Skip to main content
Top
Published in: International Journal of Speech Technology 3/2018

13-07-2018

MIMO beamforming system for speech enhancement in realistic environment with multiple noise sources

Author: Jafar Ramadhan Mohammed

Published in: International Journal of Speech Technology | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Multiple noise sources in a realistic environment severely degrade the quality and intelligibility of the desired speech signal, thus posing a severe problem for many speech applications. Several noise reduction algorithms have been proposed with a main goal to solve this problem. However, the good performances of such algorithms are severely impaired in realistic environment under multi-noise sources condition. In this paper, the author treats the noise cancellation system as a multiple-input multiple-output (MIMO) beamformer system. The proposed approach consists of two steps. First, the noise signals are generated by applying the white noise sources to a MIMO AR system. Then, the noisy microphone signals are sequentially processed by employing multi-channel linear prediction error filters (MCLPEFs) and multi-channel adaptive noise estimation filters (MCANEFs) in the lower path of the proposed beamformer. The MCLPEFs are used to whiten the input signals, while the MCANEFs are used as a MIMO system identification to perform the modeling process of the noise signals. Finally, the noise signals in the upper path are subtracted from the estimated noises in the lower path to recover an enhanced speech signal. Moreover, the performance of the proposed MIMO approach was validated under a realistic environment with real noise sources.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Allen, J., & Berkley, D. A. (1979). Image method for efficiently simulating small room acoustics. Journal of the Acoustical Society of America, 66, 943–950.CrossRef Allen, J., & Berkley, D. A. (1979). Image method for efficiently simulating small room acoustics. Journal of the Acoustical Society of America, 66, 943–950.CrossRef
go back to reference Bitzer, J., Simmer, K. U., & Kammeyer, K. D. (1999). Theoretical noise reduction limits of the generalized sidelobe canceller (GSC) for speech enhancement. Proceeding of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 5, 2965–2968) Bitzer, J., Simmer, K. U., & Kammeyer, K. D. (1999). Theoretical noise reduction limits of the generalized sidelobe canceller (GSC) for speech enhancement. Proceeding of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 5, 2965–2968)
go back to reference Delcroix, M., Hikichi, T., & Miyoshi, M. (2005). Blind dereverberation algorithm for speech signals based on multi-channel linear prediction. Acoustical Science and Technology, 26(5), 432–439.CrossRef Delcroix, M., Hikichi, T., & Miyoshi, M. (2005). Blind dereverberation algorithm for speech signals based on multi-channel linear prediction. Acoustical Science and Technology, 26(5), 432–439.CrossRef
go back to reference Djendi, M. (2018). An efficient wavelet-based adaptive filtering algorithm for automatic blind speech enhancement. International Journal of Speech Technology, 21(2), 355–367.CrossRef Djendi, M. (2018). An efficient wavelet-based adaptive filtering algorithm for automatic blind speech enhancement. International Journal of Speech Technology, 21(2), 355–367.CrossRef
go back to reference Faucon, G., Mezalek, S. T., & Le Bouquin, R. (1989). Study and comparison of three structure for enhancement of noisy speech. Proceeding of IEEE International Conference on Acoustics, Speech, and Signal Processing, 1, 385–388.CrossRef Faucon, G., Mezalek, S. T., & Le Bouquin, R. (1989). Study and comparison of three structure for enhancement of noisy speech. Proceeding of IEEE International Conference on Acoustics, Speech, and Signal Processing, 1, 385–388.CrossRef
go back to reference Golub, G. H., & Van Loan, C. F. (1989). Matrix computations (2nd edn.). Baltimore: John Hopkins University Press.MATH Golub, G. H., & Van Loan, C. F. (1989). Matrix computations (2nd edn.). Baltimore: John Hopkins University Press.MATH
go back to reference Griffiths, L. J., & Jim, C. W. (1982). An alternative approach to linearly constrained adaptive beamforming. IEEE Transactions on Antennas and Propagation, 30(1), 27–34.CrossRef Griffiths, L. J., & Jim, C. W. (1982). An alternative approach to linearly constrained adaptive beamforming. IEEE Transactions on Antennas and Propagation, 30(1), 27–34.CrossRef
go back to reference Harville, D. A. (1997). Matrix algebra from a statistician’s perspective. New York: Springer.CrossRefMATH Harville, D. A. (1997). Matrix algebra from a statistician’s perspective. New York: Springer.CrossRefMATH
go back to reference Haykin, S., & Kailath, T. (2002). Adaptive filter theory (4th edn.). Upper Saddle River, NJ: Prentice-Hall, Pearson Education, Inc. Haykin, S., & Kailath, T. (2002). Adaptive filter theory (4th edn.). Upper Saddle River, NJ: Prentice-Hall, Pearson Education, Inc.
go back to reference Herbordt, W., Buchner, H., Nakamura, S., & Kellermann, W. (2007). Multichannel bin-wise robust frequency-domain adaptive filtering and its application to adaptive beamforming. IEEE Transactions on Audio, Speech, and Language Processing, 15(4), 1340–1351.CrossRef Herbordt, W., Buchner, H., Nakamura, S., & Kellermann, W. (2007). Multichannel bin-wise robust frequency-domain adaptive filtering and its application to adaptive beamforming. IEEE Transactions on Audio, Speech, and Language Processing, 15(4), 1340–1351.CrossRef
go back to reference Herbordt, W., & Kellermann, W. (2003). Adaptive beamforming for audio signal acquisition. In J. Benesty & Y. Huang (Eds.), Adaptive signal processing: Applications to real-world problems (pp. 155–194). Berlin: Springer.CrossRef Herbordt, W., & Kellermann, W. (2003). Adaptive beamforming for audio signal acquisition. In J. Benesty & Y. Huang (Eds.), Adaptive signal processing: Applications to real-world problems (pp. 155–194). Berlin: Springer.CrossRef
go back to reference Hoshuyama, O., Sugiyama, A., & Hirano, A. (1999). A robust adaptive beamformer for microphone arrays with a blocking matrix using constrained adaptive filters. IEEE Transactions on Signal Processing, 47(10), 2677–2684.CrossRef Hoshuyama, O., Sugiyama, A., & Hirano, A. (1999). A robust adaptive beamformer for microphone arrays with a blocking matrix using constrained adaptive filters. IEEE Transactions on Signal Processing, 47(10), 2677–2684.CrossRef
go back to reference Kailath, T., Sayed, A. H., & Hassidi, B. (2000). Linear estimation. Upper Saddle River, NJ: Prentice-Hall. Kailath, T., Sayed, A. H., & Hassidi, B. (2000). Linear estimation. Upper Saddle River, NJ: Prentice-Hall.
go back to reference Linhui, Sun, Min, & Yang, SuZ. (2017). An adaptive speech endpoint detection method in low SNR environments. International Journal of Speech Technology, September, 20(3), 651–658.CrossRef Linhui, Sun, Min, & Yang, SuZ. (2017). An adaptive speech endpoint detection method in low SNR environments. International Journal of Speech Technology, September, 20(3), 651–658.CrossRef
go back to reference Mohammed, H. S., Rihan, A. M., NassarAdel, M. A., El-Fishawy, S., & Abd El-Samie, E. (2017). Efficient compression and reconstruction of speech signals using compressed sensing. International Journal of Speech Technology, 20(4), 851–857.CrossRef Mohammed, H. S., Rihan, A. M., NassarAdel, M. A., El-Fishawy, S., & Abd El-Samie, E. (2017). Efficient compression and reconstruction of speech signals using compressed sensing. International Journal of Speech Technology, 20(4), 851–857.CrossRef
go back to reference Mohammed, J. R. (2009a). An efficient method for combining adaptive echo and noise canceller in hands-free systems. International Journal of Adaptive Control and Signal Processing, 23, 278–292CrossRefMATH Mohammed, J. R. (2009a). An efficient method for combining adaptive echo and noise canceller in hands-free systems. International Journal of Adaptive Control and Signal Processing, 23, 278–292CrossRefMATH
go back to reference Mohammed, J. R. (2009b). Adaptive noise reduction and acoustic echo cancellation using adaptive filters in hands-free communication systems, PhD Thesis, Punjab Engineering College, Panjab University, Chandigarh, India, 20 November 2009. Mohammed, J. R. (2009b). Adaptive noise reduction and acoustic echo cancellation using adaptive filters in hands-free communication systems, PhD Thesis, Punjab Engineering College, Panjab University, Chandigarh, India, 20 November 2009.
go back to reference Mohammed, J. R. (2017). Development of two-input adaptive noise canceller with ability to cancel wideband and narrowband noise signals. International Journal of Speech Technology, 20(3), 741–751.CrossRef Mohammed, J. R. (2017). Development of two-input adaptive noise canceller with ability to cancel wideband and narrowband noise signals. International Journal of Speech Technology, 20(3), 741–751.CrossRef
go back to reference National Instruments, LabVIEW Fundamentals, Version 8.0, User Manual, Part Number 324029A-01, August 2005. National Instruments, LabVIEW Fundamentals, Version 8.0, User Manual, Part Number 324029A-01, August 2005.
go back to reference Neubauer, R. O. (2001). Existing reverberation time formulae—a comparison with computer simulated reverberation times. In 8th International Congress on Signal and Vibration, Hong Kong, July, 2001 (pp. 805–812). Neubauer, R. O. (2001). Existing reverberation time formulae—a comparison with computer simulated reverberation times. In 8th International Congress on Signal and Vibration, Hong Kong, July, 2001 (pp. 805–812).
go back to reference Rashmirekha, R., & Mohanty, M. N. (2018). Performance analysis of adaptive variational mode decomposition approach for speech enhancement. International Journal of Speech Technology, 21(2), 369–381.CrossRef Rashmirekha, R., & Mohanty, M. N. (2018). Performance analysis of adaptive variational mode decomposition approach for speech enhancement. International Journal of Speech Technology, 21(2), 369–381.CrossRef
go back to reference Van Comprenolle, D. (1990). Switching adaptive filters for enhancing noisy reverberant speech from microphone array recordings. In Proceeding of IEEE ICASSP, Albuquerque NM, April 1990 (Vol. 2, pp. 833–836). Van Comprenolle, D. (1990). Switching adaptive filters for enhancing noisy reverberant speech from microphone array recordings. In Proceeding of IEEE ICASSP, Albuquerque NM, April 1990 (Vol. 2, pp. 833–836).
Metadata
Title
MIMO beamforming system for speech enhancement in realistic environment with multiple noise sources
Author
Jafar Ramadhan Mohammed
Publication date
13-07-2018
Publisher
Springer US
Published in
International Journal of Speech Technology / Issue 3/2018
Print ISSN: 1381-2416
Electronic ISSN: 1572-8110
DOI
https://doi.org/10.1007/s10772-018-9530-9

Other articles of this Issue 3/2018

International Journal of Speech Technology 3/2018 Go to the issue