Skip to main content
Top
Published in: Evolutionary Intelligence 2/2021

13-06-2020 | Special Issue

Mining of multiple ailments correlated to diabetes mellitus

Authors: Shiva Shankar Reddy, Nilambar Sethi, R. Rajender

Published in: Evolutionary Intelligence | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Efficient and user friendly database technologies have enabled the digitization of information pertaining to the medical domain. This has not only eased the smooth record manipulation but also attracted man a researchers to explore certain challenges to solve through implementation of data mining tools and techniques. Among the nature of ailments, the information related to diabetes mellitus (DM) are found to be the maximally digitized. This has provided a challenging but buzzing platform for the researchers to do in-depth analysis and present modern edge solutions which can lead to early diagnosis of the fatal ailment. There arise numerous side-effects to a human body when it is affected by DM. These multiple ailments attack a human body with the direct or indirect influence of DM and it’s corresponding drug intake. Thus, there has been a demand for a generic scheme which can predict the likeliness of certain multiple ailments that a DM patient is supposed to be attacked by in near future. In this work, a suitable scheme has been proposed in the same direction. This scheme provides a viable platform where the probabilities of multiple ailments for a DM patient can be computed. The proposed scheme also provides the probabilities of occurrence of individual ailment as well as the probabilities of occurrence of certain combination of the ailments. Occurrence of three of the major ailment are being computed in this work. These are retinal disorder, kidney malfunction, and heart disease. A Fuzzy logic strategy has been used for matching several disease constraints and produce a decisive outcome. Certain number of novel heuristic functions are presented which take these outputs and provide a probabilistically accurate prediction of occurrences of the said ailments. Suitable experimental evaluation have been made with proper data inputs. The proposed scheme has also been compared with competent schemes. An overall rates of accuracy of 97% is calculated based on a k-fold cross validation performance metric.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Nilashi M, Bin Ibrahim O, Ahmadi H, Shahmoradi L (2017) An analytical method for diseases prediction using machine learning techniques. Comput Chem Eng 106:212–223CrossRef Nilashi M, Bin Ibrahim O, Ahmadi H, Shahmoradi L (2017) An analytical method for diseases prediction using machine learning techniques. Comput Chem Eng 106:212–223CrossRef
2.
go back to reference Weng C-H, Huang TC-K, Han R-P (2016) Disease prediction with different types of neural network classifiers. Telemat Inform 33(2):277–292CrossRef Weng C-H, Huang TC-K, Han R-P (2016) Disease prediction with different types of neural network classifiers. Telemat Inform 33(2):277–292CrossRef
3.
go back to reference Kanchan BD, Kishor MM (2016) Study of machine learning algorithms for special disease prediction using principal of component analysis. In: 2016 international conference on global trends in signal processing, information computing and communication (ICGTSPICC), pp 5–10 Kanchan BD, Kishor MM (2016) Study of machine learning algorithms for special disease prediction using principal of component analysis. In: 2016 international conference on global trends in signal processing, information computing and communication (ICGTSPICC), pp 5–10
4.
go back to reference Chen M, Hao Y, Hwang K, Wang L, Wang L (2017) Disease prediction by machine learning over big data from healthcare communities. IEEE Access 5:8869–8879CrossRef Chen M, Hao Y, Hwang K, Wang L, Wang L (2017) Disease prediction by machine learning over big data from healthcare communities. IEEE Access 5:8869–8879CrossRef
5.
go back to reference Singh YK, Sinha N, Singh SK (2017) Heart disease prediction system using random forest. In: Singh M, Gupta P, Tyagi V, Sharma A, Ören T, Grosky W (eds) Advances in computing and data sciences. Springer, Singapore, pp 613–623CrossRef Singh YK, Sinha N, Singh SK (2017) Heart disease prediction system using random forest. In: Singh M, Gupta P, Tyagi V, Sharma A, Ören T, Grosky W (eds) Advances in computing and data sciences. Springer, Singapore, pp 613–623CrossRef
6.
go back to reference Kaundal R, Kapoor AS, Raghava GP (2006) Machine learning techniques in disease forecasting: a case study on rice blast prediction. BMC Bioinform 7(1):485CrossRef Kaundal R, Kapoor AS, Raghava GP (2006) Machine learning techniques in disease forecasting: a case study on rice blast prediction. BMC Bioinform 7(1):485CrossRef
7.
go back to reference Franklin SW, Rajan SE (2014) Diagnosis of diabetic retinopathy by employing image processing technique to detect exudates in retinal images. IET Image Process 8:601–609CrossRef Franklin SW, Rajan SE (2014) Diagnosis of diabetic retinopathy by employing image processing technique to detect exudates in retinal images. IET Image Process 8:601–609CrossRef
9.
go back to reference Zhou L, Zhao Y, Yang J, Yu Q, Xu X (2018) Deep multiple instance learning for automatic detection of diabetic retinopathy in retinal images. IET Image Process 12:563–571CrossRef Zhou L, Zhao Y, Yang J, Yu Q, Xu X (2018) Deep multiple instance learning for automatic detection of diabetic retinopathy in retinal images. IET Image Process 12:563–571CrossRef
10.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inform Process Syst 25:1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inform Process Syst 25:1097–1105
11.
go back to reference Sisodia D, Sisodia DS (2018) Prediction of diabetes using classification algorithms. Procedia Computer Science, international conference on computational intelligence and data science, vol 132, pp 1578–1585 Sisodia D, Sisodia DS (2018) Prediction of diabetes using classification algorithms. Procedia Computer Science, international conference on computational intelligence and data science, vol 132, pp 1578–1585
12.
go back to reference Sneha GTN (2019) Analysis of diabetes mellitus for early prediction using optimal features selection, Journal of Big Data, international Conference on Computational Intelligence and Data Science, vol 13 Sneha GTN (2019) Analysis of diabetes mellitus for early prediction using optimal features selection, Journal of Big Data, international Conference on Computational Intelligence and Data Science, vol 13
13.
go back to reference Sumathi A, Abiraami TT (2018) Prediction of heart disease complication for diabetic patient using data mining techniques. Int J Pure Appl Math 12:13869–13879 Sumathi A, Abiraami TT (2018) Prediction of heart disease complication for diabetic patient using data mining techniques. Int J Pure Appl Math 12:13869–13879
14.
go back to reference Sandham W, Lehmann E, Hamilton D, Sandilands M (2008) Simulating and predicting blood glucose levels for improved diabetes healthcare. In: IET conference proceedings, pp 121–121(1) Sandham W, Lehmann E, Hamilton D, Sandilands M (2008) Simulating and predicting blood glucose levels for improved diabetes healthcare. In: IET conference proceedings, pp 121–121(1)
15.
go back to reference Gadekallu TR, Gao X-Z (2018) An efficient attribute reduction and fuzzy logic classifier for heart disease and diabetes prediction. Recent Pat Comput Sci 11:1–8CrossRef Gadekallu TR, Gao X-Z (2018) An efficient attribute reduction and fuzzy logic classifier for heart disease and diabetes prediction. Recent Pat Comput Sci 11:1–8CrossRef
16.
go back to reference Julie L, Hu FB, Curhan GC (2010) Associations of diet with albuminuria and kidney function decline. Clin J Am Soc Nephrol 05(05):836–843CrossRef Julie L, Hu FB, Curhan GC (2010) Associations of diet with albuminuria and kidney function decline. Clin J Am Soc Nephrol 05(05):836–843CrossRef
17.
go back to reference Coresh J, Elizabeth S, Stevens LA, Jane M, Kusek JW, Paul E, Van Frederick L, Levey AS (2007) Prevalence of chronic kidney disease in the united states. JAMA 298(17):2038–2047CrossRef Coresh J, Elizabeth S, Stevens LA, Jane M, Kusek JW, Paul E, Van Frederick L, Levey AS (2007) Prevalence of chronic kidney disease in the united states. JAMA 298(17):2038–2047CrossRef
18.
go back to reference Wei Z (1990) Parallel distributed processing model with local space-invariant interconnections and its optical architecture. Appl Opt 29(32):4790–4797CrossRef Wei Z (1990) Parallel distributed processing model with local space-invariant interconnections and its optical architecture. Appl Opt 29(32):4790–4797CrossRef
19.
go back to reference Kunihiko F (1980) Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern 36(04):193–202CrossRef Kunihiko F (1980) Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern 36(04):193–202CrossRef
20.
go back to reference Sumathi A, Abiraami TT (2018) Prediction of heart disease complication for diabetic patient using data mining techniques. Int J Pure Appl Math 119:13869–13879 Sumathi A, Abiraami TT (2018) Prediction of heart disease complication for diabetic patient using data mining techniques. Int J Pure Appl Math 119:13869–13879
21.
go back to reference Kotsiantis S (2007) Supervised machine learning: a review of classification techniques. Informatica 31:249–268MathSciNetMATH Kotsiantis S (2007) Supervised machine learning: a review of classification techniques. Informatica 31:249–268MathSciNetMATH
23.
go back to reference Kalaiselvi C, Nasira GM (2015) Prediction of heart diseases and cancer in diabetic patients using data mining techniques. Indian J Sci Technol 8(14):1–3CrossRef Kalaiselvi C, Nasira GM (2015) Prediction of heart diseases and cancer in diabetic patients using data mining techniques. Indian J Sci Technol 8(14):1–3CrossRef
24.
go back to reference Kennedy J, Eberhart RC, Shi Y (2001) Chapter seven–The particle swarm. In: Kennedy J, Eberhart RC, Shi Y (eds) the morgan kaufmann series in artificial intelligence, Swarm Intelligence, Morgan Kaufmann, pp 287–325, ISBN 9781558605954. Kennedy J, Eberhart RC, Shi Y (2001) Chapter seven–The particle swarm. In: Kennedy J, Eberhart RC, Shi Y (eds) the morgan kaufmann series in artificial intelligence, Swarm Intelligence, Morgan Kaufmann, pp 287–325, ISBN 9781558605954.
25.
go back to reference Jang JS (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685CrossRef Jang JS (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685CrossRef
26.
go back to reference Parent Morin AM, Lavigne P (1992) Propagation of super-Gaussian field distributions. Opt Quantum Electron 24(9):S1071–S1079CrossRef Parent Morin AM, Lavigne P (1992) Propagation of super-Gaussian field distributions. Opt Quantum Electron 24(9):S1071–S1079CrossRef
27.
go back to reference Guo H (2011) A simple algorithm for fitting a gaussian function. IEEE Signal Process Mag 28(9):134–137CrossRef Guo H (2011) A simple algorithm for fitting a gaussian function. IEEE Signal Process Mag 28(9):134–137CrossRef
28.
go back to reference Hagen N, Kupinski M, Dereniak EL (2007) Gaussian profile estimation in one dimension. Appl Opt 46:5374–5383CrossRef Hagen N, Kupinski M, Dereniak EL (2007) Gaussian profile estimation in one dimension. Appl Opt 46:5374–5383CrossRef
29.
go back to reference Khan SA, Seemakurthi D, Jabbar DA (2018) Co-disease prediction using multileyer perceptron and classification from diabetic medical data sets. Int J Pure Appl Math 4(6):1–3 Khan SA, Seemakurthi D, Jabbar DA (2018) Co-disease prediction using multileyer perceptron and classification from diabetic medical data sets. Int J Pure Appl Math 4(6):1–3
Metadata
Title
Mining of multiple ailments correlated to diabetes mellitus
Authors
Shiva Shankar Reddy
Nilambar Sethi
R. Rajender
Publication date
13-06-2020
Publisher
Springer Berlin Heidelberg
Published in
Evolutionary Intelligence / Issue 2/2021
Print ISSN: 1864-5909
Electronic ISSN: 1864-5917
DOI
https://doi.org/10.1007/s12065-020-00432-6

Other articles of this Issue 2/2021

Evolutionary Intelligence 2/2021 Go to the issue

Premium Partner