Skip to main content
Top
Published in: Journal of Polymer Research 10/2018

01-10-2018 | ORIGINAL PAPER

Model-free kinetic analysis of thermal behavior of urea-formaldehyde microcapsules

Authors: E. Katoueizadeh, S. M. Zebarjad, K. Janghorban, A. Ghafarinazari

Published in: Journal of Polymer Research | Issue 10/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, experimental and analytical investigations were conducted concerning kinetics of thermal reactions of urea-formaldehyde microcapsules (UFM). Microencapsulated phase change materials were synthesized via in-situ polymerization using UF resin as shell and drying oil as core, and were characterized by scanning electron microscope (SEM), particle size analysis (PSA) and Fourier transform infrared analysis (FTIR). Accordingly, model-free kinetics (MFK) was used to determine the kinetics of the thermal behavior of UFM. Therefore, Thermogravimetry analysis was conducted at different heating rates of 3, 5, 7, and 10 °C/min. The apparent activation energy was obtained by MFK, which led to identify the reaction mechanisms. The results revealed that there are two stages for degradation of the synthesized microcapsules. Addition of the oil core in the UF microcapsules has hindered one stage of the suggested three stages of the pyrolysis process of UF based resins and the two stages were unified as a single extended stage. Additionally, the measured activation energy showed a low value of 20 kJ/mol due to the presence of oil in the UF microcapsules.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ehrfeld W (2003) Electrochemistry and microsystems. Electrochim Acta 48(20):2857–2868CrossRef Ehrfeld W (2003) Electrochemistry and microsystems. Electrochim Acta 48(20):2857–2868CrossRef
2.
go back to reference Cho SH, White SR, Braun PV (2009) Self-healing polymer coatings. Adv Mater 21(6):645–649CrossRef Cho SH, White SR, Braun PV (2009) Self-healing polymer coatings. Adv Mater 21(6):645–649CrossRef
3.
go back to reference Nesterova T, Dam-Johansen K, Pedersen LT, Kiil S (2012) Microcapsule-based self-healing anticorrosive coatings: capsule size, coating formulation, and exposure testing. Prog Org Coat 75(4):309–318CrossRef Nesterova T, Dam-Johansen K, Pedersen LT, Kiil S (2012) Microcapsule-based self-healing anticorrosive coatings: capsule size, coating formulation, and exposure testing. Prog Org Coat 75(4):309–318CrossRef
4.
go back to reference Zheng S, Pascault JP, Williams RJ. Epoxy polymers: new materials and innovations. Pascault, JP, Williams, RJJ, Eds. 2010 Zheng S, Pascault JP, Williams RJ. Epoxy polymers: new materials and innovations. Pascault, JP, Williams, RJJ, Eds. 2010
5.
go back to reference Park BD, Kim YS, Singh AP, Lim KP (2003) Reactivity, chemical structure, and molecular mobility of urea–formaldehyde adhesives synthesized under different conditions using FTIR and solid-state 13C CP/MAS NMR spectroscopy. J Appl Polym Sci 88(11):2677–2687CrossRef Park BD, Kim YS, Singh AP, Lim KP (2003) Reactivity, chemical structure, and molecular mobility of urea–formaldehyde adhesives synthesized under different conditions using FTIR and solid-state 13C CP/MAS NMR spectroscopy. J Appl Polym Sci 88(11):2677–2687CrossRef
6.
go back to reference Zorba T, Papadopoulou E, Hatjiissaak A, Paraskevopoulos K, Chrissafis K (2008) Urea-formaldehyde resins characterized by thermal analysis and FTIR method. J Therm Anal Calorim 92(1):29–33CrossRef Zorba T, Papadopoulou E, Hatjiissaak A, Paraskevopoulos K, Chrissafis K (2008) Urea-formaldehyde resins characterized by thermal analysis and FTIR method. J Therm Anal Calorim 92(1):29–33CrossRef
7.
go back to reference Conner AH (1996) Urea-formaldehyde adhesive resins. Polym mater encyclopedia 11:8496–8501 Conner AH (1996) Urea-formaldehyde adhesive resins. Polym mater encyclopedia 11:8496–8501
8.
go back to reference Dou B, Park S, Lim S, Yu TU, Hwang J (2007) Pyrolysis characteristics of refuse derived fuel in a pilot-scale unit. Energy Fuel 21(6):3730–3734CrossRef Dou B, Park S, Lim S, Yu TU, Hwang J (2007) Pyrolysis characteristics of refuse derived fuel in a pilot-scale unit. Energy Fuel 21(6):3730–3734CrossRef
9.
go back to reference Encinar JM, Beltran FJ, Ramiro A, Gonzalez JF (1998) Pyrolysis/gasification of agricultural residues by carbon dioxide in the presence of different additives: influence of variables. Fuel Process Technol 55(3):219–233CrossRef Encinar JM, Beltran FJ, Ramiro A, Gonzalez JF (1998) Pyrolysis/gasification of agricultural residues by carbon dioxide in the presence of different additives: influence of variables. Fuel Process Technol 55(3):219–233CrossRef
10.
go back to reference Mokhlisse A, Chanâa MB (2000) Yields and composition of oil obtained by isothermal pyrolysis of the Moroccan (Tarfaya) oil shales with steam or nitrogen as carrier gas. J Anal Appl Pyrolysis 56(2):207–218CrossRef Mokhlisse A, Chanâa MB (2000) Yields and composition of oil obtained by isothermal pyrolysis of the Moroccan (Tarfaya) oil shales with steam or nitrogen as carrier gas. J Anal Appl Pyrolysis 56(2):207–218CrossRef
11.
go back to reference De Marco I, Caballero BM, Cabrero MA, Laresgoiti MF, Torres A, Chomon MJ (2007) Recycling of automobile shredder residues by means of pyrolysis. J Anal Appl Pyrolysis 79(1):403–408CrossRef De Marco I, Caballero BM, Cabrero MA, Laresgoiti MF, Torres A, Chomon MJ (2007) Recycling of automobile shredder residues by means of pyrolysis. J Anal Appl Pyrolysis 79(1):403–408CrossRef
12.
go back to reference Liu J, Jiang X, Zhou L, Han X, Cui Z (2009) Pyrolysis treatment of oil sludge and model-free kinetics analysis. J Hazard Mater 161(2):1208–1215CrossRef Liu J, Jiang X, Zhou L, Han X, Cui Z (2009) Pyrolysis treatment of oil sludge and model-free kinetics analysis. J Hazard Mater 161(2):1208–1215CrossRef
13.
go back to reference Chang CY, Shie JL, Lin JP, Wu CH, Lee DJ, Chang CF (2000) Major products obtained from the pyrolysis of oil sludge. Energy Fuel 14(6):1176–1183CrossRef Chang CY, Shie JL, Lin JP, Wu CH, Lee DJ, Chang CF (2000) Major products obtained from the pyrolysis of oil sludge. Energy Fuel 14(6):1176–1183CrossRef
14.
go back to reference Shie JL, Chen YH, Chang CY, Lin JP, Lee DJ, Wu CH (2002) Thermal pyrolysis of poly (vinyl alcohol) and its major products. Energy Fuel 16(1):109–118CrossRef Shie JL, Chen YH, Chang CY, Lin JP, Lee DJ, Wu CH (2002) Thermal pyrolysis of poly (vinyl alcohol) and its major products. Energy Fuel 16(1):109–118CrossRef
15.
go back to reference Jiang X, Li C, Chi Y, Yan J (2010) TG-FTIR study on urea-formaldehyde resin residue during pyrolysis and combustion. J Hazard Mater 173(1):205–210CrossRef Jiang X, Li C, Chi Y, Yan J (2010) TG-FTIR study on urea-formaldehyde resin residue during pyrolysis and combustion. J Hazard Mater 173(1):205–210CrossRef
16.
go back to reference Ahamad T, Alshehri SM (2014) Thermal degradation and evolved gas analysis: a polymeric blend of urea formaldehyde (UF) and epoxy (DGEBA) resin. Arab J Chem 7(6):1140–1147CrossRef Ahamad T, Alshehri SM (2014) Thermal degradation and evolved gas analysis: a polymeric blend of urea formaldehyde (UF) and epoxy (DGEBA) resin. Arab J Chem 7(6):1140–1147CrossRef
17.
go back to reference Fisher T, Hajaligol M, Waymack B, Kellogg D (2002) Pyrolysis behavior and kinetics of biomass derived materials. J Anal Appl Pyrolysis 62(2):331–349CrossRef Fisher T, Hajaligol M, Waymack B, Kellogg D (2002) Pyrolysis behavior and kinetics of biomass derived materials. J Anal Appl Pyrolysis 62(2):331–349CrossRef
18.
go back to reference Song W, LIU JG, NIE YF (2008) Pyrolysis properties of oil sludge. J Fuel Chem Technol 3:1–5 Song W, LIU JG, NIE YF (2008) Pyrolysis properties of oil sludge. J Fuel Chem Technol 3:1–5
19.
go back to reference Ma S, Lu J, Gao J (2002) Study of the low temperature pyrolysis of PVC. Energy Fuel 16(2):338–342CrossRef Ma S, Lu J, Gao J (2002) Study of the low temperature pyrolysis of PVC. Energy Fuel 16(2):338–342CrossRef
20.
go back to reference Shie JL, Chen YH, Chang CY, Lin JP, Lee DJ, Wu CH (2002) Thermal pyrolysis of poly (vinyl alcohol) and its major products. Energy Fuel 16(1):109–118CrossRef Shie JL, Chen YH, Chang CY, Lin JP, Lee DJ, Wu CH (2002) Thermal pyrolysis of poly (vinyl alcohol) and its major products. Energy Fuel 16(1):109–118CrossRef
21.
go back to reference Karayildirim T, Yanik J, Yuksel M, Bockhorn H (2006) Characterisation of products from pyrolysis of waste sludges. Fuel 85(10):1498–1508CrossRef Karayildirim T, Yanik J, Yuksel M, Bockhorn H (2006) Characterisation of products from pyrolysis of waste sludges. Fuel 85(10):1498–1508CrossRef
22.
go back to reference Jakab E, Blazso M, Faix O (2001) Thermal decomposition of mixtures of vinyl polymers and lignocellulosic materials. J Anal Appl Pyrolysis 58:49–62CrossRef Jakab E, Blazso M, Faix O (2001) Thermal decomposition of mixtures of vinyl polymers and lignocellulosic materials. J Anal Appl Pyrolysis 58:49–62CrossRef
23.
go back to reference Álvarez P, Santamaría R, Blanco C, Granda M (2005) Thermal degradation of lignocellulosic materials treated with several acids. J Anal Appl Pyrolysis 74(1):337–343CrossRef Álvarez P, Santamaría R, Blanco C, Granda M (2005) Thermal degradation of lignocellulosic materials treated with several acids. J Anal Appl Pyrolysis 74(1):337–343CrossRef
24.
go back to reference Chen H, Luo Z, Yang H, Ju F, Zhang S (2008) Pressurized pyrolysis and gasification of Chinese typical coal samples. Energy Fuel 22(2):1136–1141CrossRef Chen H, Luo Z, Yang H, Ju F, Zhang S (2008) Pressurized pyrolysis and gasification of Chinese typical coal samples. Energy Fuel 22(2):1136–1141CrossRef
25.
go back to reference Cancellieri D, Leoni E, Rossi JL (2005) Kinetics of the thermal degradation of Erica arborea by DSC: hybrid kinetic method. Thermochim Acta 438(1):41–50CrossRef Cancellieri D, Leoni E, Rossi JL (2005) Kinetics of the thermal degradation of Erica arborea by DSC: hybrid kinetic method. Thermochim Acta 438(1):41–50CrossRef
26.
go back to reference Vyazovkin S, Sbirrazzuoli N (2006) Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun 27(18):1515–1532CrossRef Vyazovkin S, Sbirrazzuoli N (2006) Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun 27(18):1515–1532CrossRef
27.
go back to reference Leroy V, Cancellieri D, Leoni E (2006) Thermal degradation of ligno-cellulosic fuels: DSC and TGA studies. Thermochim Acta 451(1):131–138CrossRef Leroy V, Cancellieri D, Leoni E (2006) Thermal degradation of ligno-cellulosic fuels: DSC and TGA studies. Thermochim Acta 451(1):131–138CrossRef
28.
go back to reference Alonso MV, Oliet M, Garcia J, Rodriguez F, Echeverría J (2006) Gelation and isoconversional kinetic analysis of lignin–phenol–formaldehyde resol resins cure. Chem Eng J 122(3):159–166CrossRef Alonso MV, Oliet M, Garcia J, Rodriguez F, Echeverría J (2006) Gelation and isoconversional kinetic analysis of lignin–phenol–formaldehyde resol resins cure. Chem Eng J 122(3):159–166CrossRef
29.
go back to reference Katoueizadeh E, Zebarjad SM, Janghorban K (2018) Investigating the effect of synthesis conditions on the formation of urea–formaldehyde microcapsules. J Mater Sci Technol (In Press) Katoueizadeh E, Zebarjad SM, Janghorban K (2018) Investigating the effect of synthesis conditions on the formation of urea–formaldehyde microcapsules. J Mater Sci Technol (In Press)
30.
go back to reference Katoueizadeh E, Zebarjad SM, Janghorban K (2018) Morphological study of surface-modified urea–formaldehyde microcapsules using 3-aminopropyltriethoxy silane. Polym Bul (In Press) Katoueizadeh E, Zebarjad SM, Janghorban K (2018) Morphological study of surface-modified urea–formaldehyde microcapsules using 3-aminopropyltriethoxy silane. Polym Bul (In Press)
31.
go back to reference Rath J, Staudinger G (2001) Cracking reactions of tar from pyrolysis of spruce wood. Fuel 80(10):1379–1389CrossRef Rath J, Staudinger G (2001) Cracking reactions of tar from pyrolysis of spruce wood. Fuel 80(10):1379–1389CrossRef
32.
go back to reference Pap AE, Kordás K, George TF, Leppävuori S (2004) Thermal oxidation of porous silicon: study on reaction kinetics. J Phys Chem B 108(34):12744–12747CrossRef Pap AE, Kordás K, George TF, Leppävuori S (2004) Thermal oxidation of porous silicon: study on reaction kinetics. J Phys Chem B 108(34):12744–12747CrossRef
33.
go back to reference Vyazovkin S, Linert W (1995) Detecting isokinetic relationships in non-isothermal systems by the isoconversional method. Thermochim Acta 269:61–72CrossRef Vyazovkin S, Linert W (1995) Detecting isokinetic relationships in non-isothermal systems by the isoconversional method. Thermochim Acta 269:61–72CrossRef
34.
go back to reference Galwey AK, Brown ME (2002) Application of the Arrhenius equation to solid state kinetics: can this be justified? Thermochim Acta 386(1):91–98CrossRef Galwey AK, Brown ME (2002) Application of the Arrhenius equation to solid state kinetics: can this be justified? Thermochim Acta 386(1):91–98CrossRef
35.
go back to reference Prasad TP, Kanungo SB, Ray HS (1992) Non-isothermal kinetics: some merits and limitations. Thermochim Acta 203:503–514CrossRef Prasad TP, Kanungo SB, Ray HS (1992) Non-isothermal kinetics: some merits and limitations. Thermochim Acta 203:503–514CrossRef
36.
go back to reference Vyazovkin S, Wight CA (1997) Kinetics in solids. Annu Rev Phys Chem 48(1):125–149CrossRef Vyazovkin S, Wight CA (1997) Kinetics in solids. Annu Rev Phys Chem 48(1):125–149CrossRef
37.
go back to reference Ozawa T (2000) Thermal analysis—review and prospect. Thermochim Acta 355(1):35–42CrossRef Ozawa T (2000) Thermal analysis—review and prospect. Thermochim Acta 355(1):35–42CrossRef
38.
go back to reference Vyazovkin S (1996) A unified approach to kinetic processing of nonisothermal data. In J Chem Kinet 28(2):95–101CrossRef Vyazovkin S (1996) A unified approach to kinetic processing of nonisothermal data. In J Chem Kinet 28(2):95–101CrossRef
39.
go back to reference Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520(1–9):1–19CrossRef Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520(1–9):1–19CrossRef
40.
go back to reference Vyazovkin S (2006) Model-free kinetics: staying free of multiplying entities without necessity. J Therm Anal Calorim 83(1):45–51CrossRef Vyazovkin S (2006) Model-free kinetics: staying free of multiplying entities without necessity. J Therm Anal Calorim 83(1):45–51CrossRef
41.
go back to reference Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38(11):1881–1886CrossRef Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38(11):1881–1886CrossRef
42.
go back to reference Starink MJ (2003) The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta 404(1):163–176CrossRef Starink MJ (2003) The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta 404(1):163–176CrossRef
43.
go back to reference Liu Y, Cain JP, Wang H, Laskin A (2007) Kinetic study of heterogeneous reaction of deliquesced NaCl particles with gaseous HNO3 using particle-on-substrate stagnation flow reactor approach. J Phys Chem A 111(40):10026–10043CrossRef Liu Y, Cain JP, Wang H, Laskin A (2007) Kinetic study of heterogeneous reaction of deliquesced NaCl particles with gaseous HNO3 using particle-on-substrate stagnation flow reactor approach. J Phys Chem A 111(40):10026–10043CrossRef
44.
go back to reference Edoga MO (2006) Comparative study of synthesis procedures for urea-formaldehyde resins (part I). Leonardo Elect J Pract Tehnol 9:63–80 Edoga MO (2006) Comparative study of synthesis procedures for urea-formaldehyde resins (part I). Leonardo Elect J Pract Tehnol 9:63–80
45.
go back to reference Mido Y (1973) An infrared study of various dialkylureas in solution. Spectrochim Acta A: Mol Spectrosc 29(3):431–438CrossRef Mido Y (1973) An infrared study of various dialkylureas in solution. Spectrochim Acta A: Mol Spectrosc 29(3):431–438CrossRef
46.
go back to reference Myers GE (1981) Investigation of urea–formaldehyde polymer cure by infrared. J Appl Polym Sci 26(3):747–764CrossRef Myers GE (1981) Investigation of urea–formaldehyde polymer cure by infrared. J Appl Polym Sci 26(3):747–764CrossRef
47.
go back to reference Chabert J (1966) Contribution a L’É tude Physico-Chemique de la Sorption de Vapeur D’Eau par les Fibres Textiles. Bul Textile Inst France 20:553–608 Chabert J (1966) Contribution a L’É tude Physico-Chemique de la Sorption de Vapeur D’Eau par les Fibres Textiles. Bul Textile Inst France 20:553–608
48.
go back to reference Cobler JG, Chow CD (1979) Analysis of high polymers. Anal Chem 51(5):287–303CrossRef Cobler JG, Chow CD (1979) Analysis of high polymers. Anal Chem 51(5):287–303CrossRef
49.
go back to reference Colthup N. Introduction to infrared and Raman spectroscopy. Elsevier; 2012 Colthup N. Introduction to infrared and Raman spectroscopy. Elsevier; 2012
50.
go back to reference Lopez Tellez G, Vigueras-Santiago E, Hernandez-Lopez S, Bilyeu B (2008) Synthesis and thermal cross-linking study of partially-aminated epoxidized linseed oil. Des Monomers Polym 11(5):435–445CrossRef Lopez Tellez G, Vigueras-Santiago E, Hernandez-Lopez S, Bilyeu B (2008) Synthesis and thermal cross-linking study of partially-aminated epoxidized linseed oil. Des Monomers Polym 11(5):435–445CrossRef
51.
go back to reference Kaloustian J, El-Moselhy TF, Portugal H (2003) Chemical and thermal analysis of the biopolymers in thyme (Thymus vulgaris). Thermochim Acta 401(2):77–86CrossRef Kaloustian J, El-Moselhy TF, Portugal H (2003) Chemical and thermal analysis of the biopolymers in thyme (Thymus vulgaris). Thermochim Acta 401(2):77–86CrossRef
52.
go back to reference Wang R, Hu H, He X, Liu W, Li H, Guo Q, Yuan L (2011) Synthesis and characterization of chitosan/urea-formaldehyde shell microcapsules containing dicyclopentadiene. J Appl Polym Sci 121(4):2202–2212CrossRef Wang R, Hu H, He X, Liu W, Li H, Guo Q, Yuan L (2011) Synthesis and characterization of chitosan/urea-formaldehyde shell microcapsules containing dicyclopentadiene. J Appl Polym Sci 121(4):2202–2212CrossRef
53.
go back to reference Ting Z, Min Z, Xiao-Mei T, Feng C, Jian-Hui Q (2010) Optimal preparation and characterization of poly (urea–formaldehyde) microcapsules. J Appl Polym Sci 115(4):2162–2169CrossRef Ting Z, Min Z, Xiao-Mei T, Feng C, Jian-Hui Q (2010) Optimal preparation and characterization of poly (urea–formaldehyde) microcapsules. J Appl Polym Sci 115(4):2162–2169CrossRef
54.
go back to reference de la Paz Miguel M, Ollier R, Alvarez V, Vallo C (2016) Effect of the preparation method on the structure of linseed oil-filled poly (urea-formaldehyde) microcapsules. Prog Org Coat 97:194–202CrossRef de la Paz Miguel M, Ollier R, Alvarez V, Vallo C (2016) Effect of the preparation method on the structure of linseed oil-filled poly (urea-formaldehyde) microcapsules. Prog Org Coat 97:194–202CrossRef
55.
go back to reference Ogata YH, Yoshimi N, Yasuda R, Tsuboi T, Sakka T, Otsuki A (2001) Structural change in p-type porous silicon by thermal annealing. J Appl Phys 90(12):6487–6492CrossRef Ogata YH, Yoshimi N, Yasuda R, Tsuboi T, Sakka T, Otsuki A (2001) Structural change in p-type porous silicon by thermal annealing. J Appl Phys 90(12):6487–6492CrossRef
56.
go back to reference Baghbani F, Moztarzadeh F, Nazari AG, Kamran AR, Tondnevis F, Nezafati N, Gholipourmalekabadi M, Mozafari M (2012) Biological response of biphasic hydroxyapatite/tricalcium phosphate scaffolds intended for low load-bearing orthopaedic applications. Adv Compos Lett 21(1):16–24 Baghbani F, Moztarzadeh F, Nazari AG, Kamran AR, Tondnevis F, Nezafati N, Gholipourmalekabadi M, Mozafari M (2012) Biological response of biphasic hydroxyapatite/tricalcium phosphate scaffolds intended for low load-bearing orthopaedic applications. Adv Compos Lett 21(1):16–24
57.
go back to reference Jiang X, Li C, Chi Y, Yan J (2010) TG-FTIR study on urea-formaldehyde resin residue during pyrolysis and combustion. J Hazard Mater 173(1):205–210CrossRef Jiang X, Li C, Chi Y, Yan J (2010) TG-FTIR study on urea-formaldehyde resin residue during pyrolysis and combustion. J Hazard Mater 173(1):205–210CrossRef
58.
go back to reference Galwey AK, Brown ME. Kinetic background to thermal analysis and calorimetry, 1998CrossRef Galwey AK, Brown ME. Kinetic background to thermal analysis and calorimetry, 1998CrossRef
59.
go back to reference Cai X, Riedl B, Wan H, Zhang SY, Wang XM (2010) A study on the curing and viscoelastic characteristics of melamine–urea–formaldehyde resin in the presence of aluminium silicate nanoclays. Compos A: Appl Sci Manuf 41(5):604–611CrossRef Cai X, Riedl B, Wan H, Zhang SY, Wang XM (2010) A study on the curing and viscoelastic characteristics of melamine–urea–formaldehyde resin in the presence of aluminium silicate nanoclays. Compos A: Appl Sci Manuf 41(5):604–611CrossRef
60.
go back to reference Perez J, Cavaillé JY (1995) Thermally stimulated creep: a theoretical understanding of the compensation law. J Phys III 5(6):791–805 Perez J, Cavaillé JY (1995) Thermally stimulated creep: a theoretical understanding of the compensation law. J Phys III 5(6):791–805
61.
go back to reference Koga N (1994) A review of the mutual dependence of Arrhenius parameters evaluated by the thermoanalytical study of solid-state reactions: the kinetic compensation effect. Thermochim Acta 244:1–20CrossRef Koga N (1994) A review of the mutual dependence of Arrhenius parameters evaluated by the thermoanalytical study of solid-state reactions: the kinetic compensation effect. Thermochim Acta 244:1–20CrossRef
Metadata
Title
Model-free kinetic analysis of thermal behavior of urea-formaldehyde microcapsules
Authors
E. Katoueizadeh
S. M. Zebarjad
K. Janghorban
A. Ghafarinazari
Publication date
01-10-2018
Publisher
Springer Netherlands
Published in
Journal of Polymer Research / Issue 10/2018
Print ISSN: 1022-9760
Electronic ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-018-1619-y

Other articles of this Issue 10/2018

Journal of Polymer Research 10/2018 Go to the issue

Premium Partners