to reference Collins, M.N., Ren, G., Young, K., Pina, S., Reis, R.L., Oliveira, J.M.: Scaffold fabrication technologies and structure/function properties in bone tissue engineering. Adv. Funct. Mater. 31, 2010609 (2021)CrossRef Collins, M.N., Ren, G., Young, K., Pina, S., Reis, R.L., Oliveira, J.M.: Scaffold fabrication technologies and structure/function properties in bone tissue engineering. Adv. Funct. Mater. 31, 2010609 (2021)CrossRef
38.
go back to reference Sang, Y., Li, M., Liu, J., Yao, Y., Ding, Z., Wang, L., Xiao, L., Lu, Q., Fu, X., Kaplan, D.L.: Biomimetic silk scaffolds with an amorphous structure for soft tissue engineering. ACS Appl. Mater. Interf. 10(11), 9290–9300 (2018)CrossRef Sang, Y., Li, M., Liu, J., Yao, Y., Ding, Z., Wang, L., Xiao, L., Lu, Q., Fu, X., Kaplan, D.L.: Biomimetic silk scaffolds with an amorphous structure for soft tissue engineering. ACS Appl. Mater. Interf. 10(11), 9290–9300 (2018)CrossRef
39.
go back to reference Cheung, H.K., Han, T.T.Y., Marecak, D.M., Watkins, J.F., Amsden, B.G., Flynn, L.E.: Composite hydrogel scaffolds incorporating decellularized adipose tissue for soft tissue engineering with adipose-derived stem cells. engineering with adipose-derived stem cells. Biomaterials 35, 1914–1923 (2014) Cheung, H.K., Han, T.T.Y., Marecak, D.M., Watkins, J.F., Amsden, B.G., Flynn, L.E.: Composite hydrogel scaffolds incorporating decellularized adipose tissue for soft tissue engineering with adipose-derived stem cells. engineering with adipose-derived stem cells. Biomaterials 35, 1914–1923 (2014)
40.
go back to reference Murphy, C.M., Matsiko, A., Haugh, M.G., Gleeson, J.P., O’Brien, F.J.: Mesenchymal stem cell fate is regulated by the composition and mechanical properties of collagen–glycosaminoglycan scaffolds. J. Mech. Behav. Biomed. 11, 53–62 (2012)CrossRef Murphy, C.M., Matsiko, A., Haugh, M.G., Gleeson, J.P., O’Brien, F.J.: Mesenchymal stem cell fate is regulated by the composition and mechanical properties of collagen–glycosaminoglycan scaffolds. J. Mech. Behav. Biomed. 11, 53–62 (2012)CrossRef
41.
go back to reference Yao, R., He, J., Meng, G., Jiang, B., Wu, F.: Electrospun PCL/Gelatin composite fibrous scaffolds: mechanical properties and cellular responses. J. Biomat. Sci-Polym. E 27, 824–838 (2016)CrossRef Yao, R., He, J., Meng, G., Jiang, B., Wu, F.: Electrospun PCL/Gelatin composite fibrous scaffolds: mechanical properties and cellular responses. J. Biomat. Sci-Polym. E 27, 824–838 (2016)CrossRef
42.
go back to reference Chen, G., Dong, C., Yang, L., Lv, Y.: 3D scaffolds with different stiffness but the same microstructure for bone tissue engineering. ACS Appl. Mater. Interfaces 7(29), 15790–15802 (2015)CrossRef Chen, G., Dong, C., Yang, L., Lv, Y.: 3D scaffolds with different stiffness but the same microstructure for bone tissue engineering. ACS Appl. Mater. Interfaces 7(29), 15790–15802 (2015)CrossRef
43.
go back to reference Murphy, C.M., Matsiko, A., Haugh, M.G., Gleeson, J.P., O’Brien, F.J.: Mesenchymal stem cell fate is regulated by the composition and mechanical properties of collagen–glycosaminoglycan scaffolds. J. Mech. Behav. Biomed. Mater. 11, 53–62 (2012)CrossRef Murphy, C.M., Matsiko, A., Haugh, M.G., Gleeson, J.P., O’Brien, F.J.: Mesenchymal stem cell fate is regulated by the composition and mechanical properties of collagen–glycosaminoglycan scaffolds. J. Mech. Behav. Biomed. Mater. 11, 53–62 (2012)CrossRef
44.
go back to reference Young, D.A., Choi, Y.S., Engler, A.J., Christman, K.L.: Stimulation of adipogenesis of adult adipose-derived stem cells using substrates that mimic the stiffness of adipose tissue. Biomaterials 34, 8581–8588 (2013)CrossRef Young, D.A., Choi, Y.S., Engler, A.J., Christman, K.L.: Stimulation of adipogenesis of adult adipose-derived stem cells using substrates that mimic the stiffness of adipose tissue. Biomaterials 34, 8581–8588 (2013)CrossRef
45.
go back to reference Von Heimburg, D., Kuberk, M., Rendchen, R., Hemmrich, K., Rau, G., Pallua, N.: Preadipocyte-loaded collagen scaffolds with enlarged pore size for improved soft tissue engineering. Int. J. Artif. Organs 26, 1064–1076 (2003)CrossRef Von Heimburg, D., Kuberk, M., Rendchen, R., Hemmrich, K., Rau, G., Pallua, N.: Preadipocyte-loaded collagen scaffolds with enlarged pore size for improved soft tissue engineering. Int. J. Artif. Organs 26, 1064–1076 (2003)CrossRef
46.
go back to reference Zhang, F., He, C., Cao, L., Feng, W., Wang, H., Mo, X., Wang, J.: Fabrication of gelatin–hyaluronic acid hybrid scaffolds with tunable porous structures for soft tissue engineering. Int. J. Biol. Macromol. 48, 474–481 (2011)CrossRef Zhang, F., He, C., Cao, L., Feng, W., Wang, H., Mo, X., Wang, J.: Fabrication of gelatin–hyaluronic acid hybrid scaffolds with tunable porous structures for soft tissue engineering. Int. J. Biol. Macromol. 48, 474–481 (2011)CrossRef
47.
go back to reference Gupta, S., Webster, T.J., Sinha, A.: Evolution of PVA gels prepared without crosslinking agents as a cell adhesive surface. J. Mater. Sci. Mater. Med. 22, 1763–1772 (2011)CrossRef Gupta, S., Webster, T.J., Sinha, A.: Evolution of PVA gels prepared without crosslinking agents as a cell adhesive surface. J. Mater. Sci. Mater. Med. 22, 1763–1772 (2011)CrossRef
48.
go back to reference Gupta, S., Goswami, S., Sinha, A.: A combined effect of freeze—thaw cycles and polymer concentration on the structure and mechanical properties of transparent PVA gels. Biomed Mater. 7(1), 015006 (2012) Gupta, S., Goswami, S., Sinha, A.: A combined effect of freeze—thaw cycles and polymer concentration on the structure and mechanical properties of transparent PVA gels. Biomed Mater. 7(1), 015006 (2012)
49.
go back to reference Wan, H., Shen, J., Gao, N., Liu, J., Gao, Y., Zhang, L.: Tailoring the mechanical properties by molecular integration of flexible and stiff polymer networks. Soft Matt. 14, 2379–2390 (2018)CrossRef Wan, H., Shen, J., Gao, N., Liu, J., Gao, Y., Zhang, L.: Tailoring the mechanical properties by molecular integration of flexible and stiff polymer networks. Soft Matt. 14, 2379–2390 (2018)CrossRef
50.
go back to reference Peng, M., Xiao, G., Tang, X., Zhou, Y.: Hydrogen-Bonding Assembly of Rigid-Rod Poly(p-sulfophenylene terephthalamide) and Flexible-Chain Poly(vinyl alcohol) for Transparent, Strong, and Tough Molecular Composites. Macromolecules 47(23), 8411–8419 (2014)CrossRef Peng, M., Xiao, G., Tang, X., Zhou, Y.: Hydrogen-Bonding Assembly of Rigid-Rod Poly(p-sulfophenylene terephthalamide) and Flexible-Chain Poly(vinyl alcohol) for Transparent, Strong, and Tough Molecular Composites. Macromolecules 47(23), 8411–8419 (2014)CrossRef
51.
go back to reference Askadskii, A.A., Matseevich, T.A., Popova, M.N., Kondrashchenko, V.I.: Prediction of the compatibility of polymers and analysis of the microphase compositions and some properties of blends. Polym. Sci. Ser. A 57, 186–199 (2015)CrossRef Askadskii, A.A., Matseevich, T.A., Popova, M.N., Kondrashchenko, V.I.: Prediction of the compatibility of polymers and analysis of the microphase compositions and some properties of blends. Polym. Sci. Ser. A 57, 186–199 (2015)CrossRef
52.
go back to reference Zhang, J., Wang, Z., Wang, Q., Ma, J., Cao, J., Hu, W., Wu, Z.: Relationship between polymers compatibility and casting solution stability in fabricating PVDF/PVA membranes. J. Membrane Sci. 537, 263–271 (2017)CrossRef Zhang, J., Wang, Z., Wang, Q., Ma, J., Cao, J., Hu, W., Wu, Z.: Relationship between polymers compatibility and casting solution stability in fabricating PVDF/PVA membranes. J. Membrane Sci. 537, 263–271 (2017)CrossRef
53.
go back to reference Beattie, D.L., Mykhaylyk, O.O., Armes, S.P.: Enthalpic incompatibility between two steric stabilizer blocks provides control over the vesicle size distribution during polymerization-induced self-assembly in aqueous media. Chem. Sci. 11, 10821–10834 (2020)CrossRef Beattie, D.L., Mykhaylyk, O.O., Armes, S.P.: Enthalpic incompatibility between two steric stabilizer blocks provides control over the vesicle size distribution during polymerization-induced self-assembly in aqueous media. Chem. Sci. 11, 10821–10834 (2020)CrossRef
54.
go back to reference Zaikin, A.E., Bobrov, G.B.: Compatibilization of blends of incompatible polymers via filling. Polym. Sci. Ser. A 54, 651–657 (2012)CrossRef Zaikin, A.E., Bobrov, G.B.: Compatibilization of blends of incompatible polymers via filling. Polym. Sci. Ser. A 54, 651–657 (2012)CrossRef
55.
go back to reference Dobrovszky, K., Ronkay, F.: Effects of phase inversion on molding shrinkage, mechanical, and burning properties of injection-molded PET/HDPE and PS/HDPE polymer blends. Polym Plast Technol. Eng. 56, 1147–1157 (2017)CrossRef Dobrovszky, K., Ronkay, F.: Effects of phase inversion on molding shrinkage, mechanical, and burning properties of injection-molded PET/HDPE and PS/HDPE polymer blends. Polym Plast Technol. Eng. 56, 1147–1157 (2017)CrossRef
56.
go back to reference Torquato, S.: Disordered hyperuniform heterogeneous materials. J. Phys. Condens Matt. 28, 414012 (2016)CrossRef Torquato, S.: Disordered hyperuniform heterogeneous materials. J. Phys. Condens Matt. 28, 414012 (2016)CrossRef
57.
go back to reference Wang, J., Tsou, A.H., Favis, B.D.: Effects of polyethylene molecular weight distribution on phase morphology development in poly(p-phenylene ether) and polyethylene blends. Macromolecules 51(22), 9165–9176 (2018)CrossRef Wang, J., Tsou, A.H., Favis, B.D.: Effects of polyethylene molecular weight distribution on phase morphology development in poly(p-phenylene ether) and polyethylene blends. Macromolecules 51(22), 9165–9176 (2018)CrossRef
58.
go back to reference Hu, K., Huang, D., Jiang, H., Sun, S., Ma, Z., Zhang, K., Pan, L., Li, Y.: Toughening biosourced poly(lactic acid) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) blends by a renewable poly(epichlorohydrin-co-ethylene oxide) elastomer. ACS Omega 4(22), 19777–19786 (2019)CrossRef Hu, K., Huang, D., Jiang, H., Sun, S., Ma, Z., Zhang, K., Pan, L., Li, Y.: Toughening biosourced poly(lactic acid) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) blends by a renewable poly(epichlorohydrin-co-ethylene oxide) elastomer. ACS Omega 4(22), 19777–19786 (2019)CrossRef
59.
go back to reference Lin, Q., Zheng, X., Gu, X., Zhao, L., Li, J., Li, Y.: Reactive splicing compatibilization of immiscible polymer blends: Compatibilizer synthesis in the melt state and compatibilizer architecture effects. Polymer 185, 121952 (2019) Lin, Q., Zheng, X., Gu, X., Zhao, L., Li, J., Li, Y.: Reactive splicing compatibilization of immiscible polymer blends: Compatibilizer synthesis in the melt state and compatibilizer architecture effects. Polymer 185, 121952 (2019)
60.
go back to reference Shamsuri, A.A., Jamil, S.N.A.M.: Compatibilization effect of ionic liquid-based surfactants on physicochemical properties of PBS/rice starch blends: an initial study. Mat. 13(8), 1885 (2020) Shamsuri, A.A., Jamil, S.N.A.M.: Compatibilization effect of ionic liquid-based surfactants on physicochemical properties of PBS/rice starch blends: an initial study. Mat. 13(8), 1885 (2020)
61.
go back to reference Ahmadlouydara, M., Chamkouri, M., Chamkouri, H.: Compatibilization of immiscible polymer blends (R-PET/PP) by adding PP-g-MA as compatibilizer: analysis of phase morphology and mechanical properties. Polym. Bull. 77, 5753–5766 (2020)CrossRef Ahmadlouydara, M., Chamkouri, M., Chamkouri, H.: Compatibilization of immiscible polymer blends (R-PET/PP) by adding PP-g-MA as compatibilizer: analysis of phase morphology and mechanical properties. Polym. Bull. 77, 5753–5766 (2020)CrossRef
62.
go back to reference Yang, X., Wang, H., Chen, J., Fu, Z., Zhao, X., Li, Y.: Copolymers containing two types of reactive groups: New compatibilizer for immiscible PLLA/PA11 polymer blends. Polymer 177, 139–148 (2019)CrossRef Yang, X., Wang, H., Chen, J., Fu, Z., Zhao, X., Li, Y.: Copolymers containing two types of reactive groups: New compatibilizer for immiscible PLLA/PA11 polymer blends. Polymer 177, 139–148 (2019)CrossRef
63.
go back to reference Ding, Y., Feng, W., Huang, D., Lu, B., Wang, P., Wang, G., Ji, J.: Compatibilization of immiscible PLA-based biodegradable polymer blends using amphiphilic di-block copolymers. Eur. Polym. J. 118, 45–52 (2019)CrossRef Ding, Y., Feng, W., Huang, D., Lu, B., Wang, P., Wang, G., Ji, J.: Compatibilization of immiscible PLA-based biodegradable polymer blends using amphiphilic di-block copolymers. Eur. Polym. J. 118, 45–52 (2019)CrossRef
64.
go back to reference Seier, M., Stanic, S., Koch, T., Archodoulaki, V.M.: Effect of different compatibilization systems on the rheological, mechanical and morphological properties of polypropylene/polystyrene blends. Polymers 12, 2335 (2020)CrossRef Seier, M., Stanic, S., Koch, T., Archodoulaki, V.M.: Effect of different compatibilization systems on the rheological, mechanical and morphological properties of polypropylene/polystyrene blends. Polymers 12, 2335 (2020)CrossRef
65.
go back to reference Colmenero, J.: Polymer chain diffusion in polymer blends: A theoretical interpretation based on a memory function formalism. J. Polym. Sci. Part B Polym. Phys. 57, 1239–1245 (2019)CrossRef Colmenero, J.: Polymer chain diffusion in polymer blends: A theoretical interpretation based on a memory function formalism. J. Polym. Sci. Part B Polym. Phys. 57, 1239–1245 (2019)CrossRef
66.
go back to reference Fekete, E., Földes, E., Pukánszky, B.: Effect of molecular interactions on the miscibility and structure of polymer blends. Eur. Polym. J. 41, 727–736 (2005)CrossRef Fekete, E., Földes, E., Pukánszky, B.: Effect of molecular interactions on the miscibility and structure of polymer blends. Eur. Polym. J. 41, 727–736 (2005)CrossRef
67.
go back to reference Wu, B., Cai, Y., Zhao, X., Ye, L.: Fabrication of well-miscible and highly enhanced polyethylene/ultrahigh molecular weight polyethylene blends by facile construction of interfacial intermolecular entanglement. Polym. Test. 93, 106973 (2021)CrossRef Wu, B., Cai, Y., Zhao, X., Ye, L.: Fabrication of well-miscible and highly enhanced polyethylene/ultrahigh molecular weight polyethylene blends by facile construction of interfacial intermolecular entanglement. Polym. Test. 93, 106973 (2021)CrossRef
68.
go back to reference Parrag, I.C., Woodhouse, K.A.: Development of biodegradable polyurethane scaffolds using amino acid and dipeptide-based chain extenders for soft tissue engineering. J. Biomat. Sci-Polym. E 21, 843–862 (2010)CrossRef Parrag, I.C., Woodhouse, K.A.: Development of biodegradable polyurethane scaffolds using amino acid and dipeptide-based chain extenders for soft tissue engineering. J. Biomat. Sci-Polym. E 21, 843–862 (2010)CrossRef
69.
go back to reference Ying, T.H., Ishii, D., Mahara, A., Murakami, S., Yamaoka, T., Sudesh, K., Samian, R., Fujita, M., Maeda, M., Iwata, T.: Scaffolds from electrospun polyhydroxyalkanoate copolymers: Fabrication, characterization, bioabsorption and tissue response. Biomaterials 29, 1307–1317 (2008)CrossRef Ying, T.H., Ishii, D., Mahara, A., Murakami, S., Yamaoka, T., Sudesh, K., Samian, R., Fujita, M., Maeda, M., Iwata, T.: Scaffolds from electrospun polyhydroxyalkanoate copolymers: Fabrication, characterization, bioabsorption and tissue response. Biomaterials 29, 1307–1317 (2008)CrossRef
70.
go back to reference Duquette, D., Dumont, M.J.: Comparative studies of chemical crosslinking reactions and applications of bio-based hydrogels. Polym. Bull. 76, 2683–2710 (2019)CrossRef Duquette, D., Dumont, M.J.: Comparative studies of chemical crosslinking reactions and applications of bio-based hydrogels. Polym. Bull. 76, 2683–2710 (2019)CrossRef
71.
go back to reference Metters, A., Hubbell, J.: Network formation and degradation behavior of hydrogels formed by Michael-type addition reactions. Biomacromol. 6(1), 290–301 (2005)CrossRef Metters, A., Hubbell, J.: Network formation and degradation behavior of hydrogels formed by Michael-type addition reactions. Biomacromol. 6(1), 290–301 (2005)CrossRef
72.
go back to reference Improvements in mechanical properties of collagen-based scaffolds for tissue engineering. Curr. Opin. Biomed. Eng. 17, 100253 (2021) Improvements in mechanical properties of collagen-based scaffolds for tissue engineering. Curr. Opin. Biomed. Eng. 17, 100253 (2021)
73.
go back to reference Haugh, M.G., Murphy, C.M., McKiernan, R.C., Altenbuchner, C., O’Brien, F.J.: Crosslinking and mechanical properties significantly influence cell attachment, proliferation, and migration within collagen glycosaminoglycan scaffolds. Tissue Eng. A 77, 1201–1208 (2011)CrossRef Haugh, M.G., Murphy, C.M., McKiernan, R.C., Altenbuchner, C., O’Brien, F.J.: Crosslinking and mechanical properties significantly influence cell attachment, proliferation, and migration within collagen glycosaminoglycan scaffolds. Tissue Eng. A 77, 1201–1208 (2011)CrossRef
74.
go back to reference Yang, S.Y., Kim, S., Shin, H., Choi, S.H., Kim, Y.L., Joo, C., Ryu, W.H.: Random lasing detection of structural transformation and compositions in silk fibroin scaffolds. Nano Res. 12, 289–297 (2019)CrossRef Yang, S.Y., Kim, S., Shin, H., Choi, S.H., Kim, Y.L., Joo, C., Ryu, W.H.: Random lasing detection of structural transformation and compositions in silk fibroin scaffolds. Nano Res. 12, 289–297 (2019)CrossRef
75.
go back to reference Koh, L.D., Cheng, Y., Teng, C.P., Khin, Y.W., Loh, X.J., Tee, S.Y., Low, M., Ye, E., Yu, H.D., Zhang, Y.W., Han, M.Y.: Structures, mechanical properties and applications of silk fibroin materials. Prog. Polym. Sci. 46, 86–110 (2015)CrossRef Koh, L.D., Cheng, Y., Teng, C.P., Khin, Y.W., Loh, X.J., Tee, S.Y., Low, M., Ye, E., Yu, H.D., Zhang, Y.W., Han, M.Y.: Structures, mechanical properties and applications of silk fibroin materials. Prog. Polym. Sci. 46, 86–110 (2015)CrossRef
Metadata
Title
Mimicked Physical and Mechanical Functions in Scaffolds
Author
Jirut Meesane
Copyright Year
2023
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-7830-2_6

Premium Partners