Skip to main content
Top

2020 | OriginalPaper | Chapter

MitoEM Dataset: Large-Scale 3D Mitochondria Instance Segmentation from EM Images

Authors : Donglai Wei, Zudi Lin, Daniel Franco-Barranco, Nils Wendt, Xingyu Liu, Wenjie Yin, Xin Huang, Aarush Gupta, Won-Dong Jang, Xueying Wang, Ignacio Arganda-Carreras, Jeff W. Lichtman, Hanspeter Pfister

Published in: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Electron microscopy (EM) allows the identification of intracellular organelles such as mitochondria, providing insights for clinical and scientific studies. However, public mitochondria segmentation datasets only contain hundreds of instances with simple shapes. It is unclear if existing methods achieving human-level accuracy on these small datasets are robust in practice. To this end, we introduce the MitoEM dataset, a 3D mitochondria instance segmentation dataset with two (30 \(\upmu \)m)\(^3\) volumes from human and rat cortices respectively, 3,600\(\times \) larger than previous benchmarks. With around 40K instances, we find a great diversity of mitochondria in terms of shape and density. For evaluation, we tailor the implementation of the average precision (AP) metric for 3D data with a 45\(\times \) speedup. On MitoEM, we find existing instance segmentation methods often fail to correctly segment mitochondria with complex shapes or close contacts with other instances. Thus, our MitoEM dataset poses new challenges to the field. We release our code and data: https://​donglaiw.​github.​io/​page/​mitoEM/​index.​html.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Beier, T., et al.: Multicut brings automated neurite segmentation closer to human performance. Nat. Meth. 14(2), 101–102 (2017)CrossRef Beier, T., et al.: Multicut brings automated neurite segmentation closer to human performance. Nat. Meth. 14(2), 101–102 (2017)CrossRef
3.
go back to reference Chen, H., Qi, X., Yu, L., Heng, P.A.: DCAN: deep contour-aware networks for accurate gland segmentation. In: CVPR, pp. 2487–2496. IEEE (2016) Chen, H., Qi, X., Yu, L., Heng, P.A.: DCAN: deep contour-aware networks for accurate gland segmentation. In: CVPR, pp. 2487–2496. IEEE (2016)
4.
go back to reference Cheng, H.C., Varshney, A.: Volume segmentation using convolutional neural networks with limited training data. In: ICIP, pp. 590–594. IEEE (2017) Cheng, H.C., Varshney, A.: Volume segmentation using convolutional neural networks with limited training data. In: ICIP, pp. 590–594. IEEE (2017)
5.
go back to reference Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49CrossRef Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://​doi.​org/​10.​1007/​978-3-319-46723-8_​49CrossRef
6.
go back to reference Ciresan, D., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. In: NeurIPS, pp. 2843–2851 (2012) Ciresan, D., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. In: NeurIPS, pp. 2843–2851 (2012)
7.
go back to reference Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed cuts: minimum spanning forests and the drop of water principle. TPAMI 31, 1362–1374 (2008)CrossRef Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed cuts: minimum spanning forests and the drop of water principle. TPAMI 31, 1362–1374 (2008)CrossRef
8.
go back to reference Dorkenwald, S.: Automated synaptic connectivity inference for volume electron microscopy. Nat. Meth. 14(4), 435–442 (2017)CrossRef Dorkenwald, S.: Automated synaptic connectivity inference for volume electron microscopy. Nat. Meth. 14(4), 435–442 (2017)CrossRef
9.
go back to reference Funke, J.: Large scale image segmentation with structured loss based deep learning for connectome reconstruction. TPAMI 41(7), 1669–1680 (2018)CrossRef Funke, J.: Large scale image segmentation with structured loss based deep learning for connectome reconstruction. TPAMI 41(7), 1669–1680 (2018)CrossRef
10.
go back to reference He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV, pp. 2961–2969. IEEE (2017) He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV, pp. 2961–2969. IEEE (2017)
11.
go back to reference Jain, V., Turaga, S.C., Briggman, K., Helmstaedter, M.N., Denk, W., Seung, H.S.: Learning to agglomerate superpixel hierarchies. In: NeurIPS, pp. 648–656 (2011) Jain, V., Turaga, S.C., Briggman, K., Helmstaedter, M.N., Denk, W., Seung, H.S.: Learning to agglomerate superpixel hierarchies. In: NeurIPS, pp. 648–656 (2011)
12.
go back to reference Januszewski, M., et al.: High-precision automated reconstruction of neurons with flood-filling networks. Nat. Meth. 15(8), 605–610 (2018)CrossRef Januszewski, M., et al.: High-precision automated reconstruction of neurons with flood-filling networks. Nat. Meth. 15(8), 605–610 (2018)CrossRef
13.
go back to reference Kasahara, T., et al.: Depression-like episodes in mice harboring mtDNA deletions in paraventricular thalamus. Mol. Psychiatry 21(1), 39–48 (2016)CrossRef Kasahara, T., et al.: Depression-like episodes in mice harboring mtDNA deletions in paraventricular thalamus. Mol. Psychiatry 21(1), 39–48 (2016)CrossRef
14.
go back to reference Krasowski, N., Beier, T., Knott, G., Köthe, U., Hamprecht, F.A., Kreshuk, A.: Neuron segmentation with high-level biological priors. TMI 37(4), 829–839 (2017) Krasowski, N., Beier, T., Knott, G., Köthe, U., Hamprecht, F.A., Kreshuk, A.: Neuron segmentation with high-level biological priors. TMI 37(4), 829–839 (2017)
15.
17.
go back to reference Liu, J., Li, W., Xiao, C., Hong, B., Xie, Q., Han, H.: Automatic detection and segmentation of mitochondria from SEM images using deep neural network. In: EMBC. IEEE (2018) Liu, J., Li, W., Xiao, C., Hong, B., Xie, Q., Han, H.: Automatic detection and segmentation of mitochondria from SEM images using deep neural network. In: EMBC. IEEE (2018)
19.
go back to reference Lucchi, A.: Learning structured models for segmentation of 2-D and 3-D imagery. TMI 34(5), 1096–1110 (2014) Lucchi, A.: Learning structured models for segmentation of 2-D and 3-D imagery. TMI 34(5), 1096–1110 (2014)
20.
go back to reference Lucchi, A., Smith, K., Achanta, R., Knott, G., Fua, P.: Supervoxel-based segmentation of mitochondria in EM image stacks with learned shape features. TMI 31(2), 474–486 (2011) Lucchi, A., Smith, K., Achanta, R., Knott, G., Fua, P.: Supervoxel-based segmentation of mitochondria in EM image stacks with learned shape features. TMI 31(2), 474–486 (2011)
21.
go back to reference Meirovitch, Y., Mi, L., Saribekyan, H., Matveev, A., Rolnick, D., Shavit, N.: Cross-classification clustering: an efficient multi-object tracking technique for 3-D instance segmentation in connectomics. In: CVPR. IEEE (2019) Meirovitch, Y., Mi, L., Saribekyan, H., Matveev, A., Rolnick, D., Shavit, N.: Cross-classification clustering: an efficient multi-object tracking technique for 3-D instance segmentation in connectomics. In: CVPR. IEEE (2019)
22.
go back to reference Motta, A., et al.: Dense connectomic reconstruction in layer 4 of the somatosensory cortex. Science 366(6469), eaay3134 (2019)CrossRef Motta, A., et al.: Dense connectomic reconstruction in layer 4 of the somatosensory cortex. Science 366(6469), eaay3134 (2019)CrossRef
23.
go back to reference Nunez-Iglesias, J., Kennedy, R., Parag, T., Shi, J., Chklovskii, D.B.: Machine learning of hierarchical clustering to segment 2D and 3D images. PLoS ONE 8, e71715 (2013)CrossRef Nunez-Iglesias, J., Kennedy, R., Parag, T., Shi, J., Chklovskii, D.B.: Machine learning of hierarchical clustering to segment 2D and 3D images. PLoS ONE 8, e71715 (2013)CrossRef
24.
go back to reference Oztel, I., Yolcu, G., Ersoy, I., White, T., Bunyak, F.: Mitochondria segmentation in electron microscopy volumes using deep convolutional neural network. In: IEEE International Conference on Bioinformatics and Biomedicine (2017) Oztel, I., Yolcu, G., Ersoy, I., White, T., Bunyak, F.: Mitochondria segmentation in electron microscopy volumes using deep convolutional neural network. In: IEEE International Conference on Bioinformatics and Biomedicine (2017)
26.
go back to reference Schubert, P.J., Dorkenwald, S., Januszewski, M., Jain, V., Kornfeld, J.: Learning cellular morphology with neural networks. Nat. Commun. 10, 2736 (2019)CrossRef Schubert, P.J., Dorkenwald, S., Januszewski, M., Jain, V., Kornfeld, J.: Learning cellular morphology with neural networks. Nat. Commun. 10, 2736 (2019)CrossRef
27.
go back to reference Smith, K., Carleton, A., Lepetit, V.: Fast ray features for learning irregular shapes. In: ICCV. IEEE (2009) Smith, K., Carleton, A., Lepetit, V.: Fast ray features for learning irregular shapes. In: ICCV. IEEE (2009)
28.
go back to reference Turaga, S.C., Briggman, K.L., Helmstaedter, M., Denk, W., Seung, H.S.: Maximin affinity learning of image segmentation. In: NeurIPS, pp. 1865–1873 (2009) Turaga, S.C., Briggman, K.L., Helmstaedter, M., Denk, W., Seung, H.S.: Maximin affinity learning of image segmentation. In: NeurIPS, pp. 1865–1873 (2009)
29.
go back to reference Vazquez-Reina, A., Gelbart, M., Huang, D., Lichtman, J., Miller, E., Pfister, H.: Segmentation fusion for connectomics. In: ICCV. IEEE (2011) Vazquez-Reina, A., Gelbart, M., Huang, D., Lichtman, J., Miller, E., Pfister, H.: Segmentation fusion for connectomics. In: ICCV. IEEE (2011)
30.
go back to reference Xiao, C.: Automatic mitochondria segmentation for EM data using a 3D supervised convolutional network. Front. Neuroanat. 12, 92 (2018)CrossRef Xiao, C.: Automatic mitochondria segmentation for EM data using a 3D supervised convolutional network. Front. Neuroanat. 12, 92 (2018)CrossRef
31.
go back to reference Xu, N., et al.: YouTube-VOS: a large-scale video object segmentation benchmark. In: ECCV. Springer, Heidelberg (2018) Xu, N., et al.: YouTube-VOS: a large-scale video object segmentation benchmark. In: ECCV. Springer, Heidelberg (2018)
32.
go back to reference Xu, Y.: Gland instance segmentation using deep multichannel neural networks. Trans. Biomed. Eng. 64(12), 2901–2912 (2017)CrossRef Xu, Y.: Gland instance segmentation using deep multichannel neural networks. Trans. Biomed. Eng. 64(12), 2901–2912 (2017)CrossRef
34.
go back to reference Zeng, T., Wu, B., Ji, S.: DeepEM3D: approaching human-level performance on 3D anisotropic EM image segmentation. Bioinformatics 33(16), 2555–2562 (2017)CrossRef Zeng, T., Wu, B., Ji, S.: DeepEM3D: approaching human-level performance on 3D anisotropic EM image segmentation. Bioinformatics 33(16), 2555–2562 (2017)CrossRef
35.
go back to reference Zeviani, M., Di Donato, S.: Mitochondrial disorders. Brain 127(10), 2153–2172 (2004)CrossRef Zeviani, M., Di Donato, S.: Mitochondrial disorders. Brain 127(10), 2153–2172 (2004)CrossRef
36.
go back to reference Zhang, L., et al.: Altered brain energetics induces mitochondrial fission arrest in Alzheimers disease. Sci. Rep. 6, 18725 (2016)CrossRef Zhang, L., et al.: Altered brain energetics induces mitochondrial fission arrest in Alzheimers disease. Sci. Rep. 6, 18725 (2016)CrossRef
37.
go back to reference Zlateski, A., Seung, H.S.: Image segmentation by size-dependent single linkage clustering of a watershed basin graph. arXiv:1505.00249 (2015) Zlateski, A., Seung, H.S.: Image segmentation by size-dependent single linkage clustering of a watershed basin graph. arXiv:​1505.​00249 (2015)
Metadata
Title
MitoEM Dataset: Large-Scale 3D Mitochondria Instance Segmentation from EM Images
Authors
Donglai Wei
Zudi Lin
Daniel Franco-Barranco
Nils Wendt
Xingyu Liu
Wenjie Yin
Xin Huang
Aarush Gupta
Won-Dong Jang
Xueying Wang
Ignacio Arganda-Carreras
Jeff W. Lichtman
Hanspeter Pfister
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-59722-1_7

Premium Partner