Skip to main content
Top
Published in: Programming and Computer Software 2/2020

01-03-2020

Minimal Representations and Algebraic Relations for Single Nested Products

Author: Carsten Schneider

Published in: Programming and Computer Software | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recently, it has been shown constructively how a finite set of hypergeometric products, multibasic hypergeometric products or their mixed versions can be modeled properly in the setting of formal difference rings. Here special emphasis is put on robust constructions: whenever further products have to be considered, one can reuse –up to some mild modifications – the already existing difference ring. In this article we relax this robustness criteria and seek for another form of optimality. We will elaborate a general framework to represent a finite set of products in a formal difference ring where the number of transcendental product generators is minimal. As a bonus we are able to describe explicitly all relations among the given input products.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
For \(1 \leqslant i \leqslant r\) we assume that \({{f}_{i}}(k) \ne 0\) for all \(k \in \mathbb{N} = {\text{\{ }}0,1,2, \ldots {\text{\} }}\) with \(k \geqslant {{l}_{i}}\).
 
2
We assume that \(\mathbb{F}\) can be embedded into the ring of sequences.
 
3
In this example the evaluation of an element from \(\mathbb{Q}(i)(x)\) is carried out by replacing x with concrete values \(n \in \mathbb{N}\). Later we will generalize this simplest case to formal difference rings equipped with an evaluation function acting on the ring elements.
 
4
More generally, if R is a commutative ring with 1, we define the ideal I generated by \({{a}_{1}}, \ldots ,{{a}_{r}} \in R\) with I = \({{\langle {{a}_{1}}, \ldots ,{{a}_{r}}\rangle }_{R}}\) = \({\text{\{ }}{{f}_{1}}{{a}_{1}} + \ldots + {{f}_{r}}{{a}_{r}}|{{f}_{1}}, \ldots ,{{f}_{r}} \in R{\text{\} }}\).
 
5
Throughout this article, all rings and fields have characteristic 0 and with \(\mathbb{A}{\text{*}}\) we denote the group of units. Furthermore, all rings are commutative. The order of \(a \in \mathbb{A}{\text{*}}\), denoted by \({\text{ord}}(a)\), is the smallest positive integer k with ak = 1. If such a k does not exist, we set \({\text{ord}}(a) = 0\).
 
6
Note that \(\widehat {{\text{ev}}}({{\hat {x}}_{i}},n) \ne 0\) for all \(n \geqslant {{l}_{i}}\) by part (1) of Lemma 6.
 
7
To fulfill the property \({{f}_{i}} \in \mathbb{F}{\text{*}}\), the variables \({{q}_{1}} \ldots ,{{q}_{{v}}}\) and \({{y}_{1}}, \ldots ,{{y}_{{v}}}\) and the field below \(\mathbb{K}'\) have to be set up accordingly.
 
8
Note that generators \({{\hat {x}}_{i}}\) in \(\mathbb{E}\) represent products with no extra properties: in particular, all algebraic relations induced by their sequence evaluations are ignored.
 
9
Note that by Proposition 43 given below a difference ring generated by a finite set of R-monomials \(z_{1}^{'}, \ldots ,z_{l}^{'}\) is isomorphic to a difference ring generated by only one R-monomial z with ord(z) = \({\text{lcm}}({\text{ord}}(z_{1}^{'}), \ldots ,{\text{ord}}(z_{l}^{'})) = {\text{ord}}(z_{1}^{'}) \ldots {\text{ord}}(z_{l}^{'})\). Hence claiming that the order \(d = {\text{ord}}(z)\) is optimal means that among all solutions of Problem DR (\(\lambda \) need not to be surjective) in a difference ring with the A-monomials \(z_{1}^{'}, \ldots ,z_{l}^{'}\) the order d of z is smaller or equal to \({\text{ord}}(z_{1}^{'}) \ldots {\text{ord}}(z_{l}^{'})\).
 
10
In order to fit the specification in Problem DR, we set \({{t}_{1}}: = {{x}_{3}}\) and \({{t}_{2}}: = {{x}_{4}}\) and \({{z}_{1}}: = z\).
 
11
If the set R = {λ ∈ (constσ\(\mathbb{F}\))* | λm = 1)} is contained in an algebraic number field, it is finite. In particular, if there is a primitive mth root of unity λ ∈ R, then R = {λi | 0 ≤ i < m}.
 
12
Note that the quotient field of E is H. In particular, \((\mathbb{H},\sigma )\) is a sub-difference ring of \((\mathbb{E},\sigma )\).
 
13
If m is minimal with am\({{H}_{{(\mathbb{F},\sigma )}}}\), ρ is a primitive mth root of unity. In particular, if R is contained in an algebraic number field, we can choose any primitive mth root of unity λ ∈ \(\mathbb{K}{\text{*}}\) and can set λi = λi and u = m to get R. Furthermore, one only has to loop through all i with ord(λi) = m (i.e., with gcd(i, m) = 1) to discover ρ = λi for some i.
 
14
In [18] this representation is also called σ-representation. Its existence can be derived from the statements (1) and (2) of Lemma 31.
 
15
The proof is based on Karr’s summation algorithm [18] and Ge’s algorithm [15]. For the rational and q-rational case we refer also to [5].
 
16
Note that Fx〉 is a p.i.d. which implies this statement. For completeness we carry out the proof explicitly.
 
17
Since ord(\({{z}^{{{{d}_{u}} - {{\nu }_{i}}}}}\)) = di, it follows that \({{z}^{{{{d}_{u}} - {{\nu }_{i}}}}}\) = \({{z}^{{{{n}_{i}}\frac{{{{d}_{u}}}}{{{{d}_{i}}}}}}}\) for some ni ∈ \(\mathbb{N}\) with 1 ≤ ni < d and gcd(ni, di) = 1.
 
18
Note that all the requirements of Assumption 28 except item (5) are needed.
 
19
For (63) we will require that mi ≠ 0. Thus we allow mi = ord(zi) instead of mi = 0.
 
20
So far it was sufficient in our applications to use the standard algorithm (see, e.g. [12]) based on column and row reductions to calculate the Smith Normal form for integer matrices. For faster algorithms we refer to [30,45]. For an excellent survey on the available strategies see also [14].
 
21
This means that the RΠ-extension \((\mathbb{H}',\sigma )\) of the difference field \((\mathbb{F},\sigma )\) has the form \(\mathbb{H}'\)=\(\mathbb{F}\langle {{y}_{1}}\rangle \ldots \langle {{y}_{e}}\rangle [{{z}_{1}}] \ldots [{{z}_{l}}]\) with \(\frac{{\sigma ({{y}_{i}})}}{{{{y}_{i}}}} \in \mathbb{F}\langle {{y}_{i}}\rangle \ldots \langle {{y}_{{i - 1}}}\rangle {\text{*}}\) for 1 ≤ ie and \(\frac{{\sigma ({{z}_{i}})}}{{{{z}_{i}}}} \in \mathbb{K}{\text{*}}\) for 1 ≤ il.
 
Literature
1.
go back to reference Ablinger, J., Behring, A., Blümlein, J., Freitas, A.D., von Manteuffel, A., and Schneider, C., Calculating three loop ladder and V-topologies for massive operator matrix elements by computer algebra, Comput. Phys. Comm., 2016, vol. 202, pp. 33–112. arXiv:1509.08324 [hep-ph]. Ablinger, J., Behring, A., Blümlein, J., Freitas, A.D., von Manteuffel, A., and Schneider, C., Calculating three loop ladder and V-topologies for massive operator matrix elements by computer algebra, Comput. Phys. Comm., 2016, vol. 202, pp. 33–112. arXiv:1509.08324 [hep-ph].
2.
go back to reference Ablinger, J., Blümlein, J., Freitas, A.D., Goedicke, A., Schneider, C., and Schönwald, K., The two-mass contribution to the three-loop gluonic operator matrix element \(A_{{gg,Q}}^{{(3)}}\), Nucl. Phys. B, 2018, vol. 932, pp. 129–240. arXiv:1804.02226 [hep-ph]. Ablinger, J., Blümlein, J., Freitas, A.D., Goedicke, A., Schneider, C., and Schönwald, K., The two-mass contribution to the three-loop gluonic operator matrix element \(A_{{gg,Q}}^{{(3)}}\), Nucl. Phys. B, 2018, vol. 932, pp. 129–240. arXiv:1804.02226 [hep-ph].
3.
go back to reference Abramov, S.A., On the summation of rational functions, Zh. Vychisl. Mat. Fiz., 1971, vol. 11, pp. 1071–1074.MathSciNetMATH Abramov, S.A., On the summation of rational functions, Zh. Vychisl. Mat. Fiz., 1971, vol. 11, pp. 1071–1074.MathSciNetMATH
4.
go back to reference Abramov, S.A., The rational component of the solution of a first-order linear recurrence relation with a rational right-hand side, USSR Comput. Math. Math. Phys., 1975, vol. 15, pp. 216–221.MathSciNetCrossRef Abramov, S.A., The rational component of the solution of a first-order linear recurrence relation with a rational right-hand side, USSR Comput. Math. Math. Phys., 1975, vol. 15, pp. 216–221.MathSciNetCrossRef
5.
go back to reference Abramov, S.A., Rational solutions of linear differential and difference equations with polynomial coefficients, USSR Comput. Math. Math. Phys., 1989, vol. 29, no. 6, pp. 7–12.MathSciNetCrossRef Abramov, S.A., Rational solutions of linear differential and difference equations with polynomial coefficients, USSR Comput. Math. Math. Phys., 1989, vol. 29, no. 6, pp. 7–12.MathSciNetCrossRef
6.
go back to reference Abramov, S.A. and Petkovšek, M., Polynomial ring automorphisms, rational \((w,\sigma )\)-canonical forms, and the assignment problem, J. Symb. Comput., 2010, vol. 45, no. 6, pp. 684–708.CrossRef Abramov, S.A. and Petkovšek, M., Polynomial ring automorphisms, rational \((w,\sigma )\)-canonical forms, and the assignment problem, J. Symb. Comput., 2010, vol. 45, no. 6, pp. 684–708.CrossRef
7.
go back to reference Apagodu M. and Zeilberger, D., Multi-variable Zeilberger and Almkvist-Zeilberger algorithms and the sharpening of Wilf-Zeilberger theory, Adv. Appl. Math., 2006, vol. 37, pp. 139–152.MathSciNetCrossRef Apagodu M. and Zeilberger, D., Multi-variable Zeilberger and Almkvist-Zeilberger algorithms and the sharpening of Wilf-Zeilberger theory, Adv. Appl. Math., 2006, vol. 37, pp. 139–152.MathSciNetCrossRef
8.
go back to reference Bauer A. and Petkovšek, M., Multibasic and mixed hypergeometric Gosper-type algorithms, J. Symb. Comput., 1999, vol. 28, no. 4–5, pp. 711–736.MathSciNetCrossRef Bauer A. and Petkovšek, M., Multibasic and mixed hypergeometric Gosper-type algorithms, J. Symb. Comput., 1999, vol. 28, no. 4–5, pp. 711–736.MathSciNetCrossRef
9.
go back to reference Bronstein, M., On solutions of linear ordinary difference equations in their coefficient field, J. Symb. Comput., 2000, vol. 29, no. 6, pp. 841–877.MathSciNetCrossRef Bronstein, M., On solutions of linear ordinary difference equations in their coefficient field, J. Symb. Comput., 2000, vol. 29, no. 6, pp. 841–877.MathSciNetCrossRef
10.
go back to reference Chen, S. and Kauers, M., Order-degree curves for hypergeometric creative telescoping, in Proc. ISSAC 2012, van der Hoeven, J. and van Hoeij, M., Eds., 2012, pp. 122–129. Chen, S. and Kauers, M., Order-degree curves for hypergeometric creative telescoping, in Proc. ISSAC 2012, van der Hoeven, J. and van Hoeij, M., Eds., 2012, pp. 122–129.
11.
go back to reference Chyzak, F., An extension of Zeilberger’s fast algorithm to general holonomic functions, Discrete Math., 2000, vol. 217, pp. 115–134.MathSciNetCrossRef Chyzak, F., An extension of Zeilberger’s fast algorithm to general holonomic functions, Discrete Math., 2000, vol. 217, pp. 115–134.MathSciNetCrossRef
12.
go back to reference Cohn, P.M., Algebra, 2nd ed., John Wiley & Sons, 1989, vol. 2.MATH Cohn, P.M., Algebra, 2nd ed., John Wiley & Sons, 1989, vol. 2.MATH
13.
14.
go back to reference Elsheikh, M., Giesbrecht, M., Novocin, A., and Saunders, B.D., Fast computation of Smith forms of sparse matrices over local rings, in Proc. ISSAC 2012, New York: ACM, 2012, pp. 146–153. Elsheikh, M., Giesbrecht, M., Novocin, A., and Saunders, B.D., Fast computation of Smith forms of sparse matrices over local rings, in Proc. ISSAC 2012, New York: ACM, 2012, pp. 146–153.
15.
go back to reference Ge, G., Algorithms related to the multiplicative representation of algebraic numbers, PhD Thesis, Univ. of California at Berkeley, 1993. Ge, G., Algorithms related to the multiplicative representation of algebraic numbers, PhD Thesis, Univ. of California at Berkeley, 1993.
16.
go back to reference Gosper, R.W., Decision procedures for indefinite hypergeometric summation, Proc. Nat. Acad. Sci. USA, 1978, vol. 75, pp. 40–42.MathSciNetCrossRef Gosper, R.W., Decision procedures for indefinite hypergeometric summation, Proc. Nat. Acad. Sci. USA, 1978, vol. 75, pp. 40–42.MathSciNetCrossRef
17.
go back to reference Hardouin, C. and Singer, M., Differential Galois theory of linear difference equations, Math. Ann., 2008, vol. 342, no. 2, pp. 333–377.MathSciNetCrossRef Hardouin, C. and Singer, M., Differential Galois theory of linear difference equations, Math. Ann., 2008, vol. 342, no. 2, pp. 333–377.MathSciNetCrossRef
20.
go back to reference Kauers, M. and Zimmermann, B., Computing the algebraic relations of c-finite sequences and multisequences, J. Symb. Comput., 2008, vol. 43, no. 11, pp. 787–803.MathSciNetCrossRef Kauers, M. and Zimmermann, B., Computing the algebraic relations of c-finite sequences and multisequences, J. Symb. Comput., 2008, vol. 43, no. 11, pp. 787–803.MathSciNetCrossRef
21.
go back to reference Koutschan, C., Creative telescoping for holonomic functions, in Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions, Schneider, C. and Blümlein, J., Eds., Springer, 2013, pp. 171–194. arXiv:1307.4554 [cs.SC]. Koutschan, C., Creative telescoping for holonomic functions, in Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions, Schneider, C. and Blümlein, J., Eds., Springer, 2013, pp. 171–194. arXiv:1307.4554 [cs.SC].
22.
go back to reference Nemes, I. and Paule, P., A canonical form guide to symbolic summation, in Advances in the Design of Symbolic Computation Systems, Miola, A. and Temperini, M., Eds., Wien-New York: Springer, 1997, pp. 84–110.MATH Nemes, I. and Paule, P., A canonical form guide to symbolic summation, in Advances in the Design of Symbolic Computation Systems, Miola, A. and Temperini, M., Eds., Wien-New York: Springer, 1997, pp. 84–110.MATH
23.
go back to reference Ocansey, E.D. and Schneider, C. Representing (q-)hypergeometric products and mixed versions in difference rings, in Springer Proceedings in Mathematics and Statistics, vol 226: Advances in Computer Algebra. WWCA 2016, Schneider, C. and Zima, E., Eds., Springer, 2018, pp. 175–213. Ocansey, E.D. and Schneider, C. Representing (q-)hypergeometric products and mixed versions in difference rings, in Springer Proceedings in Mathematics and Statistics, vol 226: Advances in Computer Algebra. WWCA 2016, Schneider, C. and Zima, E., Eds., Springer, 2018, pp. 175–213.
24.
go back to reference Ocansey, E.D., Difference ring algorithms for nested products, PhD Thesis, RISC, J. Kepler Univ., 2019. Ocansey, E.D., Difference ring algorithms for nested products, PhD Thesis, RISC, J. Kepler Univ., 2019.
25.
go back to reference Paule, P., Greatest factorial factorization and symbolic summation, J. Symb. Comput., 1995, vol. 20, no. 3, pp. 235–268.MathSciNetCrossRef Paule, P., Greatest factorial factorization and symbolic summation, J. Symb. Comput., 1995, vol. 20, no. 3, pp. 235–268.MathSciNetCrossRef
26.
go back to reference Paule, P. and Riese, A., A Mathematica q-analogue of Zeilberger’s algorithm based on an algebraically motivated approach to q-hypergeometric telescoping, in Special Functions, q-Series and Related Topics, Ismail, M. and Rahman, M., Eds., AMS, 1997, vol. 14, pp. 179–210.MATH Paule, P. and Riese, A., A Mathematica q-analogue of Zeilberger’s algorithm based on an algebraically motivated approach to q-hypergeometric telescoping, in Special Functions, q-Series and Related Topics, Ismail, M. and Rahman, M., Eds., AMS, 1997, vol. 14, pp. 179–210.MATH
27.
go back to reference Paule, P. and Schorn, M., A Mathematica version of Zeilberger’s algorithm for proving binomial coefficient identities, J. Symb. Comput., 1995, vol. 20, no. 5-6, pp. 673–698.MathSciNetCrossRef Paule, P. and Schorn, M., A Mathematica version of Zeilberger’s algorithm for proving binomial coefficient identities, J. Symb. Comput., 1995, vol. 20, no. 5-6, pp. 673–698.MathSciNetCrossRef
28.
go back to reference Petkovšek, M., Wilf, H.S., and Zeilberger, D., \(A = B\), Peters, A.K., Eds., Wellesley, MA, 1996. Petkovšek, M., Wilf, H.S., and Zeilberger, D., \(A = B\), Peters, A.K., Eds., Wellesley, MA, 1996.
29.
go back to reference Chen, G.F.S., Feng, R., and Li, Z., On the structure of compatible rational functions, in Proc. ISSAC 2011, San Jose, 2011, pp. 91–98. Chen, G.F.S., Feng, R., and Li, Z., On the structure of compatible rational functions, in Proc. ISSAC 2011, San Jose, 2011, pp. 91–98.
30.
go back to reference Saunders, B.D. and Wan, Z., Smith normal form of dense integer matrices fast algorithms into practice, in Proc. ISSAC’04, Gutierrez, J., Ed., ACM Press, 2004, pp. 274–281. Saunders, B.D. and Wan, Z., Smith normal form of dense integer matrices fast algorithms into practice, in Proc. ISSAC’04, Gutierrez, J., Ed., ACM Press, 2004, pp. 274–281.
31.
go back to reference Schneider, C., Symbolic summation in difference fields, Technical Report 01-17, PhD Thesis, Linz: J. Kepler Univ., Nov. 2001. Schneider, C., Symbolic summation in difference fields, Technical Report 01-17, PhD Thesis, Linz: J. Kepler Univ., Nov. 2001.
32.
33.
go back to reference Schneider, C., Simplifying sums in \(\Pi \Sigma \)-extensions, J. Algebra Appl., 2007, vol. 6, no. 3, pp. 415–441.MathSciNetCrossRef Schneider, C., Simplifying sums in \(\Pi \Sigma \)-extensions, J. Algebra Appl., 2007, vol. 6, no. 3, pp. 415–441.MathSciNetCrossRef
34.
go back to reference Schneider, C., Symbolic summation assists combinatorics, Sém. Lothar. Combin., 2007, vol. 56, pp. 1–36, Article B56b. Schneider, C., Symbolic summation assists combinatorics, Sém. Lothar. Combin., 2007, vol. 56, pp. 1–36, Article B56b.
35.
go back to reference Schneider, C., A refined difference field theory for symbolic summation, J. Symb. Comput., 2008, vol. 43, no. 9, pp. 611–644. arXiv:0808.2543v1.MathSciNetCrossRef Schneider, C., A refined difference field theory for symbolic summation, J. Symb. Comput., 2008, vol. 43, no. 9, pp. 611–644. arXiv:0808.2543v1.MathSciNetCrossRef
36.
go back to reference Schneider, C., Parameterized telescoping proves algebraic independence of sums, Ann. Comb., 2010, vol. 14, pp. 533–552. arXiv:0808.2596. Schneider, C., Parameterized telescoping proves algebraic independence of sums, Ann. Comb., 2010, vol. 14, pp. 533–552. arXiv:0808.2596.
37.
go back to reference Schneider, C., Structural theorems for symbolic summation, Appl. Algebra Eng. Comm. Comput., 2010, vol. 21, no. 1, pp. 1–32.MathSciNetCrossRef Schneider, C., Structural theorems for symbolic summation, Appl. Algebra Eng. Comm. Comput., 2010, vol. 21, no. 1, pp. 1–32.MathSciNetCrossRef
38.
go back to reference Schneider, C., A symbolic summation approach to find optimal nested sum representations, in Clay Mathematics Proceedings, vol. 12: Motives, Quantum Field Theory, and Pseudodifferential Operators, Carey, A., Ellwood, D., Paycha, S., and Rosenberg, S., Eds., Am. Math. Soc., 2010, pp. 285–308. arXiv:0808.2543. Schneider, C., A symbolic summation approach to find optimal nested sum representations, in Clay Mathematics Proceedings, vol. 12: Motives, Quantum Field Theory, and Pseudodifferential Operators, Carey, A., Ellwood, D., Paycha, S., and Rosenberg, S., Eds., Am. Math. Soc., 2010, pp. 285–308. arXiv:0808.2543.
39.
go back to reference Schneider, C., A streamlined difference ring theory: indefinite nested sums, the alternating sign and the parameterized telescoping problem, in Proc. 15th Int. Symp. on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), Winkler, F., Negru, V., Ida, T., Jebelean, T., Petcu, D., Watt, S., and Zaharie, D., Eds., IEEE Computer Soc., 2014, pp. 26–33. arXiv:1412.2782v1 [cs.SC]. Schneider, C., A streamlined difference ring theory: indefinite nested sums, the alternating sign and the parameterized telescoping problem, in Proc. 15th Int. Symp. on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), Winkler, F., Negru, V., Ida, T., Jebelean, T., Petcu, D., Watt, S., and Zaharie, D., Eds., IEEE Computer Soc., 2014, pp. 26–33. arXiv:1412.2782v1 [cs.SC].
40.
go back to reference Schneider, C., Fast algorithms for refined parameterized telescoping in difference fields, in Computer Algebra and Polynomials, Guitierrez, M.W.J. and Schicho, J., Eds., Springer, 2015, pp. 157–191. arXiv:1307.7887 [cs.SC]. Schneider, C., Fast algorithms for refined parameterized telescoping in difference fields, in Computer Algebra and Polynomials, Guitierrez, M.W.J. and Schicho, J., Eds., Springer, 2015, pp. 157–191. arXiv:1307.7887 [cs.SC].
41.
go back to reference Schneider, C., A difference ring theory for symbolic summation, J. Symb. Comput., 2016, vol. 72, pp. 82–127. arXiv:1408.2776 [cs.SC].MathSciNetCrossRef Schneider, C., A difference ring theory for symbolic summation, J. Symb. Comput., 2016, vol. 72, pp. 82–127. arXiv:1408.2776 [cs.SC].MathSciNetCrossRef
42.
go back to reference Schneider, C., Summation theory II: characterizations of \(R\Pi \Sigma \)-extensions and algorithmic aspects, J. Symb. Comput., 2017, vol. 80, no. 3, pp. 616–664. arXiv:1603.04285 [cs.SC]. Schneider, C., Summation theory II: characterizations of \(R\Pi \Sigma \)-extensions and algorithmic aspects, J. Symb. Comput., 2017, vol. 80, no. 3, pp. 616–664. arXiv:1603.04285 [cs.SC].
43.
go back to reference Singer, M., Algebraic and algorithmic aspects of linear difference equations, in Mathematical Surveys and Monographs, vol. 211: Galois Theories of Linear Difference Equations: an Introduction, Hardouin, M.S.C. and Sauloy, J., Eds., AMS, 2016. Singer, M., Algebraic and algorithmic aspects of linear difference equations, in Mathematical Surveys and Monographs, vol. 211: Galois Theories of Linear Difference Equations: an Introduction, Hardouin, M.S.C. and Sauloy, J., Eds., AMS, 2016.
44.
go back to reference van der Put, M. and Singer, M., Galois Theory of Difference Equations, Berlin: Springer-Verlag, 1997.CrossRef van der Put, M. and Singer, M., Galois Theory of Difference Equations, Berlin: Springer-Verlag, 1997.CrossRef
45.
go back to reference Eberly, P.G.A.S.W., Giesbrecht, M., and Villard, G., Faster inversion and other black box matrix computations using efficient block projections, in Proc. ISSAC’07, Brown, C., Ed., ACM Press, 2007, pp. 143–150. Eberly, P.G.A.S.W., Giesbrecht, M., and Villard, G., Faster inversion and other black box matrix computations using efficient block projections, in Proc. ISSAC’07, Brown, C., Ed., ACM Press, 2007, pp. 143–150.
46.
go back to reference Wegschaider, K., Computer generated proofs of binomial multi-sum identities, Master’s Thesis, RISC, J. Kepler Univ., May 1997. Wegschaider, K., Computer generated proofs of binomial multi-sum identities, Master’s Thesis, RISC, J. Kepler Univ., May 1997.
47.
go back to reference Wilf, H. and Zeilberger, D., An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities, Invent. Math., 1992, vol. 108, pp. 575–633.MathSciNetCrossRef Wilf, H. and Zeilberger, D., An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities, Invent. Math., 1992, vol. 108, pp. 575–633.MathSciNetCrossRef
48.
go back to reference Zeilberger, D., A holonomic systems approach to special functions identities, J. Comput. Appl. Math., 1990, vol. 32, pp. 321–368.MathSciNetCrossRef Zeilberger, D., A holonomic systems approach to special functions identities, J. Comput. Appl. Math., 1990, vol. 32, pp. 321–368.MathSciNetCrossRef
Metadata
Title
Minimal Representations and Algebraic Relations for Single Nested Products
Author
Carsten Schneider
Publication date
01-03-2020
Publisher
Pleiades Publishing
Published in
Programming and Computer Software / Issue 2/2020
Print ISSN: 0361-7688
Electronic ISSN: 1608-3261
DOI
https://doi.org/10.1134/S0361768820020103

Other articles of this Issue 2/2020

Programming and Computer Software 2/2020 Go to the issue

Premium Partner