Skip to main content
Top
Published in: Metallurgical and Materials Transactions A 6/2024

21-03-2024 | Original Research Article

Modeling of Cu Precipitation in Fe–Cu and Fe–Cu–Mn Alloys Under Neutron and Electron Irradiation

Author: Senlin Cui

Published in: Metallurgical and Materials Transactions A | Issue 6/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Irradiation-induced formation of Cu-rich precipitates embrittles reactor pressure vessel steels. In the present work, a cluster dynamics model is used to model the precipitation of Cu-rich precipitates in Fe–Cu and Fe–Cu–Mn model alloys under neutron and electron irradiation at about 300 °C (573 K). The model includes radiation-enhanced diffusion and mobile Cu-rich clusters, which have been suggested to play important roles in Cu precipitation kinetics in Fe-based alloys. Precipitation at low temperatures is accelerated by radiation-enhanced diffusion, due to excess vacancies produced by displacement damages. Previous modeling work of thermal precipitation in Fe–Cu alloys at higher temperatures suggests that Cu clusters are mobile, and that this mobility must be accounted for to predict the observed precipitation kinetics. Here, the present work extends the mobile cluster model to treat precipitation in Fe–Cu and Fe–Cu–Mn alloys under neutron and electron irradiation. Comparison of the properly parameterized model predictions with the experimental observations shows that treating radiation-enhanced cluster mobility is necessary to predict Cu precipitation kinetics under irradiation. The developed precipitation model can reasonably describe the selected reliable experimental data. The model parameter determination for the physically based model includes extensive sensitivity studies, and suggests that the present approach still needs refinement to provide an accurate model that is fully consistent with the known microscopic measurements.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference G.R. Odette and G.E. Lucas: Radiat. Effects Defects Solids, 1998, vol. 144, pp. 189–231.CrossRef G.R. Odette and G.E. Lucas: Radiat. Effects Defects Solids, 1998, vol. 144, pp. 189–231.CrossRef
3.
go back to reference S. Shu, N. Almirall, P.B. Wells, T. Yamamoto, G.R. Odette, and D.D. Morgan: Acta Mater., 2018, vol. 157, pp. 72–82.CrossRef S. Shu, N. Almirall, P.B. Wells, T. Yamamoto, G.R. Odette, and D.D. Morgan: Acta Mater., 2018, vol. 157, pp. 72–82.CrossRef
4.
go back to reference H. Ke, P. Wells, P.D. Edmondson, N. Almirall, L. Barnard, G.R. Odette, and D. Morgan: Acta Mater., 2017, vol. 138, pp. 10–26.CrossRef H. Ke, P. Wells, P.D. Edmondson, N. Almirall, L. Barnard, G.R. Odette, and D. Morgan: Acta Mater., 2017, vol. 138, pp. 10–26.CrossRef
5.
go back to reference M. Mamivand, P. Wells, H. Ke, S. Shu, G.R. Odette, and D. Morgan: Acta Mater., 2019, vol. 180, pp. 199–217.CrossRef M. Mamivand, P. Wells, H. Ke, S. Shu, G.R. Odette, and D. Morgan: Acta Mater., 2019, vol. 180, pp. 199–217.CrossRef
8.
go back to reference S. Shu, B.D. Wirth, P.B. Wells, D.D. Morgan, and G.R. Odette: Acta Mater., 2018, vol. 146, pp. 237–52.CrossRef S. Shu, B.D. Wirth, P.B. Wells, D.D. Morgan, and G.R. Odette: Acta Mater., 2018, vol. 146, pp. 237–52.CrossRef
9.
go back to reference M.H. Mathon, A. Barbu, F. Dunstetter, F. Maury, N. Lorenzelli, and C.H. de Novion: J. Nucl. Mater., 1997, vol. 245, pp. 224–37.CrossRef M.H. Mathon, A. Barbu, F. Dunstetter, F. Maury, N. Lorenzelli, and C.H. de Novion: J. Nucl. Mater., 1997, vol. 245, pp. 224–37.CrossRef
10.
go back to reference J.T. Buswell, C.A. English, M.G. Hetherington, W.J. Phythian, G.D.W. Smith, and G.M. Worrall: ASTM Spec. Tech. Publ., 1990, vol. 1046, pp. 127–53. J.T. Buswell, C.A. English, M.G. Hetherington, W.J. Phythian, G.D.W. Smith, and G.M. Worrall: ASTM Spec. Tech. Publ., 1990, vol. 1046, pp. 127–53.
11.
go back to reference T.N. Lê, A. Barbu, D. Liu, and F. Maury: Scr. Metall. Mater., 1992, vol. 26, pp. 771–76.CrossRef T.N. Lê, A. Barbu, D. Liu, and F. Maury: Scr. Metall. Mater., 1992, vol. 26, pp. 771–76.CrossRef
12.
go back to reference E. Meslin, M. Lambrecht, M. Hernández-Mayoral, F. Bergner, L. Malerba, P. Pareige, B. Radiguet, A. Barbu, D. Gómez-Briceño, A. Ulbricht, and A. Almazouzi: J. Nucl. Mater., 2010, vol. 406, pp. 73–83.CrossRef E. Meslin, M. Lambrecht, M. Hernández-Mayoral, F. Bergner, L. Malerba, P. Pareige, B. Radiguet, A. Barbu, D. Gómez-Briceño, A. Ulbricht, and A. Almazouzi: J. Nucl. Mater., 2010, vol. 406, pp. 73–83.CrossRef
13.
go back to reference P. Auger, P. Pareige, M. Akamatsu, and J.C. Van Duysen: J. Nucl. Mater., 1994, vol. 211, pp. 194–201.CrossRef P. Auger, P. Pareige, M. Akamatsu, and J.C. Van Duysen: J. Nucl. Mater., 1994, vol. 211, pp. 194–201.CrossRef
14.
go back to reference P. Auger, P. Pareige, M. Akamatsu, and D. Blavette: J. Nucl. Mater., 1995, vol. 225, pp. 225–30.CrossRef P. Auger, P. Pareige, M. Akamatsu, and D. Blavette: J. Nucl. Mater., 1995, vol. 225, pp. 225–30.CrossRef
15.
go back to reference N.S.-D. Grande and A. Barbu: Radiat. Effects Defect Solids, 1994, vol. 132, pp. 157–67.CrossRef N.S.-D. Grande and A. Barbu: Radiat. Effects Defect Solids, 1994, vol. 132, pp. 157–67.CrossRef
16.
go back to reference F. Bergner, M. Lambrecht, A. Ulbricht, and A. Almazouzi: J. Nucl. Mater., 2010, vol. 399, pp. 129–36.CrossRef F. Bergner, M. Lambrecht, A. Ulbricht, and A. Almazouzi: J. Nucl. Mater., 2010, vol. 399, pp. 129–36.CrossRef
17.
go back to reference V.V. Slezov: Kinetics of First-Order Phase Transitions, Wiley-VCH, Berlin, 2009.CrossRef V.V. Slezov: Kinetics of First-Order Phase Transitions, Wiley-VCH, Berlin, 2009.CrossRef
18.
go back to reference V.V. Slezov and J. Schmelzer: J. Phys. Chem. Solids, 1994, vol. 55, pp. 243–51.CrossRef V.V. Slezov and J. Schmelzer: J. Phys. Chem. Solids, 1994, vol. 55, pp. 243–51.CrossRef
19.
go back to reference R. Kampmann and R. Wagner: Proceedings of Acta-Scripta Metallurgica Conference, 2nd ed., 1984, pp. 91–103. R. Kampmann and R. Wagner: Proceedings of Acta-Scripta Metallurgica Conference, 2nd ed., 1984, pp. 91–103.
21.
go back to reference Y. Wang, J. Yin, X. Liu, R. Wang, H. Hou, and J. Wang: Prog. Nat. Sci. Mater., 2017, vol. 27, pp. 460–66.CrossRef Y. Wang, J. Yin, X. Liu, R. Wang, H. Hou, and J. Wang: Prog. Nat. Sci. Mater., 2017, vol. 27, pp. 460–66.CrossRef
22.
go back to reference M.I. Pascuet, N. Castin, C.S. Becquart, and L. Malerba: J. Nucl. Mater., 2011, vol. 412, pp. 106–15.CrossRef M.I. Pascuet, N. Castin, C.S. Becquart, and L. Malerba: J. Nucl. Mater., 2011, vol. 412, pp. 106–15.CrossRef
23.
go back to reference F. Soisson, A. Barbu, and G. Martin: Acta Mater., 1996, vol. 44, pp. 3789–3800.CrossRef F. Soisson, A. Barbu, and G. Martin: Acta Mater., 1996, vol. 44, pp. 3789–3800.CrossRef
24.
go back to reference G. Stechauner and E. Kozeschnik: Acta Mater., 2015, vol. 100, pp. 135–46.CrossRef G. Stechauner and E. Kozeschnik: Acta Mater., 2015, vol. 100, pp. 135–46.CrossRef
25.
go back to reference T. Jourdan, F. Soisson, E. Clouet, and A. Barbu: Acta Mater., 2010, vol. 58, pp. 3400–05.CrossRef T. Jourdan, F. Soisson, E. Clouet, and A. Barbu: Acta Mater., 2010, vol. 58, pp. 3400–05.CrossRef
26.
27.
go back to reference M. Volmer: Z. Elektrochem. Angew. Phys. Chem., 1929, vol. 35, pp. 555–61. M. Volmer: Z. Elektrochem. Angew. Phys. Chem., 1929, vol. 35, pp. 555–61.
28.
30.
go back to reference J. Feder, K.C. Russell, J. Lothe, and G.M. Pound: Adv. Phys., 1966, vol. 15, pp. 111–78.CrossRef J. Feder, K.C. Russell, J. Lothe, and G.M. Pound: Adv. Phys., 1966, vol. 15, pp. 111–78.CrossRef
31.
32.
go back to reference E. Clouet: Fundamentals of Modeling for Metals Processing, ASM International, Materials Park, 2009, pp. 203–19. E. Clouet: Fundamentals of Modeling for Metals Processing, ASM International, Materials Park, 2009, pp. 203–19.
33.
36.
go back to reference A.C. Hindmarsh, P.N. Brown, K.E. Grant, S.L. Lee, R. Serban, D.E. Shumaker, and C.S. Woodward: ACM Trans. Math. Softw., 2005, vol. 31, pp. 363–96.CrossRef A.C. Hindmarsh, P.N. Brown, K.E. Grant, S.L. Lee, R. Serban, D.E. Shumaker, and C.S. Woodward: ACM Trans. Math. Softw., 2005, vol. 31, pp. 363–96.CrossRef
37.
go back to reference Z. Tang, M. Hasegawa, Y. Nagai, and M. Saito: Phys. Rev. B, 2002, vol. 65, 195108.CrossRef Z. Tang, M. Hasegawa, Y. Nagai, and M. Saito: Phys. Rev. B, 2002, vol. 65, 195108.CrossRef
38.
go back to reference M. Kirk: Technical Basis for the Embrittlement Trend Curve Balloted in the 2014 Revision of ASTM Standard Guide E900, ASTM International, Materials Park, 2014, pp. 56–59. M. Kirk: Technical Basis for the Embrittlement Trend Curve Balloted in the 2014 Revision of ASTM Standard Guide E900, ASTM International, Materials Park, 2014, pp. 56–59.
39.
go back to reference M.K. Miller, B.D. Wirth, and G.R. Odette: Mater. Sci. Eng. A, 2003, vol. 353, pp. 133–39.CrossRef M.K. Miller, B.D. Wirth, and G.R. Odette: Mater. Sci. Eng. A, 2003, vol. 353, pp. 133–39.CrossRef
40.
go back to reference S.M. Kim and W.J.L. Buyers: J. Phys. F Met. Phys., 1978, vol. 8, pp. L103-108.CrossRef S.M. Kim and W.J.L. Buyers: J. Phys. F Met. Phys., 1978, vol. 8, pp. L103-108.CrossRef
41.
go back to reference B. Jönsson: Z. Metall., 1992, vol. 83, pp. 349–55. B. Jönsson: Z. Metall., 1992, vol. 83, pp. 349–55.
42.
43.
go back to reference L. Messina, M. Nastar, T. Garnier, C. Domain, and P. Olsson: Phys. Rev. B, 2014, vol. 90, 104203.CrossRef L. Messina, M. Nastar, T. Garnier, C. Domain, and P. Olsson: Phys. Rev. B, 2014, vol. 90, 104203.CrossRef
44.
45.
go back to reference G.R. Odette, T. Yamamoto, and D. Klingensmith: Philos. Magn., 2005, vol. 85, pp. 779–97.CrossRef G.R. Odette, T. Yamamoto, and D. Klingensmith: Philos. Magn., 2005, vol. 85, pp. 779–97.CrossRef
46.
go back to reference L. Messina, T. Schuler, M. Nastar, M.-C. Marinica, and P. Olsson: Acta Mater., 2020, vol. 191, pp. 166–85.CrossRef L. Messina, T. Schuler, M. Nastar, M.-C. Marinica, and P. Olsson: Acta Mater., 2020, vol. 191, pp. 166–85.CrossRef
47.
48.
go back to reference G. Neumann and C. Tuijn: Self-diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data, Pergamon/Elsevier, New York, 2008. G. Neumann and C. Tuijn: Self-diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data, Pergamon/Elsevier, New York, 2008.
49.
go back to reference A. Hardouin Duparc, C. Moingeon, N.S.-D. Grande, and A. Barbu: J. Nucl. Mater., 2002, vol. 302(2), pp. 143–55.CrossRef A. Hardouin Duparc, C. Moingeon, N.S.-D. Grande, and A. Barbu: J. Nucl. Mater., 2002, vol. 302(2), pp. 143–55.CrossRef
50.
go back to reference A. Vehanen, P. Hautojärvi, J. Johansson, J. Yli-Kauppila, and P. Moser: Phys. Rev. B, 1982, vol. 25, pp. 762–80.CrossRef A. Vehanen, P. Hautojärvi, J. Johansson, J. Yli-Kauppila, and P. Moser: Phys. Rev. B, 1982, vol. 25, pp. 762–80.CrossRef
51.
go back to reference X.-M. Bai, H. Ke, Y. Zhang, and B.W. Spencer: J. Nucl. Mater., 2017, vol. 495, pp. 442–54.CrossRef X.-M. Bai, H. Ke, Y. Zhang, and B.W. Spencer: J. Nucl. Mater., 2017, vol. 495, pp. 442–54.CrossRef
52.
go back to reference R.G. Faulkner, S. Song, P.E.J. Flewitt, and S.B. Fisher: J. Mater. Sci. Lett., 1997, vol. 16, pp. 1191–94. R.G. Faulkner, S. Song, P.E.J. Flewitt, and S.B. Fisher: J. Mater. Sci. Lett., 1997, vol. 16, pp. 1191–94.
53.
go back to reference M.K. Miller: Atom Probe Tomography: Analysis at the Atomic Level, Springer, New York, 2012. M.K. Miller: Atom Probe Tomography: Analysis at the Atomic Level, Springer, New York, 2012.
55.
go back to reference G.R. Odette, T. Yamamoto, T.J. Williams, R.K. Nanstad, and C.A. English: J. Nucl. Mater., 2019, vol. 526, 151863.CrossRef G.R. Odette, T. Yamamoto, T.J. Williams, R.K. Nanstad, and C.A. English: J. Nucl. Mater., 2019, vol. 526, 151863.CrossRef
56.
go back to reference M. Perez, M. Dumont, and D. Acevedo-Reyes: Acta Mater., 2008, vol. 56, pp. 2119–32.CrossRef M. Perez, M. Dumont, and D. Acevedo-Reyes: Acta Mater., 2008, vol. 56, pp. 2119–32.CrossRef
57.
go back to reference J.D. Shore, M. Holzer, and J.P. Sethna: Phys. Rev. B, 1992, vol. 46, pp. 11376–11404.CrossRef J.D. Shore, M. Holzer, and J.P. Sethna: Phys. Rev. B, 1992, vol. 46, pp. 11376–11404.CrossRef
Metadata
Title
Modeling of Cu Precipitation in Fe–Cu and Fe–Cu–Mn Alloys Under Neutron and Electron Irradiation
Author
Senlin Cui
Publication date
21-03-2024
Publisher
Springer US
Published in
Metallurgical and Materials Transactions A / Issue 6/2024
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-024-07357-0

Other articles of this Issue 6/2024

Metallurgical and Materials Transactions A 6/2024 Go to the issue

Premium Partners