Skip to main content
Top

2018 | OriginalPaper | Chapter

9. Miscellaneous Electrical Materials

Author : François Cardarelli

Published in: Materials Handbook

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter are described the properties of miscellaneous electrical materials including thermocouple materials, resistors and thermistors, and electrode materials used in batteries, fuel cells, supercapacitors, and industrial electrolyzers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Srinivasan, V.; Lipp, L. (2003) Report on the electrolytic industries for the year 2002. J. Electrochem. Soc., 150(12), K15–38.
 
2
Pletcher, D.; Walsh, F.C. (1990) Industrial Electrochemistry, 2nd ed. Chapman & Hall, London.
 
3
Kuhn, A.T. (1977) Electrochemistry of Lead. Academic, London.
 
4
Gonzalez-Dominguez, J.A.; Peters, E.; Dreisinger, D.B. (1991) The refining of lead by the Betts process. J. Appl. Electrochem., 21(3), 189–202.
 
5
Baizer, M.M.; Lund, H. (1983) Organic Electrochemistry: An Introduction and a Guide, 2nd ed. Marcel Dekker, New York.
 
6
Karavasteva, M.; Karaivanov, St. (1993) Electrowinning of zinc at high current density in the presence of some surfactants. J. Appl. Electrochem., 23(7), 763–765.
 
7
Hardee, K.L.; Mitchell, L.K.; Rudd, E.D. (1989) Plat. Surf. Finish., 76(4), 68.
 
8
Thompson, J.; Genders, D. (1992) Process for producing sodium hydroxide and ammonium sulfate from sodium sulfate. US Patent 5,098,532; March 24, 1992.
 
9
Pletcher, D.; Genders, J.D.; Weinberg, N.L.; Spiegel, E.F. (1993) Electrochemical methods for production of alkali metal hydroxides without the co-production of chlorine. US Patent 5,246,551; September 21, 1993.
 
10
Schneider, L. (1995) Process and apparatus for regenerating an aqueous solution containing metal ions and sulfuric acid. US Patent 5,478,448; December 26, 1995.
 
11
Genders, D.; Weinberg, N.L. (eds.) (1992) Electrochemistry for a Cleaner Environment. Electrosynthesis Co., Lancaster, NY.
 
12
Wendt, S.; Kreysa, G. (1999) Electrochemical Engineering. Springer, Berlin Heidelberg New York.
 
13
Pickett, D.J. (1979) Electrochemical Reactor Design. Elsevier, Amsterdam.
 
14
Rousar, I.; Micka, K.; Kimla, A. (1985) Electrochemical Engineering, Vols. 1 and 2. Elsevier, Amsterdam.
 
15
Hine, F. (1985) Electrode Processes and Electrochemical Engineering. Plenum, New York.
 
16
Couper, A.M.; Pletcher, D.; Walsh, F.C. (1990) Electrode materials for electrosynthesis. Chem. Rev., 90(5), 837–865.
 
17
Trasatti, S. In: Lipkowski, J.; Ross, P.N. (eds.) (1994) The Electrochemistry of Novel Materials. VCH, New York, Chap. 5, pp. 207–295.
 
18
La Conti, A.B.; Fragala, A.R.; Boyack, J.R. (1977) ECS Meeting, Philadelphia, May 1977.
 
19
Bishop, C.R.; Stern, M. (1961) Hydrogen embrittlement of tantalum in aqueous media. Corrosion, 17, 379t–385t.
 
20
Dreyman, E.W. (1972) Selection of anode materials. Eng. Exp. Stn. Bull. (West Virginia University), 106, 76–83.
 
21
Cailleret, L.; Collardeau, E. (1894) C.R. Acad. Sci., 830.
 
22
Howe, J.L. (ed.) (1949) Bibliography of the Platinum Metals 1931–1940. Baker, Newark, NJ.
 
23
Stevens, R.H. (1913) Platinum-plated tungsten electrode. US Patent 1,077,894; November 4, 1913.
 
24
Stevens, R.H. (1913) Iridium-plated tungsten electrode. US Patent 1,077,920; November 4, 1913.
 
25
Lunge, G.; Naville, J. (1878) Traité de la grande industrie chimique. Tome I: acide sulfurique et oléum. Masson & Cie, Paris.
 
26
Planté, G. (1859) Compt. Rend. Acad. Sci., 49, 221.
 
27
Metal Bulletin Weekly, May 8, 2006.
 
28
Greenwood, N.N.; Earnshaw, N. (1984) Chemistry of the Elements. Pergamon, Oxford, p. 435.
 
29
Beck, F. (1971) Lead dioxide-coated titanium anodes. German Patent 2,023,292; May 13, 1971.
 
30
Beck, F.; Csizi, G. (1971) Lead dioxide-titanium compound electrodes. German Patent 2,119,570; April 22, 1971.
 
31
Pavlov, D.; Rogachev, T. (1986) Mechanism of the action of silver and arsenic on the anodic corrosion of lead and oxygen evolution at the lead/lead oxide (PbO2−x)/water/oxygen/sulfuric acid electrode system. Electrochim. Acta., 31(2), 241–249.
 
32
De Nora, O. (1962) Anodes for use in the evolution of chlorine. British Patent 902,023; July 25, 1962.
 
33
Nidola, A. (1995) Technologie di cromatura galvanica a spessore. Rivista AIFM: Galvanotecnica e nuove finiture, 5, 203–218.
 
34
Brown, C.W.; Bishara, J.I.; Ernes, L.M.; Getsy, A.W.; Hardee, K.L.; Martin, B.L.; Pohto, G.R. (2002) Lead electrode structure having mesh surface. US Patent 6,352,622; March 5, 2002.
 
35
Moats, M.; Hardee, K.; Brown, Jr., C. (2003) Mesh-on-Lead anodes for copper electrowinning. JOM, 55(7), 46–48
 
36
Isfort, H. (1985) State of the art after 20 years experience with industrial hydrochloric acid electrolysis. DECHEMA Monographien, 98, 141–155.
 
37
Gardiner, W.C. (1946) Hydrochloric Acid Electrolysis at Wolfen. Field Information Agency, Technical (FIAT) Report No. 832, US Office of Military Government for Germany.
 
38
Gardiner, W.C. (1947) Hydrochloric acid electrolysis. Chem. Eng., 54(1), 100–101.
 
39
Holemann, H. (1962) The hydrochloric acid electrolysis. Chem. Ing. Techn., 34, 371–376.
 
40
Gallone, P.; Messner, G. (1965) Direct electrolysis of hydrochloric acid. Electrochem. Technol., 3(11–12), 321–326.
 
41
Messner, G. (1966) Cells for the production of chlorine from hydrochloric acid. US Patent 3,236,760; February 22, 1966.
 
42
Grosselfinger, F.B. (1964) New chlorine source: by-product hydrochloric acid. Chem. Eng., 71(19), 172–174.
 
43
Donges, E.; Janson, H.G. (1966) Chem. Ing. Techn., 38, 443.
 
44
Thangappan, R.; Nachippan, S.; Sampath, S. (1970) Lead dioxide-graphite electrode. Ind. Eng. Chem. Prod. Res. Dev., 9(4), 563–567.
 
45
Pohl, J.P.; Richert, H. (1980) In: Trasatti, S. (ed.) Electrodes of Conductive Metallic Oxides, Part A. Elsevier, Amsterdam, Chap. 4, pp. 183–220.
 
46
De Nora, O. (1962) Anodes for use in the evolution of chlorine. British Patent 902,023; July 25, 1962.
 
47
Kuhn, A.T. (1976) The electrochemical evolution of oxygen on lead dioxide anodes. Chemistry & Industry, 20, 867–871.
 
48
Grigger, J.C.; Miller, H.C.; Loomis, F.D. (1958) Lead dioxide anode for commercial use. J. Electrochem. Soc., 105, 100–102.
 
49
Engelhardt, V.; Huth, M. (1909) Electrolytic recovery of zinc. US Patent 935,250; September 28, 1909.
 
50
Gaunce, F.S. (1964) Treatment of lead or lead alloy electrodes. French Patent 1,419,356; November 26, 1964.
 
51
Higley, L.W.; Dressel, W.M.; Cole, E.R. (1976) U.S. Bureau of Mines, Report No. R8111.
 
52
Goodridge, F.; Lister, K.; Plimley, R.; Scott, K. (1980) Scale-up studies of the electrolytic reduction of oxalic to glyoxylic acid. J. Appl. Electrochem., 10(1), 55–60.
 
53
Huth, M. (1919) Anodes of solid manganese peroxide. US Patent 1,296,188; March 4, 1919.
 
54
Bennett, J.E.; O’Leary, K.J. (1973) Oxygen anodes. US Patent 3,775,284; November 27, 1973.
 
55
Ohzawa, K.; Shimizu, K.; Takasue, T. (1967) Insoluble electrode for electrolysis. US Patent 3,616,302; February 27, 1967.
 
56
Feige, N.G. (1974) Method for producing a coated anode. US Patent 3,855,084; December 17, 1974.
 
57
De Nora, O.; Nidola, O.; Spaziante, P.M. (1978) Manganese dioxide electrodes. US Patent 4,072,586; February 7, 1978.
 
58
Kuhn, A.T.; Wright, P.M. In: Kuhn, A.T. (ed.) (1971) Industrial Electrochemical Processes, Chap. 14. Elsevier, New York.
 
59
Matsumura, Takashi; Itai, R.; Shibuya, M.; Ishi, G. (1968) Electrolytic manufacture of sodium chlorate with magnetite anodes. Electrochem. Technol., 6(11–12), 402–404.
 
60
Itai, R.; Shibuya, M.; Matsumura, T.; Ishi, G. (1971) Electrical resistivity of magnetite anodes. J. Electrochem. Soc., 118(10), 1709–1711.
 
61
Hayes, M.; Kuhn, A.T. (1978) The preparation and behavior of magnetite anodes. J. Appl. Electrochem., 8(4), 327–332.
 
62
Hayfield, P.C.S. (1983) Electrode material, electrode and electrochemical cell. US Patent 4,422,917; December 27, 1983.
 
63
Baez, V.B.; Graves, J.E.; Pletcher, D. (1992) The reduction of oxygen on titanium oxide electrodes. J. Electroanal. Chem., 340(1–2), 273–86.
 
64
Graves, J.E.; Pletcher, D.; Clarke, R.L.; Walsch, F.C. (1991) The electrochemistry of Magneli phase titanium oxide ceramic electrodes. I. The deposition and properties of metal coatings. J. Appl. Electrochem., 21(10), 848–857.
 
65
Clarke, R.; Pardoe, R. (1992) Applications of ebonex conductive ceramics in effluent treatment. In: Genders, D.; Weinberg, N. (eds.) Electrochemistry for a Cleaner Environment. Electrosynthesis Company, Amherst, NY, pp. 349–363.
 
66
Andersson, S.; Collén, B.; Kuylienstierna, U.; Magnéli, A. (1957) Acta Chem. Scand., 11, 1641.
 
67
Farndon, E.E.; Pletcher, D.; Saraby-Reintjes, A. (1997) The electrodeposition of platinum onto a conducting ceramic, Ebonex. Electrochimica Acta, 42(8), 1269–1279.
 
68
Farndon, E.E.; Pletcher, D. (1997) Studies of platinized Ebonex electrodes. Electrochimica Acta, 42(8), 1281–1285.
 
69
Miller-Folk, R.R.; Noftle, R.E.; Pletcher, D. (1989) Electron transfer reactions at Ebonex ceramic electrodes. J. Electroanal. Chem., 274(1–2), 257–261.
 
70
Pollock, R.J.; Houlihan, J.F.; Bain, A.N.; Coryea, B.S. (1984) Electrochemical properties of a new electrode material, titanium oxide (Ti4O7). Mater. Res. Bull., 19(1), 17–24.
 
71
Park, S.-Y.; Mho, S.-I.; Chi, E.-O.; Kwon, Y.-U.; Yeo, I.-H. (1995) Characteristics of Ru and RuO2 thin films on the conductive ceramics TiO and Ebonex (Ti4O7). Bull. Kor. Chem. Soc., 16(2), 82–84.
 
72
Graves, J.E.; Pletcher, D.; Clarke, R.L.; Walsh, F.C. (1992) The electrochemistry of Magneli phase titanium oxide ceramic electrodes. II. Ozone generation at Ebonex and Ebonex/lead dioxide anodes. J. Appl. Electrochem., 22(3), 200–203.
 
73
Kroll, W.J. (1940) The production of ductile titanium. Trans. Electrochem. Soc., 112, 35–47.
 
74
Rhoda, R.N. (1952) Electroless palladium plating. Trans. Inst. Met. Finish., 36(3), 82–85.
 
75
Rosenblatt, E.F.; Cohn, J.G. (1955) Platinum-metal-coated tantalum anodes. US Patent 2,719,797; October 4, 1955.
 
76
Cotton, J.B. (1958) Anodic polarization of titanium. Chem. & Ind., 3, 492–493.
 
77
Cotton, J.B. (1958) The corrosion resistance of titanium. Chem. Ind., 3, 640–646.
 
78
Beer, H.B. (1960) Precious-metal anode with a titanium core. British Patent 855,107; November 11, 1960.
 
79
Cotton, J.B.; Williams, E.C.; Barber, A.H. (1957) Titanium electrodes plated with platinum-group metals for electrolytic processes and cathodic protection. Electrodes. British Patent 877,901; July 17, 1957.
 
80
Cotton, J.B. (1958) Platinum-faced titanium for electrochemical anodes. A new electrode material for impressed current cathodic protection. Platinum Metals Rev., 2, 45–47.
 
81
Haley, A.J.; Keith, C.D.; May, J.E. (1969) Two-layer metallic electrodes. US Patent 3,461,058.
 
82
May, J.E.; Haley, A.J. (1970) Electroplating with auxiliary platinum-coated tungsten anodes. US Patent 3,505,178; April 7, 1970.
 
83
Cotton, J.B.; Hayfield, P.C.S. (1965) Electrodes and methods of making same. British Patent 1,113,421; May 15, 1965.
 
84
Muller, P.; Speidel, H. (1960) New forms of platinum-tantalum electrodes. Metall. 14, 695–696.
 
85
Schleicher, H.W. (1963) Electrodes for electrolytic processes. British Patent 941,177; November 6, 1963.
 
86
Whiting, K.A. (1964) Cladding copper articles with niobium or tantalum and platinum outside. US Patent 3,156,976; November 17, 1964.
 
87
Balko, E.N. (1991) Electrochemical Applications of the Platinum Group: Metal Coated Anodes. In: Hartley, F.R. (ed.) Chemistry of the Platinum Group Metals: Recent Developments. Elsevier, New York.
 
88
Lowenheim, F.A. (1974) Modern Electroplating, 3rd ed. Wiley, New York.
 
89
Angell, C.H.; Deriaz, M.G. (1961) Improvements in or relating to a method for the production of assemblies comprising titanium. British Patent 885,819; December 28, 1961.
 
90
Angell, C.H.; Deriaz, M.G. (1965) Improvements in or relating to a method for the production of assemblies comprising titanium. British Patent 984,973; March 3, 1965.
 
91
Taylor, J.F. (1929) J. Opt. Soc. Am., 18, 138.
 
92
Hopper, R.T. (1923) Ceram. Ind. (June).
 
93
Kuo, C.Y. (1974) Electrical applications of thin-films produced by metallo-organic deposition. Solid State Technol. 17(2), 49–55.
 
94
Anderson, E.P. (1961) Method for preparing anodes for cathodic protection systems. US Patent 2,998,359; August 29, 1961.
 
95
Tirrel, C.E. (1964) Method for making non corroding electrode. US Patent 3,117,023; January 7, 1964.
 
96
Hayfield, P.C.S.; Jacob, W.R. (1980) In: Coulter, M.O. (ed.) Modern Chlor-Alkali Technology. Ellis Horwood, London, Chap. 9, pp. 103–120.
 
97
Millington, J.P. (1974) Lead dioxide electrode. British Patent 1,373,611; November 13, 1974.
 
98
May, J.E.; Haley, Jr., A.J. (1970) Electroplating with auxiliary platinum-coated tungsten anodes. US Patent 3,505,178; April 7, 1970.
 
99
Haley, Jr., A.J. (1967) Engelhard Ind. Tech. Bull., 7, 157.
 
100
Cotton, J.B.; Williams, E.C.; Barber, A.H. (1961) Improvements relating to electrodes and uses thereof. British Patent 877,901; September 20, 1961.
 
101
Anderson, E.P. (1961) Method for preparing anodes for cathodic protection systems. US Patent 2,998,359; August 29, 1961.
 
102
Adamson, A.F.; Lever, B.G.; Stones, W.F. (1963) J. Appl. Chem., 13, 483.
 
103
Ibl, N.; Kramer, R.; Ponto, L.; Robertson, P.M. (1979) Electroorganic Synthesis Technology. AIChE Symposium Series No. 185 75, 45.
 
104
Rakov, A.A.; Veselovskii, V.I.; Kasatkin, E.V.; Potapova, G.F.; Sviridon, V.V. (1977) Zh. Prikl. Khim. 50, 334.
 
105
Bianchi, G.; Gallone, P.; Nidola, A.E. (1970) Composite anodes. US Patent 3,491,014; January 20, 1970.
 
106
Beer, H.B. (1963) Noble metal coated titanium electrode and method for making and using it. US Patent 3,096,272; July 2, 1963.
 
107
Bianchi, G.; De Nora, V.; Gallone, P.; Nidola, A. (1971) Titanium or tantalum base electrodes with applied titanium or tantalum oxide face activated with noble metals or noble metal oxides. US Patent 3,616,445; October 26, 1971.
 
108
Bianchi, G.; De Nora, V.; Gallone, P.; Nidola, A. (1976) Valve metal electrode with valve metal oxide semi-conductive face. US Patent 3,948,751; April 6, 1976.
 
109
Beer, H.B. (1966) Electrode and method for making the same. US Patent 3,234,110; February 8, 1966.
 
110
Beer, H.B. (1966) Method of chemically plating base layers with precious metals of the platinum group. US Patent 3,265,526; August 9, 1966.
 
111
Beer, H.B. (1972) Electrode and coating therefor. US Patent 3,632,498; January 4, 1972.
 
112
Beer, H.B. (1973) Electrode having a platinum metal oxide. US Patent 3,711,385; January 13, 1973.
 
113
Beer, H.B. (1973) Electrode and coating therefor. US Patent 3,751,291; August 7, 1973.
 
114
Nidola, A. In: Trasatti, S. (ed.) (1981) Electrodes of Conductive Metallic Oxides. Part B. Elsevier, Amsterdam, Chap. 11, pp. 627–659.
 
115
Vercesi, G.P.; Rolewicz, J.; Comninellis, C.; Hinden, J. (1991) Characterization of dimensionally stable anodes DSA-type oxygen evolving electrodes. Choice of base metal. Thermochimica Acta, 176, 31–47.
 
116
Comninellis, Ch.; Vercesi, G.P. (1991) Characterization of DSA-type oxygen evolving electrodes: choice of a coating. J. Appl. Electrochem., 21(4), 335–345.
 
117
Gorodtskii, V.V.; Tomashpol’skii, Yu.Ya.; Gorbacheva, L.B.; Sadovskaya, N.V.; Percherkii, M.M.; Erdokimov, S.V.; Busse-Machukas, V.B.; Kubasov, V.L.; Losev, V.V. (1984) Elektrokhimiya, 20, 1045.
 
118
Beer, H.B. (1980) The invention and industrial development of metal anodes. J. Electrochem. Soc., 127, 303C–307C.
 
119
Miles, M.H.; Thomason, J. (1976) Periodic variations of overvoltages for water electrolysis in acid solutions from cyclic voltammetric studies. J. Electrochem. Soc., 123(10), 1459–1461.
 
120
Jasinski, R.; Brilmyer, G.; Helland, L. (1983) Stabilization of glassy carbon electrodes. J. Electrochem. Soc., 130(7), 1634.
 
121
Smith, C.G.; Okinaka, Y. (1983) High speed gold plating: anodic bath degradation and search for stable low polarization anodes. J. Electrochem. Soc., 130, 2149–2157.
 
122
Hampel, J. (1984) Process and apparatus for the continuous electroplating of one or both sides of a metal strip. US Patent 4,469,565; February 22, 1984.
 
123
Hine, F.; Yasuda, M.; Noda, T.; Yoshida, T.; Okuda, J. (1979) Electrochemical behavior of the oxide-coated metal anodes. J. Electrochem. Soc., 126(9), 1439–1445.
 
124
Manoharan, R.; Goodenough, J.B. (1991) Electrochim. Acta, 36, 19.
 
125
Yeo, R.S.; Orehotsky, J.; Visscher, W.; Srinivasan, S. (1981) Ruthenium-based mixed oxides as electrocatalysts for oxygen evolution in acid electrolytes. J. Electrochem. Soc., 128(9), 1900–1904.
 
126
De Nora, O.; Bianchi, G.; Nidola, A.; Trisoglio, G. (1975) Anode for evolution of oxygen. US Patent 3,878,083.
 
127
Comninellis, Ch.; Vercesi, G.P. (1991) Characterization of DSA-type oxygen evolving electrodes: choice of a coating. J. Appl. Electrochem., 21(4), 335–345.
 
128
Hardee, K.L.; Mitchell, L.K. (1989) The influence of electrolyte parameters on the percent oxygen evolved from a chlorate cell. J. Electrochem. Soc., 136(11), 3314–3318.
 
129
Kuznetzova, E.G.; Borisova, T.I.; Veselovskii, V.I. (1968) Elektrokhimiya 10, 167.
 
130
Warren, H.I., Wemsley, D., Seto, K. (1975) Inst. Min. Met. Branch Meeting, February 11, 1975, 53.
 
131
Seko, K. (1976) Am. Chem. Soc. Centennial Meeting, New York.
 
132
Antler, M.; Butler, C.A. (1967) J. Electrochem. Technol., 5, 126.
 
133
Hine, F.; Yasuda, M.; Yoshida, T.; Okuda, J. (1978) ECS Meeting, Seattle, May 15, Abstract 447.
 
134
Colo, Z.J.; Hardee, K.L.; Carlson, R.C. (1992) Molten salt stripping of electrode coatings. US Patent 5,141,563; August 25, 1992.
 
135
Fukuda, K.; Iwakura, C.; Tamura, H. (1980) Effect of heat treatment of titanium substrate on service life of titanium-supported iridia electrode in mixed aqueous solutions of sulfuric acid, ammonium sulfate, and ammonium fluoride. Electrochim. Acta, 25(11), 1523–1525.
 
136
Savall, A. (1992) Electrosynthèse organique. In: Électrochimie 92, L’Actualité Chimique, Special issue, January 1992.
 
137
Potgieter, J.H.; Heyns, A.M.; Skinner, W. (1990) Cathodic modification as a means of improving the corrosion resistance of alloys. J. Appl. Electrochem., 20(5), 711–15.
 
138
Cardarelli, F.; Comninellis, Ch.; Savall, A.; Taxil, P.; Manoli, G.; Leclerc, O. (1998) Preparation of oxygen evolving electrodes with long service life under extreme conditions. J. Appl. Electrochem., 28, 245.
 
139
Vercesi, G.P.; Rolewicz, J.; Comninellis, C.; Hinden, J. (1991) Characterization of dimensionally stable anodes DSA-type oxygen evolving electrodes. Choice of base metal. Thermochimica Acta, 176, 31–47.
 
140
Farbenfabriken Bayer Aktiengesellschaft (1968) French Patent 1,516,524.
 
141
Jeffes, J.H.E. (1974) Electrolysis of brine. British Patent 1,355,797; July 30, 1974.
 
142
Denton, D.A.; Hayfield, P.C.S. (1990) Coated anode for an electrolytic process. European Patent 383,412; August 22, 1990.
 
143
Kumagai, N.; Jikihara, S.; Samata, Y.; Asami, K.; Hashimoto, A.M. (1993) The effect of sputter-deposited Ta intermediate layer on durability of IrO2-coated Ti electrodes for oxygen evolution. In: Proceeding of the 183rd Joint International Meeting of the Electrochemical Society, 93–30 (Corrosion, Electrochemistry, and Catalysis of Metastable Metals and Intermetallics), Abstract 324–33, Honolulu, HI, May 16–21, 1993.
 
144
Cardarelli, F.; Taxil, P.; Savall, A. (1996) Tantalum protective thin coating techniques for the chemical process industry: molten salts electrocoating as a new alternative. Int. J. Refract. Metals Hard Mater., 14, 365.
 
145
Cardarelli, F.; Comninellis, C.; Leclerc, O.; Saval, A.; Taxil, P.; Manoli, G. (1997) Fabrication of an anode with enhanced durability and method for making the same. PCT International Patent Application WO 97/43465A1.
 
146
Swain, G.; Ramesham, R. (1993) The electrochemical activity of boron-doped polycrystalline diamond thin film electrodes. Anal. Chem., 65(4), 345–351.
 
147
Alehashem, S.; Chambers, F.; Strojek, J.W.; Swain, G.M.; Ramesham, R. (1995) New applications of diamond thin film technology in electro chemical systems. Anal. Chem., 67, 2812.
 
148
Angus, J.C.; Hayman, C.C. (1988) Low-pressure, metastable growth of diamond and “diamondlike” phases. Science 241, 913–921.
 
149
Argoitia, A.; Angus, J.C.; Ma, J.S.; Wang, L.; Pirouz, P.; Lambrecht, W.R.L. (1994) Pseudomorphic stabilization of diamond on non-diamond substrates. J. Mater. Res., 9, 1849.
 
150
Vinokur, N.; Miller, B.; Avyigal, Y.; Kalish, R. (1996) Electrochemical behavior of boron-doped diamond electrodes. J. Electrochem. Soc., 143(10), L238–L240.
 
151
Riggs, Jr., O.L.; Locke, C.E. (1981) Anodic Protection: Theory and Practice in the Prevention of Corrosion. Plenum, New York.
 
Metadata
Title
Miscellaneous Electrical Materials
Author
François Cardarelli
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-38925-7_9

Premium Partners