Skip to main content
Top

2019 | OriginalPaper | Chapter

12. Modeling Dislocation in Binary Magnesium-Based Alloys Using Atomistic Method

Authors : Sébastien Groh, Mohammad K. Nahhas

Published in: Handbook of Mechanics of Materials

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the wake of developing biodegradable metallic implants for orthopedic practice or lightweight structural components for the automotive industry, both fundamental and applied research on magnesium and its alloys regained a high interest in the last decade. As of today, the major issues delaying the integration of the magnesium technology in the medical and automotive industries are (i) a lack of ductility and (ii) a poor corrosion resistance. Alloying is a common strategy used to improve the ductility and the corrosion resistance. Although density functional theory is a powerful method that allows one to quantify material parameters to be used later in a theoretical model, atomistic methods in the framework of semi-empirical potentials are complementary to density functional theory. While the data obtained from semi-empirical potentials are more qualitative than quantitative, it does not prevent atomistic calculations in the framework of semi-empirical potentials to validate/disprove/enrich an existing theoretical model or even to provide insights for the development of a new theoretical model. The validity of the data derived from atomistic calculations in the framework of semi-empirical potentials depends on the accuracy and transferability of the potentials to capture the physics involved in the problem. In view of modeling the mechanical properties of a binary magnesium-based alloy using semi-empirical potentials, one has to validate the ability of the potentials to capture the physics governing the interactions between the alloying element and the micromechanisms carrying the inelastic behavior. In this chapter, we are reviewing the interaction between alloying elements and (i) stacking faults and (ii) <a> dislocations from the basal and prismatic slip systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Witte F. The history of biodegradable magnesium implants: a review. Acta Biomater. 2010;6:1680–92.CrossRef Witte F. The history of biodegradable magnesium implants: a review. Acta Biomater. 2010;6:1680–92.CrossRef
2.
go back to reference Friedrich HE, Mordike BL. Magnesium technology: metallurgy, design data, application. Berlin: Springer; 2006. Friedrich HE, Mordike BL. Magnesium technology: metallurgy, design data, application. Berlin: Springer; 2006.
3.
go back to reference Hench LL, Polak JM. Third-generation biomedical materials. Science. 2002;295:1014–7.CrossRef Hench LL, Polak JM. Third-generation biomedical materials. Science. 2002;295:1014–7.CrossRef
4.
go back to reference Zreiqat H, Howlett CR, Zannettino A, Evans P, Schulze-Tanzil G, Knabe C, et al. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res. 2002;62:175–84.CrossRef Zreiqat H, Howlett CR, Zannettino A, Evans P, Schulze-Tanzil G, Knabe C, et al. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res. 2002;62:175–84.CrossRef
5.
go back to reference Harrison R, Maradze D, Lyons S, Zheng Y, Liu Y. Corrosion of magnesium and magnesium-calcium alloy in biologically-simulated environment. Prog Nat Sci Mater Int. 2014;24:539–46.CrossRef Harrison R, Maradze D, Lyons S, Zheng Y, Liu Y. Corrosion of magnesium and magnesium-calcium alloy in biologically-simulated environment. Prog Nat Sci Mater Int. 2014;24:539–46.CrossRef
6.
go back to reference Zheng YF, Gu XN, Witte F. Biodegradable metals. Mater Sci Eng R. 2014;77:1–34.CrossRef Zheng YF, Gu XN, Witte F. Biodegradable metals. Mater Sci Eng R. 2014;77:1–34.CrossRef
7.
go back to reference Wu Z, Curtin WA. The origin of high hardening and low ductility in magnesium. Nature. 2015;526:62–7.CrossRef Wu Z, Curtin WA. The origin of high hardening and low ductility in magnesium. Nature. 2015;526:62–7.CrossRef
8.
go back to reference Kim Y-M, Kim NJ, Lee B-J. Atomistic modeling of pure Mg and Mg-Al systems. CALPHAD Comp Coupl Phase Diagrams Thermo. 2009;33:650–7. Kim Y-M, Kim NJ, Lee B-J. Atomistic modeling of pure Mg and Mg-Al systems. CALPHAD Comp Coupl Phase Diagrams Thermo. 2009;33:650–7.
9.
go back to reference Wu Z, Francis MF, Curtin WA. Magnesium interatomic potential for simulating plasticity and fracture phenomena. Model Simul Mater Sci Eng. 2015;23:015004.CrossRef Wu Z, Francis MF, Curtin WA. Magnesium interatomic potential for simulating plasticity and fracture phenomena. Model Simul Mater Sci Eng. 2015;23:015004.CrossRef
10.
go back to reference Groh S. Modified embedded-atom potential for B2-MgAg. Simul Mater Sci Eng. 2016;24:065011.CrossRef Groh S. Modified embedded-atom potential for B2-MgAg. Simul Mater Sci Eng. 2016;24:065011.CrossRef
11.
go back to reference Karewar SV, Gupta N, Caro A, Srinivasan SG. A concentration dependent embedded atom method potential for the Mg-Li system. Comput Mater Sci. 2014;85:172–8.CrossRef Karewar SV, Gupta N, Caro A, Srinivasan SG. A concentration dependent embedded atom method potential for the Mg-Li system. Comput Mater Sci. 2014;85:172–8.CrossRef
12.
go back to reference Mendelev MI, Asta M, Rahman MJ, Hoyt JJ. Development of interatomic potentials appropriate for simulation of solid-liquid interface properties in Al-Mg alloys. Phil Mag. 2009;89:3269–85.CrossRef Mendelev MI, Asta M, Rahman MJ, Hoyt JJ. Development of interatomic potentials appropriate for simulation of solid-liquid interface properties in Al-Mg alloys. Phil Mag. 2009;89:3269–85.CrossRef
13.
go back to reference Sun DY, Mendelev MI, Becker CA, Kudin K, Haxhilali R, Asta M, et al. Crystal-melt interfacial free energies in hcp metals: a molecular dynamics study of Mg. Phys Rev B. 2006;73:024116.CrossRef Sun DY, Mendelev MI, Becker CA, Kudin K, Haxhilali R, Asta M, et al. Crystal-melt interfacial free energies in hcp metals: a molecular dynamics study of Mg. Phys Rev B. 2006;73:024116.CrossRef
14.
go back to reference Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R, et al. Degradable biomaterials based on magnesium corrosion. Curr Opinion Solid State Mater Sci. 2008;12:63–72.CrossRef Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R, et al. Degradable biomaterials based on magnesium corrosion. Curr Opinion Solid State Mater Sci. 2008;12:63–72.CrossRef
15.
go back to reference Xiao W, Zhang X, Geng WT, Lu G. Atomistic study of plastic deformation in Mg-Al alloys. Mater Sci Eng A. 2013;586:245–52.CrossRef Xiao W, Zhang X, Geng WT, Lu G. Atomistic study of plastic deformation in Mg-Al alloys. Mater Sci Eng A. 2013;586:245–52.CrossRef
16.
go back to reference Yi P, Cammarata RC, Falk ML. Atomistic simulation of solid solution hardening in Mg/Al alloys: examination of composition scaling and thermo-mechanical relationships. Acta Mater. 2016;105:378–89.CrossRef Yi P, Cammarata RC, Falk ML. Atomistic simulation of solid solution hardening in Mg/Al alloys: examination of composition scaling and thermo-mechanical relationships. Acta Mater. 2016;105:378–89.CrossRef
17.
go back to reference Shen L, Proust G, Ranzi G. An atomistic study of dislocation-solute interaction in Mg-Al alloys. IOP Conf Series Mater Sci Eng. 2010;10:012177.CrossRef Shen L, Proust G, Ranzi G. An atomistic study of dislocation-solute interaction in Mg-Al alloys. IOP Conf Series Mater Sci Eng. 2010;10:012177.CrossRef
18.
go back to reference Shen L. Molecular dynamics study of Al solute-dislocation interactions in Mg Alloys. Interaction Multiscale Mechanics. 2013;6:127–36.CrossRef Shen L. Molecular dynamics study of Al solute-dislocation interactions in Mg Alloys. Interaction Multiscale Mechanics. 2013;6:127–36.CrossRef
19.
go back to reference Kim K-H., Jeon JB., Kim NJ., Lee B-J. Role of yttrium in activation of <c+a> slip in magnesium: an atomistic approach. Scr Mater 2015; 108:104–8. Kim K-H., Jeon JB., Kim NJ., Lee B-J. Role of yttrium in activation of <c+a> slip in magnesium: an atomistic approach. Scr Mater 2015; 108:104–8.
20.
go back to reference Nahhas MK, Groh S. Atomistic modeling of grain boundary behavior under shear conditions in magnesium and magnesium-based binary alloys. J Phys Chem Solids. 2018;113:108–18.CrossRef Nahhas MK, Groh S. Atomistic modeling of grain boundary behavior under shear conditions in magnesium and magnesium-based binary alloys. J Phys Chem Solids. 2018;113:108–18.CrossRef
21.
go back to reference Miyazawa N, Yoshida T, Yuasa M, Chino Y, Mabushi M. Effect of segregated Al on {10–12} and {10–11} twinning in Mg. J Mater Res. 2015;30:3629–41.CrossRef Miyazawa N, Yoshida T, Yuasa M, Chino Y, Mabushi M. Effect of segregated Al on {10–12} and {10–11} twinning in Mg. J Mater Res. 2015;30:3629–41.CrossRef
22.
go back to reference Bhatia MA, Mathaudhu SN, Solanki K. Atomic-scale investigation of creep behavior in nanocrystalline Mg and Mg-Y alloys. Acta Mater. 2015;99:382–91.CrossRef Bhatia MA, Mathaudhu SN, Solanki K. Atomic-scale investigation of creep behavior in nanocrystalline Mg and Mg-Y alloys. Acta Mater. 2015;99:382–91.CrossRef
23.
go back to reference Reddy R, Groh S. Atomistic modeling of the effect of calcium on the yield surface of nanopolycrystalline magnesium-based alloys. Comput Mater Sci. 2016;112:219–29.CrossRef Reddy R, Groh S. Atomistic modeling of the effect of calcium on the yield surface of nanopolycrystalline magnesium-based alloys. Comput Mater Sci. 2016;112:219–29.CrossRef
24.
go back to reference Karewar S, Gupta N, Groh S, Martinez E, Caro A. Srinivasan S.G. Effect of Li on the deformation mechanisms of nanocrystalline hexagonal close packed magnesium. Comp Mater Sci. 2017;126:252–64.CrossRef Karewar S, Gupta N, Groh S, Martinez E, Caro A. Srinivasan S.G. Effect of Li on the deformation mechanisms of nanocrystalline hexagonal close packed magnesium. Comp Mater Sci. 2017;126:252–64.CrossRef
25.
go back to reference Liu W-Y, Adams JB. Grain-boundary segregation in Al-10%Mg alloys at hot working temperatures. Acta Mater. 1998;46:3467–76.CrossRef Liu W-Y, Adams JB. Grain-boundary segregation in Al-10%Mg alloys at hot working temperatures. Acta Mater. 1998;46:3467–76.CrossRef
26.
go back to reference Zhou XW, Johnson RA, Wadley HGN. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys Rev B. 2004;69:144113.CrossRef Zhou XW, Johnson RA, Wadley HGN. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys Rev B. 2004;69:144113.CrossRef
27.
go back to reference Pei Z, Zhu LF, Friák M, Sandlöbes S, von Pezold J, Sheng HW, et al. Ab initio and atomistic study of generalized stacking fault energies in Mg and Mg-Y alloys. New J Phys. 2013;15:043020.CrossRef Pei Z, Zhu LF, Friák M, Sandlöbes S, von Pezold J, Sheng HW, et al. Ab initio and atomistic study of generalized stacking fault energies in Mg and Mg-Y alloys. New J Phys. 2013;15:043020.CrossRef
28.
go back to reference Kim Y-M, Jung I-H, Lee B-J. Atomistic modeling of pure Li and Mg-Li system. Model Simul Mater Sci Eng. 2012;20:035005.CrossRef Kim Y-M, Jung I-H, Lee B-J. Atomistic modeling of pure Li and Mg-Li system. Model Simul Mater Sci Eng. 2012;20:035005.CrossRef
29.
go back to reference Kim K-H, Jeon JB, Lee B-J. Modified embedded-atom method interatomic potentials for Mg-X (X = Y, Sn, Ca) binary systems. CALPHAD Comp Coupl Phase Diagrams Thermo. 2015;48:27–34. Kim K-H, Jeon JB, Lee B-J. Modified embedded-atom method interatomic potentials for Mg-X (X = Y, Sn, Ca) binary systems. CALPHAD Comp Coupl Phase Diagrams Thermo. 2015;48:27–34.
30.
go back to reference Groh S. Mechanical, thermal, and physical properties of Mg-Ca compounds in the framework of the modified embedded-atom method. J Mech Behav Biomed Mater. 2015;42:88–99.CrossRef Groh S. Mechanical, thermal, and physical properties of Mg-Ca compounds in the framework of the modified embedded-atom method. J Mech Behav Biomed Mater. 2015;42:88–99.CrossRef
31.
go back to reference Moitra A, Kim S-G, Horstemeyer MF. Solute effect on basal and prismatic slip systems of Mg. J Phys Condens Matter. 2014;26:445004.CrossRef Moitra A, Kim S-G, Horstemeyer MF. Solute effect on basal and prismatic slip systems of Mg. J Phys Condens Matter. 2014;26:445004.CrossRef
32.
go back to reference Vitek V. Intrinsic stacking faults in body-centred cubic crystals. Philos Mag. 1968;18:773–86.CrossRef Vitek V. Intrinsic stacking faults in body-centred cubic crystals. Philos Mag. 1968;18:773–86.CrossRef
33.
go back to reference Tsuru T, Udagawa Y, Yamaguchi M, Itakura M, Kaburaki H, Kaji Y. Solution softening in magnesium alloys: the effect of solid solutions on the dislocation core structure and nonbasal slip. J Phys Condens Matter. 2013;24:02202. Tsuru T, Udagawa Y, Yamaguchi M, Itakura M, Kaburaki H, Kaji Y. Solution softening in magnesium alloys: the effect of solid solutions on the dislocation core structure and nonbasal slip. J Phys Condens Matter. 2013;24:02202.
34.
go back to reference Alam M, Groh S. Dislocation modeling in bcc lithium: a comparison between continuum and atomistic predictions in the modified embedded atoms method. J Phys Chem Solids. 2015;82:1–9.CrossRef Alam M, Groh S. Dislocation modeling in bcc lithium: a comparison between continuum and atomistic predictions in the modified embedded atoms method. J Phys Chem Solids. 2015;82:1–9.CrossRef
35.
go back to reference Rice J. Dislocation nucleation from a crack tip: an analysis based on the Peierls concept. J Mech Phys Solids. 1992;40:239–71.CrossRef Rice J. Dislocation nucleation from a crack tip: an analysis based on the Peierls concept. J Mech Phys Solids. 1992;40:239–71.CrossRef
36.
go back to reference Groh S, Alam M. Fracture behavior of lithium single crystal in the framework of (semi-) empirical force field derived from first-principles. Model Simul Mater Sci Eng. 2015;23:045008.CrossRef Groh S, Alam M. Fracture behavior of lithium single crystal in the framework of (semi-) empirical force field derived from first-principles. Model Simul Mater Sci Eng. 2015;23:045008.CrossRef
37.
go back to reference Yasi JA, Hector LG Jr, Trinkle DR. First-principles data for solid-solution strengthening of magnesium: from geometry and chemistry to properties. Acta Mater. 2010;58:5704–13.CrossRef Yasi JA, Hector LG Jr, Trinkle DR. First-principles data for solid-solution strengthening of magnesium: from geometry and chemistry to properties. Acta Mater. 2010;58:5704–13.CrossRef
38.
go back to reference Muzyk M, Pakiela Z, Kurzydlowski KJ. Generalized stacking fault energy in magnesium alloys: density functional theory calculations. Scr Mater. 2012;66:219–22.CrossRef Muzyk M, Pakiela Z, Kurzydlowski KJ. Generalized stacking fault energy in magnesium alloys: density functional theory calculations. Scr Mater. 2012;66:219–22.CrossRef
39.
go back to reference Shang SL, Wang WY, Zhou BC, Wang Y, Darling KA, Kecskes LJ, et al. Generalized stacking fault energy, ideal strength and twinnability of dilute Mg-based alloys: a first-principles study of shear deformation. Acta Mater. 2014;67:168–80.CrossRef Shang SL, Wang WY, Zhou BC, Wang Y, Darling KA, Kecskes LJ, et al. Generalized stacking fault energy, ideal strength and twinnability of dilute Mg-based alloys: a first-principles study of shear deformation. Acta Mater. 2014;67:168–80.CrossRef
40.
go back to reference Zu G., Groh S. Effect of segregated alloying element on the intrinsic fracture behavior of Mg. Theo Appl Frac Mech. 2016;85:236–45.CrossRef Zu G., Groh S. Effect of segregated alloying element on the intrinsic fracture behavior of Mg. Theo Appl Frac Mech. 2016;85:236–45.CrossRef
41.
go back to reference Fleischer RL. Substitutional solution hardening. Acta Metall. 1963;11:203–9.CrossRef Fleischer RL. Substitutional solution hardening. Acta Metall. 1963;11:203–9.CrossRef
42.
go back to reference Labusch R. A statistical theory of solid solution hardening. Phys Status Solidi. 1970;41:659–69.CrossRef Labusch R. A statistical theory of solid solution hardening. Phys Status Solidi. 1970;41:659–69.CrossRef
43.
go back to reference Leyson GPM, Curtin WA. Friedel vs Labusch: the strong/weak pinning transition in solute strengthened metals. Phil Mag. 2013;93:2428–44.CrossRef Leyson GPM, Curtin WA. Friedel vs Labusch: the strong/weak pinning transition in solute strengthened metals. Phil Mag. 2013;93:2428–44.CrossRef
44.
go back to reference Groh S, Marin EB, Horstemeyer MF, Bammann DJ. Dislocation motion in magnesium: a study by molecular statics and molecular dynamics. Model Simul Mater Sci Eng. 2009;17:075009.CrossRef Groh S, Marin EB, Horstemeyer MF, Bammann DJ. Dislocation motion in magnesium: a study by molecular statics and molecular dynamics. Model Simul Mater Sci Eng. 2009;17:075009.CrossRef
45.
go back to reference Yamagata T. Correlation between characters of dislocations and operative slip systems in CsCl type intermetallic compounds. J Phys Soc Japan. 1978;45:1575–82.CrossRef Yamagata T. Correlation between characters of dislocations and operative slip systems in CsCl type intermetallic compounds. J Phys Soc Japan. 1978;45:1575–82.CrossRef
46.
go back to reference Yamaguchi M, Umakoshi Y. The deformation behaviour of intermetallic superlattice compounds. Prog Mater Sci. 1990;34:1–148.CrossRef Yamaguchi M, Umakoshi Y. The deformation behaviour of intermetallic superlattice compounds. Prog Mater Sci. 1990;34:1–148.CrossRef
47.
go back to reference Tang P-Y, Wen L, Tong Z-F, Tang B-Y, Peng L-M, Ding W-J. Stacking faults in B2-structured magnesium alloys from first principles calculations. Comput Mater Sci. 2011;50:3198–207.CrossRef Tang P-Y, Wen L, Tong Z-F, Tang B-Y, Peng L-M, Ding W-J. Stacking faults in B2-structured magnesium alloys from first principles calculations. Comput Mater Sci. 2011;50:3198–207.CrossRef
48.
go back to reference Lee E, Lee K-R, Baskes MI, Lee B-JA. Modified embedded-atom method interatomic potential for ionic systems: 2NNMEAM+Qeq. Phys Rev B. 2016;94:144110.CrossRef Lee E, Lee K-R, Baskes MI, Lee B-JA. Modified embedded-atom method interatomic potential for ionic systems: 2NNMEAM+Qeq. Phys Rev B. 2016;94:144110.CrossRef
49.
go back to reference Kong F, Longo RC, Zhang H, Liang C, Zheng Y, Cho K. Charge-transfer modified embedded-atom method for manganese oxides: nanostructuring effects on MnO2 nanorods. Comput Mater Sci. 2016;121:191–203.CrossRef Kong F, Longo RC, Zhang H, Liang C, Zheng Y, Cho K. Charge-transfer modified embedded-atom method for manganese oxides: nanostructuring effects on MnO2 nanorods. Comput Mater Sci. 2016;121:191–203.CrossRef
50.
go back to reference Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19.CrossRef Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19.CrossRef
Metadata
Title
Modeling Dislocation in Binary Magnesium-Based Alloys Using Atomistic Method
Authors
Sébastien Groh
Mohammad K. Nahhas
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6884-3_13

Premium Partners