Skip to main content
Top

2019 | OriginalPaper | Chapter

Modeling of Cell Membrane Systems

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The mechanisms that take place in or through cell membranes are vitally important for all living organisms. The molecules embedded in or associated to membranes, such as transmembrane proteins, behave dynamically to perform their functions. Although experimental techniques have improved considerably in recent decades, when combined with computational means of modeling, they reveal secrets behind the mechanisms related to membrane systems. The resolution of the structures of membrane proteins has become trivial recently using computerized prediction tools. The worldwide accumulation of structural data in databases enables the application of in-silico methodologies. Simulations, together with the various lipid membrane models, provide information through the dynamic exploration of conformational space. In this chapter, the basics of modeling are discussed, with a focus on molecular dynamic modeling methodology. In addition to modeling, visualization and analysis tools are also mentioned.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R.P. Feynman, The Feynman Lectures on Physics – Vol. III, The Feynman Lectures on Physics (1963) R.P. Feynman, The Feynman Lectures on Physics – Vol. III, The Feynman Lectures on Physics (1963)
2.
go back to reference M. Karplus, Y.Q. Gao, J. Ma, A. Van Der Vaart, W. Yang, A.H. Zewail, Protein structural transitions and their functional role. Philos. Trans. Math. Phys. Eng. Sci. Ser. A 363, 331 (2005)CrossRef M. Karplus, Y.Q. Gao, J. Ma, A. Van Der Vaart, W. Yang, A.H. Zewail, Protein structural transitions and their functional role. Philos. Trans. Math. Phys. Eng. Sci. Ser. A 363, 331 (2005)CrossRef
3.
go back to reference J. Gumbart, Y. Wang, A. Aksimentiev, E. Tajkhorshid, K. Schulten, Molecular dynamics simulations of proteins in lipid bilayers. Curr. Opin. Struct. Biol 15, 423 (2005)CrossRef J. Gumbart, Y. Wang, A. Aksimentiev, E. Tajkhorshid, K. Schulten, Molecular dynamics simulations of proteins in lipid bilayers. Curr. Opin. Struct. Biol 15, 423 (2005)CrossRef
4.
go back to reference P.C. Biggin, P.J. Bond, Molecular dynamics simulations of membrane proteins. Methods Mol Biol 1215, 91–108 (2015)CrossRef P.C. Biggin, P.J. Bond, Molecular dynamics simulations of membrane proteins. Methods Mol Biol 1215, 91–108 (2015)CrossRef
5.
go back to reference E. Lindahl, M.S.P. Sansom, Membrane proteins: molecular dynamics simulations. Curr. Opin. Struct. Biol 18(4), 425–431 (2008)CrossRef E. Lindahl, M.S.P. Sansom, Membrane proteins: molecular dynamics simulations. Curr. Opin. Struct. Biol 18(4), 425–431 (2008)CrossRef
6.
go back to reference G.A. Kaminski, R.A. Friesner, J. Tirado-Rives, W.L. Jorgensen, Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 105, 6474 (2001)CrossRef G.A. Kaminski, R.A. Friesner, J. Tirado-Rives, W.L. Jorgensen, Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 105, 6474 (2001)CrossRef
7.
go back to reference A.D. MacKerell et al., All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586 (1998)CrossRef A.D. MacKerell et al., All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586 (1998)CrossRef
8.
go back to reference C. Oostenbrink, A. Villa, A.E. Mark, W.F. Van Gunsteren, A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem. 25(13), 1656–1676 (2004)CrossRef C. Oostenbrink, A. Villa, A.E. Mark, W.F. Van Gunsteren, A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem. 25(13), 1656–1676 (2004)CrossRef
9.
go back to reference J. Wang, P. Cieplak, P.A. Kollman, How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem 21, 1049 (2000)CrossRef J. Wang, P. Cieplak, P.A. Kollman, How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem 21, 1049 (2000)CrossRef
10.
go back to reference B.J. Alder, T.E. Wainwright, Phase transition for a hard sphere system. J. Chem. Phys. 27(5), 1208–1209 (1957)CrossRef B.J. Alder, T.E. Wainwright, Phase transition for a hard sphere system. J. Chem. Phys. 27(5), 1208–1209 (1957)CrossRef
11.
go back to reference A. Rahman, F.H. Stillinger, Molecular dynamics study of liquid water. J. Chem. Phys 55, 3336 (1971)CrossRef A. Rahman, F.H. Stillinger, Molecular dynamics study of liquid water. J. Chem. Phys 55, 3336 (1971)CrossRef
12.
go back to reference J.A. McCammon, B.R. Gelin, M. Karplus, Dynamics of folded proteins. Nature 267(5612), 585–590 (1977)CrossRef J.A. McCammon, B.R. Gelin, M. Karplus, Dynamics of folded proteins. Nature 267(5612), 585–590 (1977)CrossRef
13.
go back to reference M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford Science Publications) SE - Oxford Science Publications (Oxford University Press, Oxford, 1989) M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford Science Publications) SE - Oxford Science Publications (Oxford University Press, Oxford, 1989)
14.
go back to reference D. Frenkel, B. Smit, Understanding molecular simulation: from algorithms to applications. Comput. Sci. Ser. 2nd (ed). Academic Press (2002) D. Frenkel, B. Smit, Understanding molecular simulation: from algorithms to applications. Comput. Sci. Ser. 2nd (ed). Academic Press (2002)
15.
go back to reference W.W. Garvin, Introduction to Linear Programming (1st (ed), McGraw-Hill, London, 1960) W.W. Garvin, Introduction to Linear Programming (1st (ed), McGraw-Hill, London, 1960)
16.
go back to reference H.B. Callen, Thermodynamics and an Introduction to Thermostatistics (Wiley, New York, 1985) H.B. Callen, Thermodynamics and an Introduction to Thermostatistics (Wiley, New York, 1985)
17.
go back to reference D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, New York, 1987) D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, New York, 1987)
18.
go back to reference K.A. Dill, Molecular driving forces: Statistical thermodynamics in chemistry and biology. By K. A. Dill, S. Bromberg. Macromol. Chem. Phys. 204(14), 1800–1800 (2003)CrossRef K.A. Dill, Molecular driving forces: Statistical thermodynamics in chemistry and biology. By K. A. Dill, S. Bromberg. Macromol. Chem. Phys. 204(14), 1800–1800 (2003)CrossRef
19.
go back to reference W. Sun, Y. Yuan, Optimization Theory and Methods : Nonlinear Programming (Springer, New York, 2006) W. Sun, Y. Yuan, Optimization Theory and Methods : Nonlinear Programming (Springer, New York, 2006)
20.
go back to reference E. Schrödinger, Statistical Thermodynamics (Cambridge University Press, London, 1948), p. 95 E. Schrödinger, Statistical Thermodynamics (Cambridge University Press, London, 1948), p. 95
21.
go back to reference A. Leach, Molecular modelling: principles and applications. Computers 2nd (ed.), Pearson Education Limited (2001) A. Leach, Molecular modelling: principles and applications. Computers 2nd (ed.), Pearson Education Limited (2001)
22.
go back to reference V. Aleksa, G.A. Guirgis, A. Horn, P. Klaeboe, R.J. Liberatore, C.J. Nielsen, Vibrational spectra, conformations, quantum chemical calculations and spectral assignments of 1-chloro-1-silacyclohexane. Vib. Spectrosc. 61, 167–175 (2012)CrossRef V. Aleksa, G.A. Guirgis, A. Horn, P. Klaeboe, R.J. Liberatore, C.J. Nielsen, Vibrational spectra, conformations, quantum chemical calculations and spectral assignments of 1-chloro-1-silacyclohexane. Vib. Spectrosc. 61, 167–175 (2012)CrossRef
23.
go back to reference E. Lindahl, B. Hess, D. van der Spoel, GROMACS 3.0: a package for molecular simulation and trajectory analysis. J. Mol. Model. 7(8), 306–317 (2001)CrossRef E. Lindahl, B. Hess, D. van der Spoel, GROMACS 3.0: a package for molecular simulation and trajectory analysis. J. Mol. Model. 7(8), 306–317 (2001)CrossRef
24.
go back to reference J.C. Phillips et al., Scalable molecular dynamics with NAMD. J. Comput. Chem. 26(16), 1781–1802 (2005)CrossRef J.C. Phillips et al., Scalable molecular dynamics with NAMD. J. Comput. Chem. 26(16), 1781–1802 (2005)CrossRef
25.
go back to reference D.A. Case et al., The Amber biomolecular simulation programs. J. Comput. Chem. 26(16), 1668–1688 (2005)CrossRef D.A. Case et al., The Amber biomolecular simulation programs. J. Comput. Chem. 26(16), 1668–1688 (2005)CrossRef
26.
go back to reference P. Eastman et al., OpenMM 7: rapid development of high performance algorithms for molecular dynamics. PLoS Comput Biol 13(7), e1005659 (2017)CrossRef P. Eastman et al., OpenMM 7: rapid development of high performance algorithms for molecular dynamics. PLoS Comput Biol 13(7), e1005659 (2017)CrossRef
27.
go back to reference B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan, M. Karplus, CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4(2), 187–217 (1983)CrossRef B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan, M. Karplus, CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4(2), 187–217 (1983)CrossRef
28.
go back to reference S.J. Marrink, A.H. de Vries, D.P. Tieleman, Lipids on the move: simulations of membrane pores, domains, stalks and curves. Biochim. Biophys. Acta Biomembr. 1788(1), 149–168 (2009)CrossRef S.J. Marrink, A.H. de Vries, D.P. Tieleman, Lipids on the move: simulations of membrane pores, domains, stalks and curves. Biochim. Biophys. Acta Biomembr. 1788(1), 149–168 (2009)CrossRef
29.
go back to reference P.J. Stansfeld, M.S.P. Sansom, Molecular simulation approaches to membrane proteins. Structure 19(11), 1562–1572 (2011)CrossRef P.J. Stansfeld, M.S.P. Sansom, Molecular simulation approaches to membrane proteins. Structure 19(11), 1562–1572 (2011)CrossRef
30.
go back to reference B. Roux, K. Schulten, Computational studies of membrane channels. Structure 12(8), 1343–1351 (2004)CrossRef B. Roux, K. Schulten, Computational studies of membrane channels. Structure 12(8), 1343–1351 (2004)CrossRef
31.
go back to reference J.S. Hub, B.L. De Groot, Mechanism of selectivity in aquaporins and aquaglyceroporins. Proc Natl Acad Sci U S A 105, 1198 (2008)CrossRef J.S. Hub, B.L. De Groot, Mechanism of selectivity in aquaporins and aquaglyceroporins. Proc Natl Acad Sci U S A 105, 1198 (2008)CrossRef
32.
go back to reference J.D. Faraldo-Gómez, L.R. Forrest, Modeling and simulation of ion-coupled and ATP-driven membrane proteins. Curr. Opin. Struct. Biol. 21(2), 173–179 (2011)CrossRef J.D. Faraldo-Gómez, L.R. Forrest, Modeling and simulation of ion-coupled and ATP-driven membrane proteins. Curr. Opin. Struct. Biol. 21(2), 173–179 (2011)CrossRef
33.
go back to reference E.B. Watkins, C.E. Miller, J. Majewski, T.L. Kuhl, Membrane texture induced by specific protein binding and receptor clustering: active roles for lipids in cellular function. Proc. Natl. Acad. Sci. 108(17), 6975–6980 (2011)CrossRef E.B. Watkins, C.E. Miller, J. Majewski, T.L. Kuhl, Membrane texture induced by specific protein binding and receptor clustering: active roles for lipids in cellular function. Proc. Natl. Acad. Sci. 108(17), 6975–6980 (2011)CrossRef
34.
go back to reference S. Lal Badshah, A.N. Khan, Y.N. Mabkhot, Molecular dynamics simulation of cholera toxin A-1 polypeptide. Open Chem 14, 188–196 (2016)CrossRef S. Lal Badshah, A.N. Khan, Y.N. Mabkhot, Molecular dynamics simulation of cholera toxin A-1 polypeptide. Open Chem 14, 188–196 (2016)CrossRef
35.
go back to reference J.J. Blessy, D.J.S. Sharmila, Molecular modeling of methyl-α-Neu5Ac analogues docked against cholera toxin - a molecular dynamics study. Glycoconj. J. 32(1–2), 49–67 (2015)CrossRef J.J. Blessy, D.J.S. Sharmila, Molecular modeling of methyl-α-Neu5Ac analogues docked against cholera toxin - a molecular dynamics study. Glycoconj. J. 32(1–2), 49–67 (2015)CrossRef
36.
go back to reference R.P. Saha, P. Chakrabarti, Molecular modeling and characterization of Vibrio cholerae transcription regulator HlyU. BMC Struct Biol 6, 24 (2006)CrossRef R.P. Saha, P. Chakrabarti, Molecular modeling and characterization of Vibrio cholerae transcription regulator HlyU. BMC Struct Biol 6, 24 (2006)CrossRef
37.
go back to reference A. Sridhar, A. Kumar, A.K. Dasmahapatra, Multi-scale molecular dynamics study of cholera pentamer binding to a GM1-phospholipid membrane. J. Mol. Graph. Model. 68, 236–251 (2016)CrossRef A. Sridhar, A. Kumar, A.K. Dasmahapatra, Multi-scale molecular dynamics study of cholera pentamer binding to a GM1-phospholipid membrane. J. Mol. Graph. Model. 68, 236–251 (2016)CrossRef
38.
go back to reference K. Geleijns et al., Mannose-binding lectin contributes to the severity of Guillain-Barre syndrome. J. Immunol. 177(6), 4211–4217 (2006)CrossRef K. Geleijns et al., Mannose-binding lectin contributes to the severity of Guillain-Barre syndrome. J. Immunol. 177(6), 4211–4217 (2006)CrossRef
39.
go back to reference S. Kusunoki, D. Morita, S. Ohminami, S. Hitoshi, I. Kanazawa, Binding of immunoglobulin G antibodies in Guillain-Barré syndrome sera to a mixture of GM1 and a phospholipid: possible clinical implications. Muscle Nerve 27(3), 302–306 (2003)CrossRef S. Kusunoki, D. Morita, S. Ohminami, S. Hitoshi, I. Kanazawa, Binding of immunoglobulin G antibodies in Guillain-Barré syndrome sera to a mixture of GM1 and a phospholipid: possible clinical implications. Muscle Nerve 27(3), 302–306 (2003)CrossRef
40.
go back to reference C.A. Taft, V.B. Da Silva, C.H.T.D.P. Da Silva, Current topics in computer-aided drug design. J. Pharm. Sci. 97(3), 1089–1098 (2008)CrossRef C.A. Taft, V.B. Da Silva, C.H.T.D.P. Da Silva, Current topics in computer-aided drug design. J. Pharm. Sci. 97(3), 1089–1098 (2008)CrossRef
41.
go back to reference S.J.Y. Macalino, V. Gosu, S. Hong, S. Choi, Role of computer-aided drug design in modern drug discovery. Arch. Pharm. Res. 38(9), 1686–1701 (2015)CrossRef S.J.Y. Macalino, V. Gosu, S. Hong, S. Choi, Role of computer-aided drug design in modern drug discovery. Arch. Pharm. Res. 38(9), 1686–1701 (2015)CrossRef
42.
go back to reference X. Huang, C.-G. Zhan, How dopamine transporter interacts with dopamine: insights from molecular modeling and simulation. Biophys J 93(10), 3627–3639 (2007)CrossRef X. Huang, C.-G. Zhan, How dopamine transporter interacts with dopamine: insights from molecular modeling and simulation. Biophys J 93(10), 3627–3639 (2007)CrossRef
43.
go back to reference A.W. Ravna, I. Sylte, S.G. Dahl, Molecular mechanism of citalopram and cocaine interactions with neurotransmitter transporters. J. Pharmacol. Exp. Ther. 307(1), 34–41 (2003)CrossRef A.W. Ravna, I. Sylte, S.G. Dahl, Molecular mechanism of citalopram and cocaine interactions with neurotransmitter transporters. J. Pharmacol. Exp. Ther. 307(1), 34–41 (2003)CrossRef
44.
go back to reference H. Remaut, R. Fronzes, Bacterial Membranes_ Structural and Molecular Biology (Caister Academic Press, Norfolk, 2014) H. Remaut, R. Fronzes, Bacterial Membranes_ Structural and Molecular Biology (Caister Academic Press, Norfolk, 2014)
45.
go back to reference R.G. Ramos, D. Libong, M. Rakotomanga, K. Gaudin, P.M. Loiseau, P. Chaminade, Comparison between charged aerosol detection and light scattering detection for the analysis of Leishmania membrane phospholipids. J. Chromatogr. A 1209(1–2), 88–94 (2008)CrossRef R.G. Ramos, D. Libong, M. Rakotomanga, K. Gaudin, P.M. Loiseau, P. Chaminade, Comparison between charged aerosol detection and light scattering detection for the analysis of Leishmania membrane phospholipids. J. Chromatogr. A 1209(1–2), 88–94 (2008)CrossRef
46.
go back to reference F.J. van Eerden, D.H. de Jong, A.H. de Vries, T.A. Wassenaar, S.J. Marrink, Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations. Biochim. Biophys. Acta Biomembr. 1848(6), 1319–1330 (2015)CrossRef F.J. van Eerden, D.H. de Jong, A.H. de Vries, T.A. Wassenaar, S.J. Marrink, Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations. Biochim. Biophys. Acta Biomembr. 1848(6), 1319–1330 (2015)CrossRef
47.
go back to reference K. Zhang, S.M. Beverley, Phospholipid and sphingolipid metabolism in Leishmania. Mol Biochem Parasitol 170(2), 55–64 (2010)CrossRef K. Zhang, S.M. Beverley, Phospholipid and sphingolipid metabolism in Leishmania. Mol Biochem Parasitol 170(2), 55–64 (2010)CrossRef
48.
go back to reference N. Unubol et al., Peptide Antibiotics Developed by Mimicking Natural Antimicrobial Peptides, vol 06 (Clin. Microbiol, Open Access, 2017) N. Unubol et al., Peptide Antibiotics Developed by Mimicking Natural Antimicrobial Peptides, vol 06 (Clin. Microbiol, Open Access, 2017)
49.
go back to reference E. Matyus, C. Kandt, D. Tieleman, Computer simulation of antimicrobial peptides. Curr. Med. Chem. 14(26), 2789–2798 (2007)CrossRef E. Matyus, C. Kandt, D. Tieleman, Computer simulation of antimicrobial peptides. Curr. Med. Chem. 14(26), 2789–2798 (2007)CrossRef
50.
go back to reference A. Liwo, Computational Methods to Study the Structure and Dynamics of Biomolecules and Biomolecular Processes: From Bioinformatics to Molecular Quantum Mechanics (Springer, Berlin/Heidelberg, 2014)CrossRef A. Liwo, Computational Methods to Study the Structure and Dynamics of Biomolecules and Biomolecular Processes: From Bioinformatics to Molecular Quantum Mechanics (Springer, Berlin/Heidelberg, 2014)CrossRef
51.
go back to reference C.P. Fall, Computational Cell Biology (Springer, New York, 2002) C.P. Fall, Computational Cell Biology (Springer, New York, 2002)
52.
go back to reference J. Moult, K. Fidelis, A. Kryshtafovych, T. Schwede, A. Tramontano, Critical assessment of methods of protein structure prediction (CASP)—Round XII. Proteins Struct. Funct. Bioinforma 86(August 2017), 7–15 (2018)CrossRef J. Moult, K. Fidelis, A. Kryshtafovych, T. Schwede, A. Tramontano, Critical assessment of methods of protein structure prediction (CASP)—Round XII. Proteins Struct. Funct. Bioinforma 86(August 2017), 7–15 (2018)CrossRef
53.
go back to reference M.G. Wolf, M. Hoefling, C. Aponte-Santamaría, H. Grubmüller, G. Groenhof, g_membed: efficient insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation. J. Comput. Chem. 31(11), 2169–2174 (2010)CrossRef M.G. Wolf, M. Hoefling, C. Aponte-Santamaría, H. Grubmüller, G. Groenhof, g_membed: efficient insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation. J. Comput. Chem. 31(11), 2169–2174 (2010)CrossRef
54.
go back to reference A.C. Kalli, B.A. Hall, I.D. Campbell, M.S.P. Sansom, A helix heterodimer in a lipid bilayer: prediction of the structure of an integrin transmembrane domain via multiscale simulations. Structure 19(10), 1477–1484 (2011)CrossRef A.C. Kalli, B.A. Hall, I.D. Campbell, M.S.P. Sansom, A helix heterodimer in a lipid bilayer: prediction of the structure of an integrin transmembrane domain via multiscale simulations. Structure 19(10), 1477–1484 (2011)CrossRef
55.
go back to reference P.R. Cullis, B. De Kruijff, Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim. Biophys. Acta - Rev. Biomembr. 559(4), 399–420 (1979)CrossRef P.R. Cullis, B. De Kruijff, Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim. Biophys. Acta - Rev. Biomembr. 559(4), 399–420 (1979)CrossRef
56.
go back to reference H.L. Scott, Modeling the lipid component of membranes. Curr. Opin. Struct. Biol. 12(4), 495–502 (2002)CrossRef H.L. Scott, Modeling the lipid component of membranes. Curr. Opin. Struct. Biol. 12(4), 495–502 (2002)CrossRef
57.
go back to reference W.L. Jorgensen, J. Tirado-Rives, The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 110(6), 1657–1666 (1988)CrossRef W.L. Jorgensen, J. Tirado-Rives, The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 110(6), 1657–1666 (1988)CrossRef
58.
go back to reference W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118(45), 11225–11236 (1996)CrossRef W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118(45), 11225–11236 (1996)CrossRef
59.
go back to reference W.D. Cornell et al., A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117(19), 5179–5197 (1995)CrossRef W.D. Cornell et al., A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117(19), 5179–5197 (1995)CrossRef
60.
go back to reference H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, J. Hermans, Interaction models for water in relation to protein hydration (Springer, Dordrecht, 1981), pp. 331–342 H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, J. Hermans, Interaction models for water in relation to protein hydration (Springer, Dordrecht, 1981), pp. 331–342
61.
go back to reference X. Daura, A.E. Mark, W.F. Van Gunsteren, Parametrization of aliphatic CHn united atoms of GROMOS96 force field. J. Comput. Chem. 19(5), 535–547 (1998)CrossRef X. Daura, A.E. Mark, W.F. Van Gunsteren, Parametrization of aliphatic CHn united atoms of GROMOS96 force field. J. Comput. Chem. 19(5), 535–547 (1998)CrossRef
62.
go back to reference A. Kukol, Lipid models for united-atom molecular dynamics simulations of proteins. J. Chem. Theory Comput. 5(3), 615–626 (2009)CrossRef A. Kukol, Lipid models for united-atom molecular dynamics simulations of proteins. J. Chem. Theory Comput. 5(3), 615–626 (2009)CrossRef
63.
go back to reference S. Jo, T. Kim, W. Im, Automated builder and database of protein/membrane complexes for molecular dynamics simulations. PLoS One 2(9), e880 (2007)CrossRef S. Jo, T. Kim, W. Im, Automated builder and database of protein/membrane complexes for molecular dynamics simulations. PLoS One 2(9), e880 (2007)CrossRef
64.
go back to reference S. Jo, T. Kim, V.G. Iyer, W. Im, CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29(11), 1859–1865 (2008)CrossRef S. Jo, T. Kim, V.G. Iyer, W. Im, CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29(11), 1859–1865 (2008)CrossRef
65.
go back to reference E.L. Wu et al., CHARMM-GUI membrane builder toward realistic biological membrane simulations. J. Comput. Chem. 35(27), 1997–2004 (2014)CrossRef E.L. Wu et al., CHARMM-GUI membrane builder toward realistic biological membrane simulations. J. Comput. Chem. 35(27), 1997–2004 (2014)CrossRef
66.
go back to reference H.M. Berman et al., The protein data bank. Nucleic Acids Res. 28(1), 235–242 (2000)CrossRef H.M. Berman et al., The protein data bank. Nucleic Acids Res. 28(1), 235–242 (2000)CrossRef
67.
go back to reference A.L. Lomize, I.D. Pogozheva, M.A. Lomize, H.I. Mosberg, Positioning of proteins in membranes: A computational approach. Protein Sci. 15, 1318–1333 (2006)CrossRef A.L. Lomize, I.D. Pogozheva, M.A. Lomize, H.I. Mosberg, Positioning of proteins in membranes: A computational approach. Protein Sci. 15, 1318–1333 (2006)CrossRef
68.
go back to reference T.H. Schmidt, C. Kandt, LAMBADA and InflateGRO2: efficient membrane alignment and insertion of membrane proteins for molecular dynamics simulations. J. Chem. Inf. Model. 52(10), 2657–2669 (2012)CrossRef T.H. Schmidt, C. Kandt, LAMBADA and InflateGRO2: efficient membrane alignment and insertion of membrane proteins for molecular dynamics simulations. J. Chem. Inf. Model. 52(10), 2657–2669 (2012)CrossRef
69.
go back to reference W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Mol. Graph 14(1), 33–38. , 27–8. 1996 W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Mol. Graph 14(1), 33–38. , 27–8. 1996
70.
go back to reference B. Sommer et al., CELLmicrocosmos 2.2 MembraneEditor: a modular interactive shape-based software approach to solve heterogeneous membrane packing problems. J. Chem. Inf. Model 51(5), 110419120935062 (2011)CrossRef B. Sommer et al., CELLmicrocosmos 2.2 MembraneEditor: a modular interactive shape-based software approach to solve heterogeneous membrane packing problems. J. Chem. Inf. Model 51(5), 110419120935062 (2011)CrossRef
71.
go back to reference L. Martínez, R. Andrade, E.G. Birgin, J.M. Martínez, PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30(13), 2157–2164 (2009)CrossRef L. Martínez, R. Andrade, E.G. Birgin, J.M. Martínez, PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30(13), 2157–2164 (2009)CrossRef
72.
go back to reference E. Wallin, G. Von Heijne, Genome-Wide Analysis of Integral Membrane Proteins from Eubacterial, Archaean, and Eukaryotic Organisms (Cambridge University Press, USA, 1998) E. Wallin, G. Von Heijne, Genome-Wide Analysis of Integral Membrane Proteins from Eubacterial, Archaean, and Eukaryotic Organisms (Cambridge University Press, USA, 1998)
73.
go back to reference E.P. Carpenter, K. Beis, A.D. Cameron, S. Iwata, Overcoming the challenges of membrane protein crystallography this review comes from a themed issue on biophysical methods edited by Samar Hasnain and Soichi Wakatsuki. Curr. Opin. Struct. Biol. 18, 581–586 (2008)CrossRef E.P. Carpenter, K. Beis, A.D. Cameron, S. Iwata, Overcoming the challenges of membrane protein crystallography this review comes from a themed issue on biophysical methods edited by Samar Hasnain and Soichi Wakatsuki. Curr. Opin. Struct. Biol. 18, 581–586 (2008)CrossRef
74.
go back to reference J.P. Overington, B. Al-Lazikani, A.L. Hopkins, How many drug targets are there? Nat. Rev. Drug Discov. 5(12), 993–996 (2006)CrossRef J.P. Overington, B. Al-Lazikani, A.L. Hopkins, How many drug targets are there? Nat. Rev. Drug Discov. 5(12), 993–996 (2006)CrossRef
75.
go back to reference A.S. Robinson, Production of Membrane Proteins : Strategies for Expression and Isolation (Wiley-VCH, Weinheim, 2011)CrossRef A.S. Robinson, Production of Membrane Proteins : Strategies for Expression and Isolation (Wiley-VCH, Weinheim, 2011)CrossRef
76.
go back to reference A. 1969- Kukol, Molecular Modeling of Proteins (Humana Press, New York, 2015) A. 1969- Kukol, Molecular Modeling of Proteins (Humana Press, New York, 2015)
77.
go back to reference C. Kandt, W.L. Ash, D. Peter Tieleman, Setting up and running molecular dynamics simulations of membrane proteins. Methods 41(4), 475–488 (2007)CrossRef C. Kandt, W.L. Ash, D. Peter Tieleman, Setting up and running molecular dynamics simulations of membrane proteins. Methods 41(4), 475–488 (2007)CrossRef
78.
go back to reference M.A. Lomize, I.D. Pogozheva, H. Joo, H.I. Mosberg, A.L. Lomize, OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 40(D1), 370–376 (2012)CrossRef M.A. Lomize, I.D. Pogozheva, H. Joo, H.I. Mosberg, A.L. Lomize, OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 40(D1), 370–376 (2012)CrossRef
79.
go back to reference A.L. Lomize, I.D. Pogozheva, M.A. Lomize, H.I. Mosberg, The role of hydrophobic interactions in positioning of peripheral proteins in membranes. BMC Struct. Biol. 7, 1–30 (2007)CrossRef A.L. Lomize, I.D. Pogozheva, M.A. Lomize, H.I. Mosberg, The role of hydrophobic interactions in positioning of peripheral proteins in membranes. BMC Struct. Biol. 7, 1–30 (2007)CrossRef
80.
go back to reference A.L. Lomize, I.D. Pogozheva, H.I. Mosberg, Anisotropic solvent model of the lipid bilayer. 2. Energetics of insertion of small molecules, peptides, and proteins in membranes. J. Chem. Inf. Model. 51(4), 930–946 (2011)CrossRef A.L. Lomize, I.D. Pogozheva, H.I. Mosberg, Anisotropic solvent model of the lipid bilayer. 2. Energetics of insertion of small molecules, peptides, and proteins in membranes. J. Chem. Inf. Model. 51(4), 930–946 (2011)CrossRef
81.
go back to reference V.A. Harmandaris, N.P. Adhikari, N.F.A. van der Vegt, K. Kremer, Hierarchical modeling of polystyrene: from atomistic to coarse-grained simulations. Macromolecules 39(19), 6708–6719 (2006)CrossRef V.A. Harmandaris, N.P. Adhikari, N.F.A. van der Vegt, K. Kremer, Hierarchical modeling of polystyrene: from atomistic to coarse-grained simulations. Macromolecules 39(19), 6708–6719 (2006)CrossRef
82.
go back to reference M. Praprotnik, L.D. Site, K. Kremer, Multiscale simulation of soft matter: from scale bridging to adaptive resolution. Annu Rev Phys Chem 59, 545–571 (2008)CrossRef M. Praprotnik, L.D. Site, K. Kremer, Multiscale simulation of soft matter: from scale bridging to adaptive resolution. Annu Rev Phys Chem 59, 545–571 (2008)CrossRef
83.
go back to reference C. Peter, K. Kremer, Multiscale simulation of soft matter systems – from the atomistic to the coarse-grained level and back. Soft Matter 5(22), 4357 (2009)CrossRef C. Peter, K. Kremer, Multiscale simulation of soft matter systems – from the atomistic to the coarse-grained level and back. Soft Matter 5(22), 4357 (2009)CrossRef
84.
go back to reference J.B. Klauda et al., Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types NIH Public Access. J. Phys. Chem. B 114(23), 7830–7843 (2010)CrossRef J.B. Klauda et al., Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types NIH Public Access. J. Phys. Chem. B 114(23), 7830–7843 (2010)CrossRef
85.
go back to reference R.W. Pastor, A.D. Mackerell, Development of the CHARMM force field for lipids NIH public access. J. Phys. Chem. Lett. 2(13), 1526–1532 (2011)CrossRef R.W. Pastor, A.D. Mackerell, Development of the CHARMM force field for lipids NIH public access. J. Phys. Chem. Lett. 2(13), 1526–1532 (2011)CrossRef
86.
go back to reference J.P. Ulmschneider, M.B. Ulmschneider, United atom lipid parameters for combination with the optimized potentials for liquid simulations all-atom force field. J. Chem. Theory Comput. 5(7), 1803–1813 (2009)CrossRef J.P. Ulmschneider, M.B. Ulmschneider, United atom lipid parameters for combination with the optimized potentials for liquid simulations all-atom force field. J. Chem. Theory Comput. 5(7), 1803–1813 (2009)CrossRef
87.
go back to reference S.W.I. Siu, R. Vácha, P. Jungwirth, R.A. Böckmann, Biomolecular simulations of membranes: Physical properties from different force fields. J. Chem. Phys 128(12), 125103 (2008)CrossRef S.W.I. Siu, R. Vácha, P. Jungwirth, R.A. Böckmann, Biomolecular simulations of membranes: Physical properties from different force fields. J. Chem. Phys 128(12), 125103 (2008)CrossRef
88.
go back to reference B.J. Reynwar, G. Illya, V.A. Harmandaris, M.M. Müller, K. Kremer, M. Deserno, Aggregation and vesiculation of membrane proteins by curvature-mediated interactions. Nature 447(7143), 461–464 (2007)CrossRef B.J. Reynwar, G. Illya, V.A. Harmandaris, M.M. Müller, K. Kremer, M. Deserno, Aggregation and vesiculation of membrane proteins by curvature-mediated interactions. Nature 447(7143), 461–464 (2007)CrossRef
89.
go back to reference W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79(2), 926–935 (1983)CrossRef W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79(2), 926–935 (1983)CrossRef
90.
go back to reference D.J. Price, C.L. Brooks, A modified TIP3P water potential for simulation with Ewald summation. J. Chem. Phys. 121(20), 10096–10103 (2004)CrossRef D.J. Price, C.L. Brooks, A modified TIP3P water potential for simulation with Ewald summation. J. Chem. Phys. 121(20), 10096–10103 (2004)CrossRef
91.
go back to reference P. Mark, L. Nilsson, Structure and dynamics of the TIP3P, SPC, and SPC/E Water Models at 298 K. J. Phys. Chem. A 105(43), 9954–9960 (2001)CrossRef P. Mark, L. Nilsson, Structure and dynamics of the TIP3P, SPC, and SPC/E Water Models at 298 K. J. Phys. Chem. A 105(43), 9954–9960 (2001)CrossRef
92.
go back to reference E. Neria, S. Fischer, M. Karplus, Simulation of activation free energies in molecular systems. J. Chem. Phys 105(5), 1902 (1998)CrossRef E. Neria, S. Fischer, M. Karplus, Simulation of activation free energies in molecular systems. J. Chem. Phys 105(5), 1902 (1998)CrossRef
93.
go back to reference W. Shinoda, M. Shimizu, S. Okazaki, Molecular dynamics study on electrostatic properties of a lipid bilayer: polarization, electrostatic potential, and the effects on structure and dynamics of water near the interface. J. Phys. Chem. B 102(34), 6647–6654 (1998)CrossRef W. Shinoda, M. Shimizu, S. Okazaki, Molecular dynamics study on electrostatic properties of a lipid bilayer: polarization, electrostatic potential, and the effects on structure and dynamics of water near the interface. J. Phys. Chem. B 102(34), 6647–6654 (1998)CrossRef
94.
go back to reference J.E. Davis, O. Rahaman, S. Patel, Molecular dynamics simulations of a DMPC bilayer using nonadditive interaction models. Biophys J 96(2), 385–402 (2009)CrossRef J.E. Davis, O. Rahaman, S. Patel, Molecular dynamics simulations of a DMPC bilayer using nonadditive interaction models. Biophys J 96(2), 385–402 (2009)CrossRef
95.
go back to reference J.S. Hub, T. Salditt, M.C. Rheinstä, B.L. De Groot, Short-range order and collective dynamics of DMPC bilayers: a comparison between molecular dynamics simulations, X-ray, and neutron scattering experiments. Biophys. J. 93, 3156–3168 (2007)CrossRef J.S. Hub, T. Salditt, M.C. Rheinstä, B.L. De Groot, Short-range order and collective dynamics of DMPC bilayers: a comparison between molecular dynamics simulations, X-ray, and neutron scattering experiments. Biophys. J. 93, 3156–3168 (2007)CrossRef
96.
go back to reference B. Hess, S. León, N. van der Vegt, K. Kremer, Long time atomistic polymer trajectories from coarse grained simulations: bisphenol-A polycarbonate. Soft Matter 2(5), 409–414 (2006)CrossRef B. Hess, S. León, N. van der Vegt, K. Kremer, Long time atomistic polymer trajectories from coarse grained simulations: bisphenol-A polycarbonate. Soft Matter 2(5), 409–414 (2006)CrossRef
97.
go back to reference S.K. Kandasamy, R.G. Larson, Molecular dynamics simulations of model trans-membrane peptides in lipid bilayers: A systematic investigation of hydrophobic mismatch. Biophys. J. 90(7), 2326–2343 (2006)CrossRef S.K. Kandasamy, R.G. Larson, Molecular dynamics simulations of model trans-membrane peptides in lipid bilayers: A systematic investigation of hydrophobic mismatch. Biophys. J. 90(7), 2326–2343 (2006)CrossRef
98.
go back to reference T. Mori, N. Miyashita, W. Im, M. Feig, Y. Sugita, Molecular dynamics simulations of biological membranes and membrane proteins using enhanced conformational sampling algorithms. Biochim. Biophys. Acta Biomembr. 1858(7), 1635–1651 (2016)CrossRef T. Mori, N. Miyashita, W. Im, M. Feig, Y. Sugita, Molecular dynamics simulations of biological membranes and membrane proteins using enhanced conformational sampling algorithms. Biochim. Biophys. Acta Biomembr. 1858(7), 1635–1651 (2016)CrossRef
99.
go back to reference M. Chavent, A.L. Duncan, M.S. Sansom, Molecular dynamics simulations of membrane proteins and their interactions: from nanoscale to mesoscale. Curr. Opin. Struct. Biol. 40, 8–16 (2016)CrossRef M. Chavent, A.L. Duncan, M.S. Sansom, Molecular dynamics simulations of membrane proteins and their interactions: from nanoscale to mesoscale. Curr. Opin. Struct. Biol. 40, 8–16 (2016)CrossRef
100.
go back to reference T. Apajalahti et al., Concerted diffusion of lipids in raft-like membranes. Faraday Discuss 144, 411–430. ; discussion 445–81 (2010)CrossRef T. Apajalahti et al., Concerted diffusion of lipids in raft-like membranes. Faraday Discuss 144, 411–430. ; discussion 445–81 (2010)CrossRef
101.
go back to reference H. Koldsø, D. Shorthouse, J. Hélie, M.S.P. Sansom, Lipid clustering correlates with membrane curvature as revealed by molecular simulations of complex lipid bilayers. PLoS Comput. Biol 10(10), e1003911 (2014)CrossRef H. Koldsø, D. Shorthouse, J. Hélie, M.S.P. Sansom, Lipid clustering correlates with membrane curvature as revealed by molecular simulations of complex lipid bilayers. PLoS Comput. Biol 10(10), e1003911 (2014)CrossRef
102.
go back to reference H.I. Ingólfsson et al., Lipid organization of the plasma membrane. J. Am. Chem. Soc. 136(41), 14554–14559 (2014)CrossRef H.I. Ingólfsson et al., Lipid organization of the plasma membrane. J. Am. Chem. Soc. 136(41), 14554–14559 (2014)CrossRef
103.
go back to reference J.E. Goose, M.S.P. Sansom, Reduced lateral mobility of lipids and proteins in crowded membranes. PLoS Comput. Biol 9(4), e1003033 (2013)CrossRef J.E. Goose, M.S.P. Sansom, Reduced lateral mobility of lipids and proteins in crowded membranes. PLoS Comput. Biol 9(4), e1003033 (2013)CrossRef
104.
go back to reference G. Guigas, M. Weiss, Effects of protein crowding on membrane systems. Biochim. Biophys. Acta Biomembr. 1858(10), 2441–2450 (2016)CrossRef G. Guigas, M. Weiss, Effects of protein crowding on membrane systems. Biochim. Biophys. Acta Biomembr. 1858(10), 2441–2450 (2016)CrossRef
105.
go back to reference M. Javanainen, H. Martinez-Seara, Efficient preparation and analysis of membrane and membrane protein systems. Biochim. Biophys. Acta Biomembr. 1858(10), 2468–2482 (2016)CrossRef M. Javanainen, H. Martinez-Seara, Efficient preparation and analysis of membrane and membrane protein systems. Biochim. Biophys. Acta Biomembr. 1858(10), 2468–2482 (2016)CrossRef
106.
go back to reference W.J. Allen, J.A. Lemkul, D.R. Bevan, GridMAT-MD: A grid-based membrane analysis tool for use with molecular dynamics. J. Comput. Chem. 30(12), 1952–1958 (2009)CrossRef W.J. Allen, J.A. Lemkul, D.R. Bevan, GridMAT-MD: A grid-based membrane analysis tool for use with molecular dynamics. J. Comput. Chem. 30(12), 1952–1958 (2009)CrossRef
107.
go back to reference T.A. Özal, C. Peter, B. Hess, N.F.A. van der Vegt, Modeling solubilities of additives in polymer microstructures: single-step perturbation method based on a soft-cavity reference state. Macromolecules 41(13), 5055–5061 (2008)CrossRef T.A. Özal, C. Peter, B. Hess, N.F.A. van der Vegt, Modeling solubilities of additives in polymer microstructures: single-step perturbation method based on a soft-cavity reference state. Macromolecules 41(13), 5055–5061 (2008)CrossRef
108.
go back to reference S. Noskov, J.C. Gumbart, Membrane proteins: where theory meets experiment. BBA-Biomembranes 1858, 1553–1555 (2016)CrossRef S. Noskov, J.C. Gumbart, Membrane proteins: where theory meets experiment. BBA-Biomembranes 1858, 1553–1555 (2016)CrossRef
Metadata
Title
Modeling of Cell Membrane Systems
Author
Tuğba Arzu Özal İldeniz
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-11596-8_4

Premium Partners