Skip to main content
Top
Published in: Designs, Codes and Cryptography 1/2024

12-10-2023

Minimal and optimal binary codes obtained using \(C_D\)-construction over the non-unital ring I

Authors: Vidya Sagar, Ritumoni Sarma

Published in: Designs, Codes and Cryptography | Issue 1/2024

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this article, we construct linear codes over the commutative non-unital ring I of size four. We obtain their Lee-weight distributions and study their binary Gray images. Under certain mild conditions, these classes of binary codes are minimal and self-orthogonal. All codes in this article are few-weight codes. Besides, an infinite class of these binary codes consists of distance optimal codes with respect to the Griesmer bound.
Literature
2.
go back to reference Alahmadi A., Alkathiry A., Altassan A., Bonnecaze A., Shoaib H., Solé P.: The build-up construction over a commutative non-unital ring. Des. Codes Cryptogr. 90(12), 3003–3010 (2022).MathSciNetCrossRef Alahmadi A., Alkathiry A., Altassan A., Bonnecaze A., Shoaib H., Solé P.: The build-up construction over a commutative non-unital ring. Des. Codes Cryptogr. 90(12), 3003–3010 (2022).MathSciNetCrossRef
3.
go back to reference Alahmadi A., Altassan A., Basaffar W., Bonnecaze A., Shoaib H., Solé P.: Quasi Type IV codes over a non-unital ring. Appl. Algebra Eng. Comm. Comput. 32, 217–228 (2021).MathSciNetCrossRef Alahmadi A., Altassan A., Basaffar W., Bonnecaze A., Shoaib H., Solé P.: Quasi Type IV codes over a non-unital ring. Appl. Algebra Eng. Comm. Comput. 32, 217–228 (2021).MathSciNetCrossRef
4.
go back to reference Alahmadi A., Altassan A., Basaffar W., Shoaib H., Bonnecaze A., Solé P.: Type IV codes over a non-unital ring. J. Algebra Appl. 21(07), 2250142 (2022).MathSciNetCrossRef Alahmadi A., Altassan A., Basaffar W., Shoaib H., Bonnecaze A., Solé P.: Type IV codes over a non-unital ring. J. Algebra Appl. 21(07), 2250142 (2022).MathSciNetCrossRef
5.
6.
7.
go back to reference Bonisoli A.: Every equidistant linear code is a sequence of dual Hamming codes. Ars Combinatoria 18, 181–186 (1984).MathSciNet Bonisoli A.: Every equidistant linear code is a sequence of dual Hamming codes. Ars Combinatoria 18, 181–186 (1984).MathSciNet
8.
9.
go back to reference Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.A.: Quantum error correction via codes over GF (4). IEEE Trans. Inform. Theory 44(4), 1369–1387 (1998).MathSciNetCrossRef Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.A.: Quantum error correction via codes over GF (4). IEEE Trans. Inform. Theory 44(4), 1369–1387 (1998).MathSciNetCrossRef
10.
11.
12.
go back to reference Ding C., Helleseth T., Kløve T., Wang X.: A generic construction of Cartesian authentication codes. IEEE Trans. Inform. Theory 53(6), 2229–2235 (2007).MathSciNetCrossRef Ding C., Helleseth T., Kløve T., Wang X.: A generic construction of Cartesian authentication codes. IEEE Trans. Inform. Theory 53(6), 2229–2235 (2007).MathSciNetCrossRef
13.
go back to reference Ding K., Ding C.: A class of two-weight and three-weight codes and their applications in secret sharing. IEEE Trans. Inform. Theory 61(11), 5835–5842 (2015).MathSciNetCrossRef Ding K., Ding C.: A class of two-weight and three-weight codes and their applications in secret sharing. IEEE Trans. Inform. Theory 61(11), 5835–5842 (2015).MathSciNetCrossRef
14.
go back to reference Dougherty S.T., Gaborit P., Harada M., Munemasa A., Solé P.: Type IV self-dual codes over rings. IEEE Trans. Inform. Theory 45(7), 2345–2360 (1999).MathSciNetCrossRef Dougherty S.T., Gaborit P., Harada M., Munemasa A., Solé P.: Type IV self-dual codes over rings. IEEE Trans. Inform. Theory 45(7), 2345–2360 (1999).MathSciNetCrossRef
15.
go back to reference Dougherty S.T., Gaborit P., Harada M., Solé P.: Type II Codes Over \({\mathbb{F} }_2 + u{\mathbb{F} }_2\). IEEE Trans. Inform. Theory 45(1), 32–45 (1999).MathSciNetCrossRef Dougherty S.T., Gaborit P., Harada M., Solé P.: Type II Codes Over \({\mathbb{F} }_2 + u{\mathbb{F} }_2\). IEEE Trans. Inform. Theory 45(1), 32–45 (1999).MathSciNetCrossRef
16.
go back to reference Du Z., Li C., Mesnager S.: Constructions of self-orthogonal codes from hulls of BCH codes and their parameters. IEEE Trans. Inform. Theory 66(11), 6774–6785 (2020).MathSciNetCrossRef Du Z., Li C., Mesnager S.: Constructions of self-orthogonal codes from hulls of BCH codes and their parameters. IEEE Trans. Inform. Theory 66(11), 6774–6785 (2020).MathSciNetCrossRef
18.
go back to reference Gan C., Li C., Mesnager S., Qian H.: On hulls of some primitive BCH codes and self-orthogonal codes. IEEE Trans. Inform. Theory 67(10), 6442–6455 (2021).MathSciNetCrossRef Gan C., Li C., Mesnager S., Qian H.: On hulls of some primitive BCH codes and self-orthogonal codes. IEEE Trans. Inform. Theory 67(10), 6442–6455 (2021).MathSciNetCrossRef
21.
go back to reference Hammons A.R., Kumar P.V., Calderbank A.R., Sloane N.J., Solé P.: The \({\mathbb{Z} }_4\)-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inform. Theory 40(2), 301–319 (1994).MathSciNetCrossRef Hammons A.R., Kumar P.V., Calderbank A.R., Sloane N.J., Solé P.: The \({\mathbb{Z} }_4\)-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inform. Theory 40(2), 301–319 (1994).MathSciNetCrossRef
22.
go back to reference Hyun J.Y., Kim H.K., Wu Y., Yue Q.: Optimal minimal linear codes from posets. Des. Codes Cryptogr. 88(12), 2475–2492 (2020).MathSciNetCrossRef Hyun J.Y., Kim H.K., Wu Y., Yue Q.: Optimal minimal linear codes from posets. Des. Codes Cryptogr. 88(12), 2475–2492 (2020).MathSciNetCrossRef
23.
go back to reference Hyun J.Y., Lee J., Lee Y.: Infinite families of optimal linear codes constructed from simplicial complexes. IEEE Trans. Inform. Theory 66(11), 6762–6775 (2020).MathSciNetCrossRef Hyun J.Y., Lee J., Lee Y.: Infinite families of optimal linear codes constructed from simplicial complexes. IEEE Trans. Inform. Theory 66(11), 6762–6775 (2020).MathSciNetCrossRef
24.
go back to reference Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).CrossRef Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).CrossRef
25.
go back to reference Kim J.L., Ohk D.E.: DNA codes over two noncommutative rings of order four. J. Appl. Math. Comput. 68(3), 2015–2038 (2022).MathSciNetCrossRef Kim J.L., Ohk D.E.: DNA codes over two noncommutative rings of order four. J. Appl. Math. Comput. 68(3), 2015–2038 (2022).MathSciNetCrossRef
27.
28.
29.
go back to reference MacWilliams F.J., Sloane J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977). MacWilliams F.J., Sloane J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977).
30.
go back to reference Massey J.L.: Minimal codewords and secret sharing. In: Proceedings of the 6th Joint Swedish-Russian International Workshop on Information Theory, pp. 276–279 (1993) Massey J.L.: Minimal codewords and secret sharing. In: Proceedings of the 6th Joint Swedish-Russian International Workshop on Information Theory, pp. 276–279 (1993)
33.
go back to reference Sagar V., Sarma R.: Codes over the non-unital non-commutative ring \(E\) using simplicial complexes. (2023). arXiv preprint arXiv:2304.06758. Sagar V., Sarma R.: Codes over the non-unital non-commutative ring \(E\) using simplicial complexes. (2023). arXiv preprint arXiv:​2304.​06758.
34.
go back to reference Shi M., Li X.: A new family of optimal binary few-weight codes from simplicial complexes. IEEE Commun. Lett. 25(4), 1048–1051 (2021).CrossRef Shi M., Li X.: A new family of optimal binary few-weight codes from simplicial complexes. IEEE Commun. Lett. 25(4), 1048–1051 (2021).CrossRef
35.
go back to reference Shi M., Li X.: Few-weight codes over a non-chain ring associated with simplicial complexes and their distance optimal Gray image. Finite Fields Appl. 80, 101994 (2022).MathSciNetCrossRef Shi M., Li X.: Few-weight codes over a non-chain ring associated with simplicial complexes and their distance optimal Gray image. Finite Fields Appl. 80, 101994 (2022).MathSciNetCrossRef
36.
go back to reference Shi M., Li X.: New classes of binary few weight codes from trace codes over a chain ring. J. Appl. Math. Comput. 68(3), 1869–1880 (2022).MathSciNetCrossRef Shi M., Li X.: New classes of binary few weight codes from trace codes over a chain ring. J. Appl. Math. Comput. 68(3), 1869–1880 (2022).MathSciNetCrossRef
37.
go back to reference Shi M., Guan Y., Wang C., Solé P.: Few-weight codes from trace codes over \(R_k\). Bull. Aust. Math. Soc. 98(1), 167–174 (2018).MathSciNetCrossRef Shi M., Guan Y., Wang C., Solé P.: Few-weight codes from trace codes over \(R_k\). Bull. Aust. Math. Soc. 98(1), 167–174 (2018).MathSciNetCrossRef
40.
go back to reference Shi M., Xuan W., Solé P.: Two families of two-weight codes over \({\mathbb{F} }_4\). Des. Codes Cryptogr. 88(12), 2493–2505 (2020).MathSciNetCrossRef Shi M., Xuan W., Solé P.: Two families of two-weight codes over \({\mathbb{F} }_4\). Des. Codes Cryptogr. 88(12), 2493–2505 (2020).MathSciNetCrossRef
42.
go back to reference Wang S., Shi M.: Few-weight \({\varvec {{{\mathbb{Z} }}}} _p \varvec {{{\mathbb{Z} }}} _p [u]\)-additive codes from down-sets. J. Appl. Math. Comput. 68(4), 2381–2388 (2022).MathSciNetCrossRef Wang S., Shi M.: Few-weight \({\varvec {{{\mathbb{Z} }}}} _p \varvec {{{\mathbb{Z} }}} _p [u]\)-additive codes from down-sets. J. Appl. Math. Comput. 68(4), 2381–2388 (2022).MathSciNetCrossRef
43.
go back to reference Wu Y., Lee Y.: Binary LCD codes and self-orthogonal codes via simplicial complexes. IEEE Commun. Lett. 24(6), 1159–1162 (2020).CrossRef Wu Y., Lee Y.: Binary LCD codes and self-orthogonal codes via simplicial complexes. IEEE Commun. Lett. 24(6), 1159–1162 (2020).CrossRef
44.
go back to reference Wu Y., Lee Y.: Self-orthogonal codes constructed from posets and their applications in quantum communication. Mathematics 8(9), 1495 (2020).CrossRef Wu Y., Lee Y.: Self-orthogonal codes constructed from posets and their applications in quantum communication. Mathematics 8(9), 1495 (2020).CrossRef
45.
go back to reference Wu Y., Li C., Xiao F.: Quaternary linear codes and related binary subfield codes. IEEE Trans. Inform. Theory 68(5), 3070–3080 (2022).MathSciNetCrossRef Wu Y., Li C., Xiao F.: Quaternary linear codes and related binary subfield codes. IEEE Trans. Inform. Theory 68(5), 3070–3080 (2022).MathSciNetCrossRef
46.
go back to reference Wu Y., Zhu X., Yue Q.: Optimal few-weight codes from simplicial complexes. IEEE Trans. Inform. Theory 66(6), 3657–3663 (2020).MathSciNetCrossRef Wu Y., Zhu X., Yue Q.: Optimal few-weight codes from simplicial complexes. IEEE Trans. Inform. Theory 66(6), 3657–3663 (2020).MathSciNetCrossRef
47.
go back to reference Yuan J., Ding C.: Secret sharing schemes from three classes of linear codes. IEEE Trans. Inform. Theory 52(1), 206–212 (2006).MathSciNetCrossRef Yuan J., Ding C.: Secret sharing schemes from three classes of linear codes. IEEE Trans. Inform. Theory 52(1), 206–212 (2006).MathSciNetCrossRef
48.
go back to reference Zhou Z., Li X., Tang C., Ding C.: Binary LCD codes and self-orthogonal codes from a generic construction. IEEE Trans. Inform. Theory 65(1), 16–27 (2018).MathSciNetCrossRef Zhou Z., Li X., Tang C., Ding C.: Binary LCD codes and self-orthogonal codes from a generic construction. IEEE Trans. Inform. Theory 65(1), 16–27 (2018).MathSciNetCrossRef
49.
Metadata
Title
Minimal and optimal binary codes obtained using -construction over the non-unital ring I
Authors
Vidya Sagar
Ritumoni Sarma
Publication date
12-10-2023
Publisher
Springer US
Published in
Designs, Codes and Cryptography / Issue 1/2024
Print ISSN: 0925-1022
Electronic ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-023-01299-1

Other articles of this Issue 1/2024

Designs, Codes and Cryptography 1/2024 Go to the issue

Premium Partner