Skip to main content
Top
Published in: Journal of Materials Science 13/2015

01-07-2015

Modeling grain growth kinetics of binary substitutional alloys by the thermodynamic extremal principle

Authors: M. M. Gong, R. H. R. Castro, F. Liu

Published in: Journal of Materials Science | Issue 13/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The thermodynamics and kinetics fundaments of grain growth in binary substitutional alloys were analyzed using the thermodynamic extremal principle. Applying the regular solution approximation, a new equation for solute segregation at steady-state diffusion is proposed, which suggests reduced solute segregation as the grain boundary (GB) solute concentration increases, differently from previous models [Acta Mater 2009;57(5):1466, Acta Mater 2012;60:4833, Scripta Mater 2010;63:989] that adopt constant segregation enthalpy. Furthermore, a self-consistent consideration has been carried out to account for the coupled changes in GB energy and GB mobility as a result of solute segregation. On this basis, the quantitative relation is evaluated between the thermodynamic and kinetic effects of solute segregation to determine the dominant role in retarding and even suppressing grain growth, by comparison of the dimensionless GB energy (i.e., the GB energy of alloy over that of pure solvent) and the dimensionless effective GB mobility (i.e., the effective GB mobility over that of pure solvent): the kinetic effect prevails if the dimensionless effective GB mobility is smaller than the dimensionless GB energy, and vice versa. The present model is adopted to describe well the experimental results for Fe–P alloys, and nanocrystalline Ni–P and Pd–Zr alloys.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
The value of diffusion coefficient of P in the grain boundaries of chemical similar Fe [55] is found within \( s\delta D_{\text{P}}^{\text{GB}} \) = 3.30 × 10−15exp(−92.47 × 103/R g T) at 950–1139 K [s as the segregation factor approximately evaluated by exp(−ΔH seg/R g T)]. The value of s is thus given as 207, the mean of 116–298 utilizing s = exp(−ΔH seg/R g T) with ΔH seg = −45 kJ mol−1 [13] at T = 1139–950 K. Therefore, the value of \( D_{\text{P}}^{\text{GB}} \) is calculated to be 3.5 × 10−16 m2 s−1 at T = 623 K.
 
Literature
1.
go back to reference Krill CE, Ehrhardt H, Birringer R (2005) Thermodynamic stabilization of nanocrystallinity. Z Metallkunde 96:1134–1141 Krill CE, Ehrhardt H, Birringer R (2005) Thermodynamic stabilization of nanocrystallinity. Z Metallkunde 96:1134–1141
2.
go back to reference Detor AJ, Miller MK, Schuh CA (2006) Solute distribution in nanocrystalline Ni-W alloys examined through atom probe tomography. Philos Mag 86:4459–4475CrossRef Detor AJ, Miller MK, Schuh CA (2006) Solute distribution in nanocrystalline Ni-W alloys examined through atom probe tomography. Philos Mag 86:4459–4475CrossRef
3.
go back to reference Detor AJ, Miller MK, Schuh CA (2007) Measuring grain-boundary segregation in nanocrystalline alloys: direct validation of statistical techniques using atom probe Tomography. Philos Mag Lett 87:581–587CrossRef Detor AJ, Miller MK, Schuh CA (2007) Measuring grain-boundary segregation in nanocrystalline alloys: direct validation of statistical techniques using atom probe Tomography. Philos Mag Lett 87:581–587CrossRef
4.
go back to reference Detor AJ, Schuh CA (2007) Tailoring and patterning the grain size of nanocrystalline alloys. Acta Mater 55:371–379CrossRef Detor AJ, Schuh CA (2007) Tailoring and patterning the grain size of nanocrystalline alloys. Acta Mater 55:371–379CrossRef
5.
go back to reference Darling KA, Chan RN, Wong PZ, Semones JE, Scattergood RO, Koch CC (2008) Grain-size stabilization in nanocrystalline FeZr alloys. Scripta Mater 59:530–533CrossRef Darling KA, Chan RN, Wong PZ, Semones JE, Scattergood RO, Koch CC (2008) Grain-size stabilization in nanocrystalline FeZr alloys. Scripta Mater 59:530–533CrossRef
7.
go back to reference Darling KA, VanLeeuwen BK, Semones JE, Koch CC, Scattergood RO, Kecskes LJ, Mathaudhu SN (2011) Stabilized nanocrystalline iron-based alloys: Guiding efforts in alloy selection. Mater Sci Eng A 528:4365–4371CrossRef Darling KA, VanLeeuwen BK, Semones JE, Koch CC, Scattergood RO, Kecskes LJ, Mathaudhu SN (2011) Stabilized nanocrystalline iron-based alloys: Guiding efforts in alloy selection. Mater Sci Eng A 528:4365–4371CrossRef
8.
go back to reference Chen YZ, Herz A, Kirchheim R (2011) Grain boundary segregation of carbon and formation of nanocrystalline iron-carbon alloys by ball milling. Mater Sci Forum 667–669:265–270 Chen YZ, Herz A, Kirchheim R (2011) Grain boundary segregation of carbon and formation of nanocrystalline iron-carbon alloys by ball milling. Mater Sci Forum 667–669:265–270
9.
go back to reference Liu F (2005) Precipitation of a metastable Fe(Ag) solid solution upon annealing of supersaturated Fe(Ag) thin film prepared by pulsed laser deposition. Appl Phys A 81:1095–1098CrossRef Liu F (2005) Precipitation of a metastable Fe(Ag) solid solution upon annealing of supersaturated Fe(Ag) thin film prepared by pulsed laser deposition. Appl Phys A 81:1095–1098CrossRef
10.
go back to reference Liu KW, Mücklich F (2001) Thermal stability of nano-RuAl produced by mechanical alloying. Acta Mater 49:395–403CrossRef Liu KW, Mücklich F (2001) Thermal stability of nano-RuAl produced by mechanical alloying. Acta Mater 49:395–403CrossRef
11.
go back to reference Natter H, Löffler MS, Krill CE, Hempelmann R (2001) Crystallite growth of nanocrystalline transition metals studied in situ by high temperature synchrotron X-ray diffraction. Scripta Mater 44:2321–2325CrossRef Natter H, Löffler MS, Krill CE, Hempelmann R (2001) Crystallite growth of nanocrystalline transition metals studied in situ by high temperature synchrotron X-ray diffraction. Scripta Mater 44:2321–2325CrossRef
12.
go back to reference Weissmüller J (1993) Alloy effects in nanostructures. Nanostruct Mater 3:261–272CrossRef Weissmüller J (1993) Alloy effects in nanostructures. Nanostruct Mater 3:261–272CrossRef
13.
go back to reference Kirchheim R (2002) Grain coarsening inhibited by solute segregation. Acta Mater 50:413–419CrossRef Kirchheim R (2002) Grain coarsening inhibited by solute segregation. Acta Mater 50:413–419CrossRef
14.
go back to reference Kirchheim R (2007) Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Acta Mater 55:5129–5138CrossRef Kirchheim R (2007) Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Acta Mater 55:5129–5138CrossRef
15.
go back to reference Kirchheim R (2007) Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation: II. Experimental evidence and consequences. Acta Mater 55:5139–5148CrossRef Kirchheim R (2007) Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation: II. Experimental evidence and consequences. Acta Mater 55:5139–5148CrossRef
16.
go back to reference Liu F, Kirchheim R (2004) Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation. J Cryst Growth 264:385–391CrossRef Liu F, Kirchheim R (2004) Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation. J Cryst Growth 264:385–391CrossRef
17.
go back to reference Liu F, Kirchheim R (2004) Grain boundary saturation and grain growth. Scripta Mater 51:521–525CrossRef Liu F, Kirchheim R (2004) Grain boundary saturation and grain growth. Scripta Mater 51:521–525CrossRef
18.
go back to reference Liu F, Kirchheim R (2004) Comparison between kinetic and thermodynamic effects on grain growth. Thin Solid Films 466:108–113CrossRef Liu F, Kirchheim R (2004) Comparison between kinetic and thermodynamic effects on grain growth. Thin Solid Films 466:108–113CrossRef
19.
go back to reference Trelewicz JR, Schuh CA (2009) Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys. Phys Rev B 79:094112CrossRef Trelewicz JR, Schuh CA (2009) Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys. Phys Rev B 79:094112CrossRef
20.
go back to reference Detor AJ, Schuh CA (2007) Grain boundary segregation, chemical ordering and stability of nanocrystalline alloys: atomistic computer simulations in the Ni–W system. Acta Mater 55:4221–4232CrossRef Detor AJ, Schuh CA (2007) Grain boundary segregation, chemical ordering and stability of nanocrystalline alloys: atomistic computer simulations in the Ni–W system. Acta Mater 55:4221–4232CrossRef
21.
go back to reference Millett PC, Selvam RP, Bansal S, Saxena A (2005) Atomistic simulation of grain boundary energetics—effects of dopants. Acta Mater 53:3671–3678CrossRef Millett PC, Selvam RP, Bansal S, Saxena A (2005) Atomistic simulation of grain boundary energetics—effects of dopants. Acta Mater 53:3671–3678CrossRef
22.
go back to reference Millett PC, Selvam RP, Saxena A (2006) Molecular dynamics simulations of grain size stabilization in nanocrystalline materials by addition of dopants. Acta Mater 54:297–303CrossRef Millett PC, Selvam RP, Saxena A (2006) Molecular dynamics simulations of grain size stabilization in nanocrystalline materials by addition of dopants. Acta Mater 54:297–303CrossRef
23.
go back to reference Millett PC, Selvam RP, Saxena A (2007) Stabilizing nanocrystalline materials with dopants. Acta Mater 55:2329–2336CrossRef Millett PC, Selvam RP, Saxena A (2007) Stabilizing nanocrystalline materials with dopants. Acta Mater 55:2329–2336CrossRef
24.
go back to reference Chookajorn T, Murdoch HA, Schuh CA (2012) Design of stable nanocrystalline alloys. Science 337:951–954CrossRef Chookajorn T, Murdoch HA, Schuh CA (2012) Design of stable nanocrystalline alloys. Science 337:951–954CrossRef
25.
go back to reference Saber M, Kotan H, Koch C, Scattergood R (2013) Thermodynamic stabilization of nanocrystalline binary alloys. J Appl Phys 113:063515CrossRef Saber M, Kotan H, Koch C, Scattergood R (2013) Thermodynamic stabilization of nanocrystalline binary alloys. J Appl Phys 113:063515CrossRef
26.
go back to reference Saber M, Kotan H, Koch C, Scattergood R (2013) A predictive model for thermodynamic stability of grain size in nanocrystalline ternary alloys. J Appl Phys 114:103510CrossRef Saber M, Kotan H, Koch C, Scattergood R (2013) A predictive model for thermodynamic stability of grain size in nanocrystalline ternary alloys. J Appl Phys 114:103510CrossRef
27.
go back to reference Cahn JW (1962) The impurity-drag effect in grain boundary motion. Acta Metall 10:789–798CrossRef Cahn JW (1962) The impurity-drag effect in grain boundary motion. Acta Metall 10:789–798CrossRef
28.
go back to reference Lücke K, Stüwe HP (1971) On the theory of impurity controlled grain boundary motion. Acta Metall 19:1087–1099CrossRef Lücke K, Stüwe HP (1971) On the theory of impurity controlled grain boundary motion. Acta Metall 19:1087–1099CrossRef
29.
go back to reference Smith CS (1948) Grains, phases, and interphases: an interpretation of microstructure. Trans AIME 175:15–51 Smith CS (1948) Grains, phases, and interphases: an interpretation of microstructure. Trans AIME 175:15–51
30.
go back to reference Burke JE (1949) Some factors affecting the rate of grain growth in metals. Trans Metall Soc AIME 175:73 Burke JE (1949) Some factors affecting the rate of grain growth in metals. Trans Metall Soc AIME 175:73
31.
go back to reference Michels A, Krill CE, Ehrhardt H, Birringer R, Wu DT (1999) Modelling the influence of grain-size-dependent solute drag on the kinetics of grain growth in nanocrystalline materials. Acta Mater 47:2143–2152CrossRef Michels A, Krill CE, Ehrhardt H, Birringer R, Wu DT (1999) Modelling the influence of grain-size-dependent solute drag on the kinetics of grain growth in nanocrystalline materials. Acta Mater 47:2143–2152CrossRef
32.
go back to reference Rabkin E (2000) On the grain size dependent solute and particle drag. Scripta Mater 42:1199–1206CrossRef Rabkin E (2000) On the grain size dependent solute and particle drag. Scripta Mater 42:1199–1206CrossRef
33.
go back to reference Hillert M, Sundman B (1976) A treatment of the solute drag on moving grain boundaries and phase interfaces in binary alloys. Acta Metall 24:731–743CrossRef Hillert M, Sundman B (1976) A treatment of the solute drag on moving grain boundaries and phase interfaces in binary alloys. Acta Metall 24:731–743CrossRef
34.
go back to reference Svoboda J, Fischer FD, Gamsjäger E (2002) Influence of solute segregation and drag on properties of migrating interfaces. Acta Mater 50:967–977CrossRef Svoboda J, Fischer FD, Gamsjäger E (2002) Influence of solute segregation and drag on properties of migrating interfaces. Acta Mater 50:967–977CrossRef
35.
go back to reference Svoboda J, Fischer FD, Leindl M (2011) Transient solute drag in migrating grain boundaries. Acta Mater 59:6556–6562CrossRef Svoboda J, Fischer FD, Leindl M (2011) Transient solute drag in migrating grain boundaries. Acta Mater 59:6556–6562CrossRef
36.
go back to reference Chen Z, Liu F, Wang HF, Yang W, Yang GC, Zhou YH (2009) Acta Mater 57:1466–1475CrossRef Chen Z, Liu F, Wang HF, Yang W, Yang GC, Zhou YH (2009) Acta Mater 57:1466–1475CrossRef
37.
go back to reference Chen Z, Liu F, Yang XQ, Shen CJ (2012) A thermokinetic description of nanoscale grain growth: analysis of the activation energy effect. Acta Mater 60:4833–4844CrossRef Chen Z, Liu F, Yang XQ, Shen CJ (2012) A thermokinetic description of nanoscale grain growth: analysis of the activation energy effect. Acta Mater 60:4833–4844CrossRef
38.
go back to reference Gong MM, Liu F, Zhang K (2010) A thermokinetic description of nanoscale grain growth: analysis of initial grain boundary excess amount. Scripta Mater 63:989–992CrossRef Gong MM, Liu F, Zhang K (2010) A thermokinetic description of nanoscale grain growth: analysis of initial grain boundary excess amount. Scripta Mater 63:989–992CrossRef
39.
go back to reference Hillert M (2007) Phase equilibria, phase diagrams and phase transformations: their thermodynamic basis, 2nd edn. Cambridge University Press, New YorkCrossRef Hillert M (2007) Phase equilibria, phase diagrams and phase transformations: their thermodynamic basis, 2nd edn. Cambridge University Press, New YorkCrossRef
40.
go back to reference Svoboda J, Turek I, Fischer FD (2005) Application of the thermodynamic extremal principle to modeling of thermodynamic processes in material sciences. Philos Mag 85:3699–3707CrossRef Svoboda J, Turek I, Fischer FD (2005) Application of the thermodynamic extremal principle to modeling of thermodynamic processes in material sciences. Philos Mag 85:3699–3707CrossRef
41.
go back to reference Wang H, Liu F, Yang W, Chen Z, Yang G, Zhou Y (2008) Solute trapping model incorporating diffusive interface. Acta Mater 56:746–753CrossRef Wang H, Liu F, Yang W, Chen Z, Yang G, Zhou Y (2008) Solute trapping model incorporating diffusive interface. Acta Mater 56:746–753CrossRef
42.
go back to reference Hillert M (1965) On the theory of normal and abnormal grain growth. Acta Metall 13:227–238CrossRef Hillert M (1965) On the theory of normal and abnormal grain growth. Acta Metall 13:227–238CrossRef
43.
go back to reference Burke J, Turnbull D (1952) Recrystallization and grain growth. Prog Metal Phys 3:220CrossRef Burke J, Turnbull D (1952) Recrystallization and grain growth. Prog Metal Phys 3:220CrossRef
44.
go back to reference Plessis JD (1990) Surface Segregation. Trans Tech Pubn, Switzerland Plessis JD (1990) Surface Segregation. Trans Tech Pubn, Switzerland
45.
go back to reference Mclean D (1957) Grain boundaries in metals. Oxford University Press, Oxford Mclean D (1957) Grain boundaries in metals. Oxford University Press, Oxford
46.
go back to reference Lejček P, Hofmann S, Janovec J (2007) Prediction of enthalpy and entropy of solute segregation at individual grain boundaries of α-iron and ferrite steels. Mater Sci Eng A 462:76–85CrossRef Lejček P, Hofmann S, Janovec J (2007) Prediction of enthalpy and entropy of solute segregation at individual grain boundaries of α-iron and ferrite steels. Mater Sci Eng A 462:76–85CrossRef
47.
go back to reference Nishizawa T (2008) Thermodynamics of Microstructures. ASM International, OH Nishizawa T (2008) Thermodynamics of Microstructures. ASM International, OH
48.
go back to reference Hondros ED (1965) The influence of phosphorus in dilute solid solution on the absolute surface and grain boundary energies of iron. Proc R Soc 286:479–498CrossRef Hondros ED (1965) The influence of phosphorus in dilute solid solution on the absolute surface and grain boundary energies of iron. Proc R Soc 286:479–498CrossRef
49.
go back to reference Takeuchi A, Inoue A (2000) Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys. Mater Trans JIM 41:1372–1378 Takeuchi A, Inoue A (2000) Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys. Mater Trans JIM 41:1372–1378
50.
go back to reference Färber B, Cadel E, Menand A, Schmitz G, Kirchheim R (2000) Phosphorus segregation in nanocrystalline Ni–3.6 at.% P alloy investigated with the tomographic atom probe (TAP). Acta Mater 48:789–796CrossRef Färber B, Cadel E, Menand A, Schmitz G, Kirchheim R (2000) Phosphorus segregation in nanocrystalline Ni–3.6 at.% P alloy investigated with the tomographic atom probe (TAP). Acta Mater 48:789–796CrossRef
51.
go back to reference Fowler RH, Guggenheim EA (1939) Statistical thermodynamics. Cambridge University Press, Cambridge Fowler RH, Guggenheim EA (1939) Statistical thermodynamics. Cambridge University Press, Cambridge
52.
go back to reference Vitos L, Ruban AV, Skriver HL, Kollár J (1998) The surface energy of metals. Surf Sci 411:186–202CrossRef Vitos L, Ruban AV, Skriver HL, Kollár J (1998) The surface energy of metals. Surf Sci 411:186–202CrossRef
53.
go back to reference Osmola D, Nolan P, Erb U, Palumbo G, Aust KT (1992) Microstructural evolution at large driving forces during grain growth of ultrafine-grained Ni-1.2wt% P. Phys Stat Sol A 131:569–575CrossRef Osmola D, Nolan P, Erb U, Palumbo G, Aust KT (1992) Microstructural evolution at large driving forces during grain growth of ultrafine-grained Ni-1.2wt% P. Phys Stat Sol A 131:569–575CrossRef
54.
go back to reference Mishin Y, Herzig C, Bernardini J, Gust W (1997) Grain boundary diffusion: fundamentals to recent developments. Int Mater Rev 42:155–178CrossRef Mishin Y, Herzig C, Bernardini J, Gust W (1997) Grain boundary diffusion: fundamentals to recent developments. Int Mater Rev 42:155–178CrossRef
55.
56.
go back to reference VanLeeuwen BK, Darling KA, Koch CC, Scattergood RO, Butler BG (2010) Thermal stability of nanocrystalline Pd81Zr19. Acta Mater 58:4292–4297CrossRef VanLeeuwen BK, Darling KA, Koch CC, Scattergood RO, Butler BG (2010) Thermal stability of nanocrystalline Pd81Zr19. Acta Mater 58:4292–4297CrossRef
Metadata
Title
Modeling grain growth kinetics of binary substitutional alloys by the thermodynamic extremal principle
Authors
M. M. Gong
R. H. R. Castro
F. Liu
Publication date
01-07-2015
Publisher
Springer US
Published in
Journal of Materials Science / Issue 13/2015
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9010-4

Other articles of this Issue 13/2015

Journal of Materials Science 13/2015 Go to the issue

Premium Partners