Skip to main content
Top
Published in: Strength of Materials 4/2016

27-10-2016 | SCIENTIFIC AND TECHNICAL SECTION

Modal Analysis of the Turbine Blade at Complex Thermomechanical Loads

Authors: L. Witek, F. Stachowicz

Published in: Strength of Materials | Issue 4/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The results of modal analysis of the turbine blade were presented. The turbine blade during the operation of the engine is subjected to complex thermomechanical loads induced by centrifugal forces of the rotating blade and a nonuniform thermal field. These loads have a great influence on the natural frequencies of the blade. In the first section of the study, modal analysis of the blade was performed using the vibration system. As a result, the resonant frequencies of the real blade were obtained. In order to check the effect of the rotational engine speed and the thermal field on the natural frequencies of the blade, the finite element method was employed. At the first stage of computations static analysis was conducted for the blade subjected to mechanical and thermal loads. Then modal analysis was used to isolate the natural frequencies and vibration modes of the blade. In modal analysis the stress state from the first stage was considered as preliminary conditions. Several results of numerical calculations and experimental analysis were compared to detect the relative error of natural frequency estimates.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference W. Maktouf and K. Sai, “An investigation of premature fatigue failures of gas turbine blade,” Eng. Fail. Anal., 47, 89–101 (2015).CrossRef W. Maktouf and K. Sai, “An investigation of premature fatigue failures of gas turbine blade,” Eng. Fail. Anal., 47, 89–101 (2015).CrossRef
2.
go back to reference M. Park, Y. H. Hwang, Y. S. Choi, and T. G. Kim, “Analysis of a J69-T-25 engine turbine blade fracture,” Eng. Fail. Anal., 9, 593–601 (2002).CrossRef M. Park, Y. H. Hwang, Y. S. Choi, and T. G. Kim, “Analysis of a J69-T-25 engine turbine blade fracture,” Eng. Fail. Anal., 9, 593–601 (2002).CrossRef
3.
go back to reference K. S. Song, S. G Kim, D. Jung, and Y. H. Hwang, “Analysis of the fracture of a turbine blade on a turbojet engine,” Eng. Fail. Anal., 14, 877–883 (2007). K. S. Song, S. G Kim, D. Jung, and Y. H. Hwang, “Analysis of the fracture of a turbine blade on a turbojet engine,” Eng. Fail. Anal., 14, 877–883 (2007).
4.
go back to reference L. Witek, “Failure analysis of turbine disc of an aero engine,” Eng. Fail. Anal., 13, 9–17 (2006).CrossRef L. Witek, “Failure analysis of turbine disc of an aero engine,” Eng. Fail. Anal., 13, 9–17 (2006).CrossRef
5.
go back to reference S. K. Chan and I. S Tuba, “A finite element method for contact problems of solid bodies – Part II: Applications to turbine blade fastenings,” Int. J. Mech. Sci., 13, 627–639 (1971). S. K. Chan and I. S Tuba, “A finite element method for contact problems of solid bodies – Part II: Applications to turbine blade fastenings,” Int. J. Mech. Sci., 13, 627–639 (1971).
6.
go back to reference L. Witek, “Fatigue investigations of the compressor blades with mechanical defects,” Key Eng. Mater., 598, 269–274 (2014).CrossRef L. Witek, “Fatigue investigations of the compressor blades with mechanical defects,” Key Eng. Mater., 598, 269–274 (2014).CrossRef
7.
go back to reference L. Witek, “Simulation of crack growth in the compressor blade subjected to resonant vibration using hybrid method,” Eng. Fail. Anal., 49, 57–66 (2015).CrossRef L. Witek, “Simulation of crack growth in the compressor blade subjected to resonant vibration using hybrid method,” Eng. Fail. Anal., 49, 57–66 (2015).CrossRef
8.
go back to reference Akash Shukla and S. P. Harsha, “An experimental and FEM modal analysis of cracked and normal steam turbine blade,” Materials Today: Proceedings, 2, 2056– 2063 (2015). Akash Shukla and S. P. Harsha, “An experimental and FEM modal analysis of cracked and normal steam turbine blade,” Materials Today: Proceedings, 2, 2056– 2063 (2015).
9.
go back to reference P. Papanikos, S. A. Meguid, and Z. Stjepanovic, “Three-dimensional nonlinear finite element analysis of dovetail joints in aeroengine discs,” Finite Elem. Anal. Design, 29, 173–186 (1998).CrossRef P. Papanikos, S. A. Meguid, and Z. Stjepanovic, “Three-dimensional nonlinear finite element analysis of dovetail joints in aeroengine discs,” Finite Elem. Anal. Design, 29, 173–186 (1998).CrossRef
10.
go back to reference T. Gwo-Chung, “Rotating vibration behavior of the turbine blades with different groups of blades,” J. Sound Vibr., 271, 547–575 (2004).CrossRef T. Gwo-Chung, “Rotating vibration behavior of the turbine blades with different groups of blades,” J. Sound Vibr., 271, 547–575 (2004).CrossRef
11.
go back to reference E. Poursaeidi and B. Hosein, “Fatigue crack growth simulation in a first stage of compressor blade,” Eng. Fail. Anal., 45, 314–325 (2014).CrossRef E. Poursaeidi and B. Hosein, “Fatigue crack growth simulation in a first stage of compressor blade,” Eng. Fail. Anal., 45, 314–325 (2014).CrossRef
12.
go back to reference L. Witek, “Crack growth simulation in the compressor blade subjected to vibration using boundary element method,” Key Eng. Mater., 598, 261–268 (2014).CrossRef L. Witek, “Crack growth simulation in the compressor blade subjected to vibration using boundary element method,” Key Eng. Mater., 598, 261–268 (2014).CrossRef
13.
go back to reference A. Poznanska, M. Sniezek, and M. Wierzbinska, “Pitting corrosion – main factor generating fracture of the compressor of aeroengine blades under operation,” in: Proc. of IX Conference – Turbomachinery [in Polish], Rzeszow (2003). A. Poznanska, M. Sniezek, and M. Wierzbinska, “Pitting corrosion – main factor generating fracture of the compressor of aeroengine blades under operation,” in: Proc. of IX Conference – Turbomachinery [in Polish], Rzeszow (2003).
14.
go back to reference L. Witek, “Failure analysis of the wing-fuselage connector of an agricultural aircraft,” Eng. Fail. Anal., 13, 572–581 (2006).CrossRef L. Witek, “Failure analysis of the wing-fuselage connector of an agricultural aircraft,” Eng. Fail. Anal., 13, 572–581 (2006).CrossRef
15.
go back to reference S. I. Bogomolov, S. S. Lutsenko, and S. A. Nazarenko, “Application of a superparametric finite shell element to the calculation of turbine blade vibrations,” Strength Mater., 14, No. 6, 796–799 (1982).CrossRef S. I. Bogomolov, S. S. Lutsenko, and S. A. Nazarenko, “Application of a superparametric finite shell element to the calculation of turbine blade vibrations,” Strength Mater., 14, No. 6, 796–799 (1982).CrossRef
16.
go back to reference X. S. Yao and C. L. Zheng, “Shaking-swing coupled vibration analysis of a laminar composite rotating blade by the finite element method,” Strength Mater., 47, No. 1, 68–73 (2015).CrossRef X. S. Yao and C. L. Zheng, “Shaking-swing coupled vibration analysis of a laminar composite rotating blade by the finite element method,” Strength Mater., 47, No. 1, 68–73 (2015).CrossRef
17.
go back to reference V. T. Troshchenko, V. S. Kostenko, A. P. Voloshchenko, et al., “Automatic system of programmed control of parameters of vibration and thermal tests of gas turbine engine blades (ASPC VTT),” Strength Mater., 22, No. 1, 128–132 (1990).CrossRef V. T. Troshchenko, V. S. Kostenko, A. P. Voloshchenko, et al., “Automatic system of programmed control of parameters of vibration and thermal tests of gas turbine engine blades (ASPC VTT),” Strength Mater., 22, No. 1, 128–132 (1990).CrossRef
18.
go back to reference R. P. Pridorozhnyi, A. V. Sheremet’ev, and A. P. Zinkovskii, “On the rational choice of the azimuthal crystallographic orientation of single-crystal cooled rotor blades in aircraft gas turbine engines,” Strength Mater., 47, No. 3, 415–421 (2015).CrossRef R. P. Pridorozhnyi, A. V. Sheremet’ev, and A. P. Zinkovskii, “On the rational choice of the azimuthal crystallographic orientation of single-crystal cooled rotor blades in aircraft gas turbine engines,” Strength Mater., 47, No. 3, 415–421 (2015).CrossRef
19.
go back to reference MSC-PATRAN 2009 Users Manual, MSC Corporation, Los Angeles (2009). MSC-PATRAN 2009 Users Manual, MSC Corporation, Los Angeles (2009).
20.
go back to reference ABAQUS ver. 6.9 Users Manual, Abaqus Inc. (2009). ABAQUS ver. 6.9 Users Manual, Abaqus Inc. (2009).
21.
go back to reference P. B. Mikhailov-Mikheev, Handbook on Metallic Materials for the Construction of Turbines and Engines [in Russian], Mashgiz, Leningrad (1961). P. B. Mikhailov-Mikheev, Handbook on Metallic Materials for the Construction of Turbines and Engines [in Russian], Mashgiz, Leningrad (1961).
Metadata
Title
Modal Analysis of the Turbine Blade at Complex Thermomechanical Loads
Authors
L. Witek
F. Stachowicz
Publication date
27-10-2016
Publisher
Springer US
Published in
Strength of Materials / Issue 4/2016
Print ISSN: 0039-2316
Electronic ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-016-9788-6

Other articles of this Issue 4/2016

Strength of Materials 4/2016 Go to the issue

Premium Partners