Skip to main content
Top

2017 | OriginalPaper | Chapter

29. Mitigating Global Warming by Thermal Energy Storage

Authors : Ruqiang Zou, Xinyu Huang

Published in: Energy Solutions to Combat Global Warming

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The use of fossil fuel facilitates the economic development of society, yet brings about global warming that put much of the world population at risk. Governments and organizations are seeking ways to mitigate the anomaly of the atmosphere temperature. Thermal energy storage is one of them. It can not only make use of low-grade heat during electricity production, but also adjusts the mismatch between energy demand and supply. Here, a detailed description on the mechanism and technology status of thermal energy storage is given. Comparison on the industrial complexity of different storage methods is discussed. Some prototype in different countries with efficiency evaluation is also presented. It is expected that after system optimization and cost control, thermal energy storage can significantly improve the efficiency of energy utilization.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006) Global temperature change. Proc Natl Acad Sci USA 103:14288–14293CrossRef Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006) Global temperature change. Proc Natl Acad Sci USA 103:14288–14293CrossRef
2.
go back to reference Nejat P, Jomehzadeh F, Taheri MM, Gohari M, Majid MZA (2015) A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew Sust Energy Rev 43:843–862 Nejat P, Jomehzadeh F, Taheri MM, Gohari M, Majid MZA (2015) A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew Sust Energy Rev 43:843–862
3.
go back to reference Chen H, Cong TN, Yang W, Tan C, Li Y, Ding Y (2009) Progress in electrical energy storage system: a critical review. Prog Nat Sci 19:291–312CrossRef Chen H, Cong TN, Yang W, Tan C, Li Y, Ding Y (2009) Progress in electrical energy storage system: a critical review. Prog Nat Sci 19:291–312CrossRef
4.
go back to reference Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Energy Mater 22:E28–E62 Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Energy Mater 22:E28–E62
5.
go back to reference Xu J, Wang RZ, Li Y (2014) A review of available technologies for seasonal thermal energy storage. Sol Energy 103:610–638CrossRef Xu J, Wang RZ, Li Y (2014) A review of available technologies for seasonal thermal energy storage. Sol Energy 103:610–638CrossRef
6.
go back to reference Fernandez AI, Martínez M, Segarra M, Martorell I, Cabeza LF (2010) Selection of materials with potential in sensible thermal energy storage. Sol Energ Mat Sol C 94:1723–1729CrossRef Fernandez AI, Martínez M, Segarra M, Martorell I, Cabeza LF (2010) Selection of materials with potential in sensible thermal energy storage. Sol Energ Mat Sol C 94:1723–1729CrossRef
7.
go back to reference Li C, Wang RZ (2012) Building integrated energy storage opportunities in China. Renew Sust Energy Rev 16:6191–6211CrossRef Li C, Wang RZ (2012) Building integrated energy storage opportunities in China. Renew Sust Energy Rev 16:6191–6211CrossRef
8.
go back to reference Sarier N, Onder E (2012) Organic phase change materials and their textile applications: an overview. Thermochim Acta 540:7–60CrossRef Sarier N, Onder E (2012) Organic phase change materials and their textile applications: an overview. Thermochim Acta 540:7–60CrossRef
9.
go back to reference Hyun DC, Levinson NS, Jeong U, Xia Y (2014) Emerging applications of phase-change materials (PCMs): teaching an old dog new tricks. Angew Chem Int Ed Engl 53:3780–3795CrossRef Hyun DC, Levinson NS, Jeong U, Xia Y (2014) Emerging applications of phase-change materials (PCMs): teaching an old dog new tricks. Angew Chem Int Ed Engl 53:3780–3795CrossRef
10.
go back to reference Abedin AH, Rosen MA (2010) Closed and open thermochemical energy storage: energy- and exergy-based comparisons. Energy 41:83–92 Abedin AH, Rosen MA (2010) Closed and open thermochemical energy storage: energy- and exergy-based comparisons. Energy 41:83–92
11.
go back to reference Pardo P, Deydier A, Anxionnaz-Minvielle Z, Rougé S, Cabassud M, Cognet P (2014) A review on high temperature thermochemical heat energy storage. Renew Sust Energ Rev 32:591–610CrossRef Pardo P, Deydier A, Anxionnaz-Minvielle Z, Rougé S, Cabassud M, Cognet P (2014) A review on high temperature thermochemical heat energy storage. Renew Sust Energ Rev 32:591–610CrossRef
12.
go back to reference Solé A, Martorell I, Cabeza LF (2015) State of the art on gas–solid thermochemical energy storage systems and reactors for building applications. Renew Sust Energ Rev 47:386–398CrossRef Solé A, Martorell I, Cabeza LF (2015) State of the art on gas–solid thermochemical energy storage systems and reactors for building applications. Renew Sust Energ Rev 47:386–398CrossRef
13.
go back to reference Yu N, Wang RZ, Wang LW (2013) Sorption thermal storage for solar energy. Prog Energy Combust 39:489–514CrossRef Yu N, Wang RZ, Wang LW (2013) Sorption thermal storage for solar energy. Prog Energy Combust 39:489–514CrossRef
14.
go back to reference Aydin D, Casey SP, Riffat S (2015) The latest advancements on thermochemical heat storage systems. Renew Sust Energy Rev 41:356–367CrossRef Aydin D, Casey SP, Riffat S (2015) The latest advancements on thermochemical heat storage systems. Renew Sust Energy Rev 41:356–367CrossRef
15.
go back to reference Solé A, Miró L, Barreneche C, Martorell I, Cabeza LF (2014) Corrosion test of salt hydrates and vessel metals for thermochemical energy storage. Energy Procedia 48:431–435CrossRef Solé A, Miró L, Barreneche C, Martorell I, Cabeza LF (2014) Corrosion test of salt hydrates and vessel metals for thermochemical energy storage. Energy Procedia 48:431–435CrossRef
16.
go back to reference Solé A, Miró L, Barreneche C, Martorell I, Cabeza LF (2015) Corrosion of metals and salt hydrates used for thermochemical energy storage. Renew Energy 75:519–523CrossRef Solé A, Miró L, Barreneche C, Martorell I, Cabeza LF (2015) Corrosion of metals and salt hydrates used for thermochemical energy storage. Renew Energy 75:519–523CrossRef
17.
go back to reference Garg HP, Mullick SC, Bhargara AK (1985) Solar thermal energy storage. D. Reidel Publishing Company, DordrechtHollandCrossRef Garg HP, Mullick SC, Bhargara AK (1985) Solar thermal energy storage. D. Reidel Publishing Company, DordrechtHollandCrossRef
18.
go back to reference Gil A, Medrano M, Martorell I, Lázaro A, Dolado P, Zalba B et al (2010) State of the art on high temperature thermal energy storage for power generation. Part 1—concepts, materials and modellization. Renew Sust Energy Rev 14:31–55CrossRef Gil A, Medrano M, Martorell I, Lázaro A, Dolado P, Zalba B et al (2010) State of the art on high temperature thermal energy storage for power generation. Part 1—concepts, materials and modellization. Renew Sust Energy Rev 14:31–55CrossRef
19.
go back to reference Kranz S, Frick S (2013) Efficient cooling energy supply with aquifer thermal energy storages. Appl Energy 109:321–327CrossRef Kranz S, Frick S (2013) Efficient cooling energy supply with aquifer thermal energy storages. Appl Energy 109:321–327CrossRef
20.
go back to reference Drenkelfort G, Kieseler S, Pasemann A, Behrendt F (2014) Aquifer thermal energy storages as a cooling option for German data centers. Energ Effic 8:385–402CrossRef Drenkelfort G, Kieseler S, Pasemann A, Behrendt F (2014) Aquifer thermal energy storages as a cooling option for German data centers. Energ Effic 8:385–402CrossRef
21.
go back to reference Visser PW, Kooi H, Stuyfzand PJ (2015) The thermal impact of aquifer thermal energy storage (ATES) systems: a case study in the Netherlands, combining monitoring and modeling. Hydrogeol J 23:507–532CrossRef Visser PW, Kooi H, Stuyfzand PJ (2015) The thermal impact of aquifer thermal energy storage (ATES) systems: a case study in the Netherlands, combining monitoring and modeling. Hydrogeol J 23:507–532CrossRef
22.
go back to reference Zhou X, Gao Q, Chen X, Yan Y, Spitler JD (2015) Developmental status and challenges of GWHP and ATES in China. Renew Sust Energy Rev 42:973–985CrossRef Zhou X, Gao Q, Chen X, Yan Y, Spitler JD (2015) Developmental status and challenges of GWHP and ATES in China. Renew Sust Energy Rev 42:973–985CrossRef
23.
go back to reference Ye H, Long L, Zhang H, Zou R (2014) The performance evaluation of shape-stabilized phase change materials in building applications using energy saving index. Appl Energy 113:1118–1126CrossRef Ye H, Long L, Zhang H, Zou R (2014) The performance evaluation of shape-stabilized phase change materials in building applications using energy saving index. Appl Energy 113:1118–1126CrossRef
24.
go back to reference Kuravi S, Trahan J, Goswami DY, Rahman MM, Stefanakos EK (2013) Thermal energy storage technologies and systems for concentrating solar power plants. Prog Energy Combust 39:285–319CrossRef Kuravi S, Trahan J, Goswami DY, Rahman MM, Stefanakos EK (2013) Thermal energy storage technologies and systems for concentrating solar power plants. Prog Energy Combust 39:285–319CrossRef
25.
go back to reference Nithyanandam K, Pitchumani R (2013) Computational studies on a latent thermal energy storage system with integral heat pipes for concentrating solar power. Appl Energ 103:400–415CrossRef Nithyanandam K, Pitchumani R (2013) Computational studies on a latent thermal energy storage system with integral heat pipes for concentrating solar power. Appl Energ 103:400–415CrossRef
26.
go back to reference Singh D, Zhao W, Yu W, France DM, Kim T (2015) Analysis of a graphite foam–NaCl latent heat storage system for supercritical CO2 power cycles for concentrated solar power. Sol Energy 118:232–242CrossRef Singh D, Zhao W, Yu W, France DM, Kim T (2015) Analysis of a graphite foam–NaCl latent heat storage system for supercritical CO2 power cycles for concentrated solar power. Sol Energy 118:232–242CrossRef
27.
go back to reference Youssef Z, Delahaye A, Huang L, Trinquet F, Fournaison L, Pollerberg C et al (2013) State of the art on phase change material slurries. Energ Convers Manage 65:120–132CrossRef Youssef Z, Delahaye A, Huang L, Trinquet F, Fournaison L, Pollerberg C et al (2013) State of the art on phase change material slurries. Energ Convers Manage 65:120–132CrossRef
28.
go back to reference Douzet J, Kwaterski M, Lallemand A, Chauvy F, Flick D, Herri J-M (2013) Prototyping of a real size air-conditioning system using a tetra-n-butylammonium bromide semiclathrate hydrate slurry as secondary two-phase refrigerant—experimental investigations and modelling. Int J Refrig 36:1616–1631CrossRef Douzet J, Kwaterski M, Lallemand A, Chauvy F, Flick D, Herri J-M (2013) Prototyping of a real size air-conditioning system using a tetra-n-butylammonium bromide semiclathrate hydrate slurry as secondary two-phase refrigerant—experimental investigations and modelling. Int J Refrig 36:1616–1631CrossRef
29.
go back to reference Mauran S, Lahmidi H, Goetz V (2008) Solar heating and cooling by a thermochemical process. First experiments of a prototype storing 60 kWh by a solid/gas reaction. Sol Energy 82:623–636CrossRef Mauran S, Lahmidi H, Goetz V (2008) Solar heating and cooling by a thermochemical process. First experiments of a prototype storing 60 kWh by a solid/gas reaction. Sol Energy 82:623–636CrossRef
30.
go back to reference Zondag H, Kikkert B, Smeding S, Boer Rd, Bakker M (2013) Prototype thermochemical heat storage with open reactor system. Appl Energ 109:360–365CrossRef Zondag H, Kikkert B, Smeding S, Boer Rd, Bakker M (2013) Prototype thermochemical heat storage with open reactor system. Appl Energ 109:360–365CrossRef
31.
go back to reference Cot-Gores J, Castell A, Cabeza LF (2012) Thermochemical energy storage and conversion: a-state-of-the-art review of the experimental research under practical conditions. Renew Sust Energy Rev 16:5207–5224CrossRef Cot-Gores J, Castell A, Cabeza LF (2012) Thermochemical energy storage and conversion: a-state-of-the-art review of the experimental research under practical conditions. Renew Sust Energy Rev 16:5207–5224CrossRef
32.
go back to reference N’Tsoukpoe KE, Liu H, Le Pierrès N, Luo L (2009) A review on long-term sorption solar energy storage. Renew Sust Energy Rev 13:2385–2396CrossRef N’Tsoukpoe KE, Liu H, Le Pierrès N, Luo L (2009) A review on long-term sorption solar energy storage. Renew Sust Energy Rev 13:2385–2396CrossRef
33.
go back to reference Kim J, Lee Y, Yoon WS, Jeon JS, Koo M-H, Keehm Y (2010) Numerical modeling of aquifer thermal energy storage system. Energy 35:4955–4965CrossRef Kim J, Lee Y, Yoon WS, Jeon JS, Koo M-H, Keehm Y (2010) Numerical modeling of aquifer thermal energy storage system. Energy 35:4955–4965CrossRef
34.
35.
go back to reference Pielichowska K, Pielichowski K (2014) Phase change materials for thermal energy storage. Prog Mater Sci 65:67–123CrossRef Pielichowska K, Pielichowski K (2014) Phase change materials for thermal energy storage. Prog Mater Sci 65:67–123CrossRef
Metadata
Title
Mitigating Global Warming by Thermal Energy Storage
Authors
Ruqiang Zou
Xinyu Huang
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-26950-4_29