Skip to main content
Top

2012 | OriginalPaper | Chapter

Modeling of Nanostructures

Authors : Hande Toffoli, Sakir Erkoç, Daniele Toffoli

Published in: Handbook of Computational Chemistry

Publisher: Springer Netherlands

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Materials properties show a dependence on the dimensionality of the systems studied. Due to the increased importance of surfaces and edges, lower-dimensional systems display behavior that may be widely different from their bulk counterparts. As a means to complement the newly developed experimental methods to study these reduced dimensional systems, a large fraction of the theoretical effort in the field continues to be channeled towards computer simulations. This chapter reviews briefly the computational methods used for the low dimensional materials and presents how the materials properties change with dimensionality. Low dimensional systems investigated are classified into a few broad classes: 0D nanoparticles, 1D nanotubes, nanowires, nanorods, and 2D graphene and derivatives. A comprehensive literature will guide the readers’ interest in computational materials sciences.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Amorim, R. G., Fazzio, A., Antonelli, A., Novaes, F. D., & da Silva, A. J. R. (2007). Divacancies in graphene and carbon nanotubes. Nano Letters, 7, 2459. Amorim, R. G., Fazzio, A., Antonelli, A., Novaes, F. D., & da Silva, A. J. R. (2007). Divacancies in graphene and carbon nanotubes. Nano Letters, 7, 2459.
go back to reference Anagnostatos, G. S. (1987). Magic numbers in small clusters of rare-gas and alkali atoms. Physics Letters A, 124, 85. Anagnostatos, G. S. (1987). Magic numbers in small clusters of rare-gas and alkali atoms. Physics Letters A, 124, 85.
go back to reference Andzelm, J., Govind, N., & Maiti, A. (2006). Nanotube-based gas sensors — Role of structural defects. Chemical Physics Letters, 421, 58. Andzelm, J., Govind, N., & Maiti, A. (2006). Nanotube-based gas sensors — Role of structural defects. Chemical Physics Letters, 421, 58.
go back to reference Arantes, J. T., & Fazzio, A. (2007). Theoretical investigations of Ge nanowires grown along the [110] and [111] directions. Nanotechnology, 18, 295706. Arantes, J. T., & Fazzio, A. (2007). Theoretical investigations of Ge nanowires grown along the [110] and [111] directions. Nanotechnology, 18, 295706.
go back to reference Areshkin, D. A., Gunlycke, D., & White, C. T. (2007). Ballistic transport in graphene nanostrips in the presence of disorder: importance of edge effects. Nano Letters, 7, 204. Areshkin, D. A., Gunlycke, D., & White, C. T. (2007). Ballistic transport in graphene nanostrips in the presence of disorder: importance of edge effects. Nano Letters, 7, 204.
go back to reference Ataca, C., Akturk, E., Ciraci, S., & Ustunel, H. (2008). High-capacity hydrogen storage by metallized graphene. Applied Physics Letters, 93, 043123. Ataca, C., Akturk, E., Ciraci, S., & Ustunel, H. (2008). High-capacity hydrogen storage by metallized graphene. Applied Physics Letters, 93, 043123.
go back to reference Balasubramanian, K. (1990). Spectroscopic constants and potential-energy curves of heavy p-block dimers and trimers. Chemical Reviews, 90, 93. Balasubramanian, K. (1990). Spectroscopic constants and potential-energy curves of heavy p-block dimers and trimers. Chemical Reviews, 90, 93.
go back to reference Baletto, F., & Ferrando, R. (2005). Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Reviews of Modern Physics, 77, 371. Baletto, F., & Ferrando, R. (2005). Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Reviews of Modern Physics, 77, 371.
go back to reference Barone, V., Hod, O., & Scuseria, G. E. (2006). Electronic structure and stability of semiconducting graphene nanoribbons. Nano Letters, 6, 2748. Barone, V., Hod, O., & Scuseria, G. E. (2006). Electronic structure and stability of semiconducting graphene nanoribbons. Nano Letters, 6, 2748.
go back to reference Barreteau, C., Desjonqueres, M. C., & Spanjaard, D. (2000). Theoretical study of the icosahedral to cuboctahedral structural transition in Rh and Pd clusters. European Physical Journal D, 11, 395. Barreteau, C., Desjonqueres, M. C., & Spanjaard, D. (2000). Theoretical study of the icosahedral to cuboctahedral structural transition in Rh and Pd clusters. European Physical Journal D, 11, 395.
go back to reference Barth, S., Harnagea, C., Mathur, S., & Rosei, F. (2009). The elastic moduli of oriented tin oxide nanowires. Nanotechnology, 20, 115705. Barth, S., Harnagea, C., Mathur, S., & Rosei, F. (2009). The elastic moduli of oriented tin oxide nanowires. Nanotechnology, 20, 115705.
go back to reference Baumeier, B., Kruger, P., & Pollmann, J. (2007). Structural, elastic, and electronic properties of SiC, BN, and BeO nanotubes. Physical Review B, 76, 085407. Baumeier, B., Kruger, P., & Pollmann, J. (2007). Structural, elastic, and electronic properties of SiC, BN, and BeO nanotubes. Physical Review B, 76, 085407.
go back to reference Berashevich, J., & Chakraborty, T. (2009). Tunable bandgap and magnetic ordering by adsorption of molecules on graphene. Physical Review B, 80, 033404. Berashevich, J., & Chakraborty, T. (2009). Tunable bandgap and magnetic ordering by adsorption of molecules on graphene. Physical Review B, 80, 033404.
go back to reference Bonacic-Koutecky, V., Fantucci, P., & Koutecky, J. (1991). Quantum chemistry of small clusters of elements of Groups Ia, Ib, and IIa: fundamental concepts, predictions, and interpretation of experiments. Chemical Reviews, 91, 1035. Bonacic-Koutecky, V., Fantucci, P., & Koutecky, J. (1991). Quantum chemistry of small clusters of elements of Groups Ia, Ib, and IIa: fundamental concepts, predictions, and interpretation of experiments. Chemical Reviews, 91, 1035.
go back to reference Botello-Mendez, A. R., Martinez-Martinez, M. T., Lopez-Urias, F., Terrones, M., & Terrones, H. (2007). Metallic edges in zinc oxide nanoribbons. Chemical Physics Letters, 448, 258. Botello-Mendez, A. R., Martinez-Martinez, M. T., Lopez-Urias, F., Terrones, M., & Terrones, H. (2007). Metallic edges in zinc oxide nanoribbons. Chemical Physics Letters, 448, 258.
go back to reference Brack, M. (1993). The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches. Reviews of Modern Physics, 65, 677. Brack, M. (1993). The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches. Reviews of Modern Physics, 65, 677.
go back to reference Brenner, D. (1989). Relationship between the embedded-atom method and Tersoff potentials. Physical Review Letters, 63, 1022. Brenner, D. (1989). Relationship between the embedded-atom method and Tersoff potentials. Physical Review Letters, 63, 1022.
go back to reference Briere, T. M., Sluiter, M. H., Kumar, V., & Kawazoe, Y. (2002). Atomic structures and magnetic behavior of Mn clusters. Physical Review B, 66, 064412. Briere, T. M., Sluiter, M. H., Kumar, V., & Kawazoe, Y. (2002). Atomic structures and magnetic behavior of Mn clusters. Physical Review B, 66, 064412.
go back to reference Bromley, S. T., & Flikkema, E. (2005). Columnar-to-disk structural transition in nanoscale (SiO2)N Clusters. Physical Review Letters, 95, 185505. Bromley, S. T., & Flikkema, E. (2005). Columnar-to-disk structural transition in nanoscale (SiO2)N Clusters. Physical Review Letters, 95, 185505.
go back to reference Bruno, M., Palummo, M., Ossicini, S., & del Sole, E. (2007). First-principles optical properties of silicon and germanium nanowires. Surface Science, 601, 2707. Bruno, M., Palummo, M., Ossicini, S., & del Sole, E. (2007). First-principles optical properties of silicon and germanium nanowires. Surface Science, 601, 2707.
go back to reference Bulusu, S., Yoo, S., & Zeng, X. C. (2005). Search for global minimum geometries for medium sized germanium clusters: Ge12-Ge20. Journal of Chemical Physics, 122, 164305. Bulusu, S., Yoo, S., & Zeng, X. C. (2005). Search for global minimum geometries for medium sized germanium clusters: Ge12-Ge20. Journal of Chemical Physics, 122, 164305.
go back to reference Chan, T.-L., Ciobanu, C. V., Chuang, F.-C., Lu, N., Wang, C.-Z., & Ho, K.-M. (2006). Magic structures of H-Passivated 〈110〉 silicon nanowires. Nano Letters, 6, 277. Chan, T.-L., Ciobanu, C. V., Chuang, F.-C., Lu, N., Wang, C.-Z., & Ho, K.-M. (2006). Magic structures of H-Passivated 〈110〉 silicon nanowires. Nano Letters, 6, 277.
go back to reference Chen, Y. P., Xie, Y. E., & Yan, X. H. (2008). Electron transport of L-shaped graphene nanoribbons. Journal of Applied Physics, 103, 063711. Chen, Y. P., Xie, Y. E., & Yan, X. H. (2008). Electron transport of L-shaped graphene nanoribbons. Journal of Applied Physics, 103, 063711.
go back to reference Chopra, N. G., Luyken, R. J., Cherrey, K., Crespi, V. H., Cohen, M. L., Louie, S. G., & Zettl, A. (1995). Boron-nitride nanotubes. Science, 269, 966. Chopra, N. G., Luyken, R. J., Cherrey, K., Crespi, V. H., Cohen, M. L., Louie, S. G., & Zettl, A. (1995). Boron-nitride nanotubes. Science, 269, 966.
go back to reference Corso, M., Auwarter, W., Muntwiler, M., Tamai, A., Greber, T., & Osterwalder, J. (2004). Boron nitride nanomesh. Science, 303, 217. Corso, M., Auwarter, W., Muntwiler, M., Tamai, A., Greber, T., & Osterwalder, J. (2004). Boron nitride nanomesh. Science, 303, 217.
go back to reference Darby, S., Mortimes-Jones, T. V., Johnston, R. L., & Roberts, C. (2002). Theorical study of Cu-Au nanoalloy clusters using a genetic algorithm. Journal of Chemical Physics, 116, 1536. Darby, S., Mortimes-Jones, T. V., Johnston, R. L., & Roberts, C. (2002). Theorical study of Cu-Au nanoalloy clusters using a genetic algorithm. Journal of Chemical Physics, 116, 1536.
go back to reference de Heer, W. A. (1993). The physics of simple metal clusters: experimental aspects and simple models. Reviews of Modern Physics, 65, 611. de Heer, W. A. (1993). The physics of simple metal clusters: experimental aspects and simple models. Reviews of Modern Physics, 65, 611.
go back to reference de Oliveira, I. S. S., & Miwa, R. H. (2009). Boron and nitrogen impurities in SiC nanowires. Physical Review B, 79, 085427. de Oliveira, I. S. S., & Miwa, R. H. (2009). Boron and nitrogen impurities in SiC nanowires. Physical Review B, 79, 085427.
go back to reference Doye, J. P. K. (2003). Identifying structural patterns in disordered metal clusters. Physical Review B, 68, 195418. Doye, J. P. K. (2003). Identifying structural patterns in disordered metal clusters. Physical Review B, 68, 195418.
go back to reference Doye, J. P. K. (2006). Lead clusters: Different potentials, different structures. Computational Materials Science, 35, 227. Doye, J. P. K. (2006). Lead clusters: Different potentials, different structures. Computational Materials Science, 35, 227.
go back to reference Doye, J. P. K., & Wales, D. J. (1999). Structural transitions and global minima of sodium chloride clusters. Physical Review B, 59, 2292. Doye, J. P. K., & Wales, D. J. (1999). Structural transitions and global minima of sodium chloride clusters. Physical Review B, 59, 2292.
go back to reference Du, J., Shen, N., Zhu, L., & Wang, J. (2010). Emergence of noncollinear magnetic ordering in bimetallic Co6 − n Mn n clusters Journal of Physics D, 43, 015006 Du, J., Shen, N., Zhu, L., & Wang, J. (2010). Emergence of noncollinear magnetic ordering in bimetallic Co6 − n Mn n clusters Journal of Physics D, 43, 015006
go back to reference Dugan, N., & Erkoc, S. (2008). Stability analysis of graphene nanoribbons by molecular dynamics simulations. Physica Status Solidi (B), 245, 695. Dugan, N., & Erkoc, S. (2008). Stability analysis of graphene nanoribbons by molecular dynamics simulations. Physica Status Solidi (B), 245, 695.
go back to reference Dugan, N., & Erkoc, S. (2009). Genetic algorithms in aication to the geometry optimization of nanoparticles. Algorithms, 2, 410. Dugan, N., & Erkoc, S. (2009). Genetic algorithms in aication to the geometry optimization of nanoparticles. Algorithms, 2, 410.
go back to reference Enoki, T., & Takai, K. (2009). The edge state of nanographene and the magnetism of the edge-state spins. Solid State Communications, 149, 1144. Enoki, T., & Takai, K. (2009). The edge state of nanographene and the magnetism of the edge-state spins. Solid State Communications, 149, 1144.
go back to reference Enyashin, A. N., & Seifert, G. (2005). Structure, stability and electronic properties of TiO2 nanostructures. Physica Status Solidi (B), 242, 1361. Enyashin, A. N., & Seifert, G. (2005). Structure, stability and electronic properties of TiO2 nanostructures. Physica Status Solidi (B), 242, 1361.
go back to reference Erkoc, S. (1997). Empirical many-body potential energy function used in computer simulations Of condensed matter properties. Physics Reports, 278, 79. Erkoc, S. (1997). Empirical many-body potential energy function used in computer simulations Of condensed matter properties. Physics Reports, 278, 79.
go back to reference Erkoc, S. (2001). Empirical potential energy functions used in the simulations of materials properties. In D. Stauffer (Ed.), Annual review of computational physics (Vol. IX, pp. 1–103). Singapore: World Scientific. Erkoc, S. (2001). Empirical potential energy functions used in the simulations of materials properties. In D. Stauffer (Ed.), Annual review of computational physics (Vol. IX, pp. 1–103). Singapore: World Scientific.
go back to reference Erkoc, S. (2001). Structural and electronic properties of single-wall BN nanotubes. Journal of Molecular Structure (THEOCHEM), 542, 89. Erkoc, S. (2001). Structural and electronic properties of single-wall BN nanotubes. Journal of Molecular Structure (THEOCHEM), 542, 89.
go back to reference Erkoc, S. (2003). Structural and electronic properties of “benzorods”. Journal of Molecular Structure (THEOCHEM), 639, 157. Erkoc, S. (2003). Structural and electronic properties of “benzorods”. Journal of Molecular Structure (THEOCHEM), 639, 157.
go back to reference Erkoc, S. (2004). Does tubular structure of carbon form only from graphine sheet? Physica E, 25, 69. Erkoc, S. (2004). Does tubular structure of carbon form only from graphine sheet? Physica E, 25, 69.
go back to reference Erkoc, S. (2004). Semi-empirical SCF-MO calculations for the structural and electronic properties of single-wall InP nanotubes. Journal of Molecular Structure (THEOCHEM), 676, 109. Erkoc, S. (2004). Semi-empirical SCF-MO calculations for the structural and electronic properties of single-wall InP nanotubes. Journal of Molecular Structure (THEOCHEM), 676, 109.
go back to reference Erkoc, S., & Kokten, H. (2005). Structural and electronic properties of single-wall ZnO nanotubes. Physica E, 28, 162. Erkoc, S., & Kokten, H. (2005). Structural and electronic properties of single-wall ZnO nanotubes. Physica E, 28, 162.
go back to reference Erkoc, S., Malcioglu, O. B., & Tasci, E. (2004). Structural and electronic properties of single-wall GaN nanotubes: semi-empirical SCF-MO calculations. Journal of Molecular Structure (THEOCHEM), 674, 1. Erkoc, S., Malcioglu, O. B., & Tasci, E. (2004). Structural and electronic properties of single-wall GaN nanotubes: semi-empirical SCF-MO calculations. Journal of Molecular Structure (THEOCHEM), 674, 1.
go back to reference Ezawa, M. (2006). Peculiar width dependence of the electronic properties of carbon nanoribbons. Physical Review B, 73, 045432. Ezawa, M. (2006). Peculiar width dependence of the electronic properties of carbon nanoribbons. Physical Review B, 73, 045432.
go back to reference Fa, W., Luo, C., & Dong, J. (2005). Structure-dependent ferroelectricity of niobium clusters (Nb N , N = 2 − 52). Physical Review B, 71, 245415. Fa, W., Luo, C., & Dong, J. (2005). Structure-dependent ferroelectricity of niobium clusters (Nb N , N = 2 − 52). Physical Review B, 71, 245415.
go back to reference Fa, W., Luo, C., & Dong, J. (2006). Coexistence of ferroelectricity and ferromagnetism in tantalum clusters. Journal of Chemical Physics, 125, 114305. Fa, W., Luo, C., & Dong, J. (2006). Coexistence of ferroelectricity and ferromagnetism in tantalum clusters. Journal of Chemical Physics, 125, 114305.
go back to reference Finnis, M. W., & Sinclair, J. E. (1984). A simple empirical n-body potential for transition metals. Philosophical Magazine A, 50, 45. Finnis, M. W., & Sinclair, J. E. (1984). A simple empirical n-body potential for transition metals. Philosophical Magazine A, 50, 45.
go back to reference Freitag, M. (2008). Nanoelectronics goes flat out. Nature Nanotechnology, 3, 455. Freitag, M. (2008). Nanoelectronics goes flat out. Nature Nanotechnology, 3, 455.
go back to reference Gafner, Y. Y., Gafner, S. L., & Entel, P. (2004). Formation of an icosahedral structure during crystallization of nickel nanoclusters. Physical Solid State, 46, 1327. Gafner, Y. Y., Gafner, S. L., & Entel, P. (2004). Formation of an icosahedral structure during crystallization of nickel nanoclusters. Physical Solid State, 46, 1327.
go back to reference Gao, G., & Kang, H. S. (2008). First-principles study of silicon nitride nanotubes. Physical Review B, 78, 165425. Gao, G., & Kang, H. S. (2008). First-principles study of silicon nitride nanotubes. Physical Review B, 78, 165425.
go back to reference Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6, 183. Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6, 183.
go back to reference Ghosh, P., Kahaly, M. U., & Waghmare, U. V. (2007). Atomic and electronic structures, elastic properties, and optical conductivity of bulk Te and Te nanowires: a first-principles study. Physical Review B, 75, 245437. Ghosh, P., Kahaly, M. U., & Waghmare, U. V. (2007). Atomic and electronic structures, elastic properties, and optical conductivity of bulk Te and Te nanowires: a first-principles study. Physical Review B, 75, 245437.
go back to reference Gorjizadeh, N., Farajian, A. A., Esfarjani, K., & Kawazoe, Y. (2008). Spin and band-gap engineering in doped graphene nanoribbons. Physical Review B, 78, 155427. Gorjizadeh, N., Farajian, A. A., Esfarjani, K., & Kawazoe, Y. (2008). Spin and band-gap engineering in doped graphene nanoribbons. Physical Review B, 78, 155427.
go back to reference Gunlycke, D., Li, J., Mintmire, J. W., & White, C. T. (2007). Altering low-bias transport in zigzag-edge graphene nanostrips with edge chemistry. Applied Physics Letters, 91, 112108. Gunlycke, D., Li, J., Mintmire, J. W., & White, C. T. (2007). Altering low-bias transport in zigzag-edge graphene nanostrips with edge chemistry. Applied Physics Letters, 91, 112108.
go back to reference Haberland, H. (1994), Clusters of atoms and molecules. Berlin: Springer. Haberland, H. (1994), Clusters of atoms and molecules. Berlin: Springer.
go back to reference Halicioglu, T., & Bauschlicher, C. W. (1988). Physics of microclusters. Reports on Progress in Physics, 51, 883. Halicioglu, T., & Bauschlicher, C. W. (1988). Physics of microclusters. Reports on Progress in Physics, 51, 883.
go back to reference Han, M. Y., Ozyilmaz, B., Zhang, Y. B., & Kim, P. (2007). Energy band-gap engineering of graphene nanoribbons. Physical Review Letters, 98, 206805. Han, M. Y., Ozyilmaz, B., Zhang, Y. B., & Kim, P. (2007). Energy band-gap engineering of graphene nanoribbons. Physical Review Letters, 98, 206805.
go back to reference Hartke, B. (2002). Structural transitions in clusters. Angewandte Chemie (International Ed. in English), 41, 1468. Hartke, B. (2002). Structural transitions in clusters. Angewandte Chemie (International Ed. in English), 41, 1468.
go back to reference Hestenes, M. R., & Stiefel, E. (1952). Methods of conjugate gradients for solving linear systems. Journal of research of the National Bureau of Standards, 49, 409. Hestenes, M. R., & Stiefel, E. (1952). Methods of conjugate gradients for solving linear systems. Journal of research of the National Bureau of Standards, 49, 409.
go back to reference Hsu, P. J., & Lai, S. K. (2006). Structures of bimetallic clusters. Journal of Chemical Physics, 124, 044711. Hsu, P. J., & Lai, S. K. (2006). Structures of bimetallic clusters. Journal of Chemical Physics, 124, 044711.
go back to reference Hu, J., Liu, X. W., & Pan, B. C. (2008). A study of the size-dependent elastic properties of ZnO nanowires and nanotubes. Nanotechnology, 19, 285710. Hu, J., Liu, X. W., & Pan, B. C. (2008). A study of the size-dependent elastic properties of ZnO nanowires and nanotubes. Nanotechnology, 19, 285710.
go back to reference Huda, M. N., & Kleinman, L. (2006). h-BN monolayer adsorption on the Ni(111) surface: a density functional study. Physical Review B, 74, 075418. Huda, M. N., & Kleinman, L. (2006). h-BN monolayer adsorption on the Ni(111) surface: a density functional study. Physical Review B, 74, 075418.
go back to reference Jarrold, M. F. & Constant, V. A. (1991). Silicon cluster ions: evidence for a structural transition. Physical Review Letters, 67, 2994. Jarrold, M. F. & Constant, V. A. (1991). Silicon cluster ions: evidence for a structural transition. Physical Review Letters, 67, 2994.
go back to reference Jayasekera, T., & Mintmire, J. W. (2007). Transport in multiterminal graphene nanodevices. Nanotechnology, 18, 424033. Jayasekera, T., & Mintmire, J. W. (2007). Transport in multiterminal graphene nanodevices. Nanotechnology, 18, 424033.
go back to reference Jensen, P. J., & Pastor, G. M. (2003). Low-energy properties of two-dimensional magnetic nanostructures: interparticle interactions and disorder effects. New Journal of Physics, 5, 68. Jensen, P. J., & Pastor, G. M. (2003). Low-energy properties of two-dimensional magnetic nanostructures: interparticle interactions and disorder effects. New Journal of Physics, 5, 68.
go back to reference Jia, X., Hofmann, M., Meunier, V., Sumpter, B. G., Campos-Delgado, J., Romo-Herrera,J.M.,Son, H.,Hsieh,Y.-.P.,Reina,A.,Kong,J.,Terrones, M., & Dresselhaus, M. S. (2009). Controlled formation of Sharp Zigzag and Armchair Edges in Graphitic Nanoribbons. Science, 323, 1701. Jia, X., Hofmann, M., Meunier, V., Sumpter, B. G., Campos-Delgado, J., Romo-Herrera,J.M.,Son, H.,Hsieh,Y.-.P.,Reina,A.,Kong,J.,Terrones, M., & Dresselhaus, M. S. (2009). Controlled formation of Sharp Zigzag and Armchair Edges in Graphitic Nanoribbons. Science, 323, 1701.
go back to reference Johnston, R. L. (2002). Atomic and molecular clusters. London: Taylor & Francis. Johnston, R. L. (2002). Atomic and molecular clusters. London: Taylor & Francis.
go back to reference Kabir, M., Mookerjee, A., & Kanhere, D. G. (2006). Structure, electronic properties, and magnetic transition in manganese clusters. Physical Review B, 73, 224439. Kabir, M., Mookerjee, A., & Kanhere, D. G. (2006). Structure, electronic properties, and magnetic transition in manganese clusters. Physical Review B, 73, 224439.
go back to reference Kagimura, R., Nunes, R. W., & Chacham, H. (2007). Surface dangling-bond states and band Lineups in Hydrogen-Terminated Si, Ge, and Ge/Si nanowires. Physical Review Letters, 98, 026801. Kagimura, R., Nunes, R. W., & Chacham, H. (2007). Surface dangling-bond states and band Lineups in Hydrogen-Terminated Si, Ge, and Ge/Si nanowires. Physical Review Letters, 98, 026801.
go back to reference Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220, 671. Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220, 671.
go back to reference Knickelbein, M. B. (2001). Experimental observation of superparamagnetism in manganese clusters. Physical Review Letters, 86, 5255. Knickelbein, M. B. (2001). Experimental observation of superparamagnetism in manganese clusters. Physical Review Letters, 86, 5255.
go back to reference Kohler, C., Seifer, G., & Frauheim, T. (2006). Magnetism and the potential energy hypersurfaces of Fe53 to Fe57. Computational Materials Science, 35, 297. Kohler, C., Seifer, G., & Frauheim, T. (2006). Magnetism and the potential energy hypersurfaces of Fe53 to Fe57. Computational Materials Science, 35, 297.
go back to reference Krainyukova, N. V. (2006). The crystal structure problem in noble gas nanoclusters. Thin Solid Films, 515, 1658. Krainyukova, N. V. (2006). The crystal structure problem in noble gas nanoclusters. Thin Solid Films, 515, 1658.
go back to reference Kulkarni, A. J., Zhou, M., & Ke, F. J. (2005). Orientation and size dependence of the elastic properties of zinc oxide nanobelts. Nanotechnology, 16, 2749. Kulkarni, A. J., Zhou, M., & Ke, F. J. (2005). Orientation and size dependence of the elastic properties of zinc oxide nanobelts. Nanotechnology, 16, 2749.
go back to reference Kumar, V., & Kawazoe, Y. (2002). Icosahedral growth, magnetic behavior, and adsorbate-induced metal-nonmetal transition in palladium clusters. Physical Review B, 66, 144413. Kumar, V., & Kawazoe, Y. (2002). Icosahedral growth, magnetic behavior, and adsorbate-induced metal-nonmetal transition in palladium clusters. Physical Review B, 66, 144413.
go back to reference Landau, L. D., & Lifshitz, E. M. (1980). Statistical physics, Part I, sections 137 and 138. Oxford: Pergamon. Landau, L. D., & Lifshitz, E. M. (1980). Statistical physics, Part I, sections 137 and 138. Oxford: Pergamon.
go back to reference Lau, K. C., Pati, R., Pandey, R., & Pineda, A. C. (2006). First-principles study of the stability and electronic properties of sheets and nanotubes of elemental boron. Chemical Physics Letters, 418, 549. Lau, K. C., Pati, R., Pandey, R., & Pineda, A. C. (2006). First-principles study of the stability and electronic properties of sheets and nanotubes of elemental boron. Chemical Physics Letters, 418, 549.
go back to reference Lee, B., & Rudd, R. E. (2007). First-principles calculation of mechanical properties of Si¡001¿ nanowires and comparison to nanomechanical theory. Physical Review B, 75, 195328. Lee, B., & Rudd, R. E. (2007). First-principles calculation of mechanical properties of Si¡001¿ nanowires and comparison to nanomechanical theory. Physical Review B, 75, 195328.
go back to reference Lennard-Jones, J. E. (1931). Cohesion. Proceedings of the Physical Society, 43, 461. Lennard-Jones, J. E. (1931). Cohesion. Proceedings of the Physical Society, 43, 461.
go back to reference Li, F., Zhu, Z., Zhao, M., & Xia, Y. (2008a). Ab initio calculations on the magnetic properties of hydrogenated boron nitride nanotubes. Journal of Physical Chemistry C, 112, 16231. Li, F., Zhu, Z., Zhao, M., & Xia, Y. (2008a). Ab initio calculations on the magnetic properties of hydrogenated boron nitride nanotubes. Journal of Physical Chemistry C, 112, 16231.
go back to reference Li, Z. Q., Henriksen, E. A., Jiang, Z., Hao, Z., Martin, M. C., Kim, P., Stormer, H. L., & Basov, D. N. (2008b). Dirac charge dynamics in graphene by infrared spectroscopy, Nature Physics, 4, 532. Li, Z. Q., Henriksen, E. A., Jiang, Z., Hao, Z., Martin, M. C., Kim, P., Stormer, H. L., & Basov, D. N. (2008b). Dirac charge dynamics in graphene by infrared spectroscopy, Nature Physics, 4, 532.
go back to reference Liang, H., & Upmanyu, M. (2006). Axial-strain-induced torsion in single-walled carbon nanotubes. Physical Review Letters, 96, 165501. Liang, H., & Upmanyu, M. (2006). Axial-strain-induced torsion in single-walled carbon nanotubes. Physical Review Letters, 96, 165501.
go back to reference Lin, Y.-M., Jenkins, K. A., Valdes-Garcia, A., Small, J. P., Farmer, D. B., & Avouris, P. (2009). Operation of graphene transistors at gigahertz frequencies. Nano Letters, 9, 422. Lin, Y.-M., Jenkins, K. A., Valdes-Garcia, A., Small, J. P., Farmer, D. B., & Avouris, P. (2009). Operation of graphene transistors at gigahertz frequencies. Nano Letters, 9, 422.
go back to reference Liu, J. F., Wright, A. R., Zhang, C., & Ma, Z. S. (2008). Strong terahertz conductance of graphene nanoribbons under a magnetic field. A Physical Letters, 93, 041106. Liu, J. F., Wright, A. R., Zhang, C., & Ma, Z. S. (2008). Strong terahertz conductance of graphene nanoribbons under a magnetic field. A Physical Letters, 93, 041106.
go back to reference Liu, X., Bauer, M., Bertagnolli, H., Roduner, E., van Slagere, J., & Philli F. (2006). Structure and magnetization of small monodisperse platinum clusters. Physical Review Letters, 97, 253401. Liu, X., Bauer, M., Bertagnolli, H., Roduner, E., van Slagere, J., & Philli F. (2006). Structure and magnetization of small monodisperse platinum clusters. Physical Review Letters, 97, 253401.
go back to reference Ma, S., & Wang. G. (2006). Structures of medium size germanium clusters. Journal of Molecular Structure (THEOCHEM), 767, 75. Ma, S., & Wang. G. (2006). Structures of medium size germanium clusters. Journal of Molecular Structure (THEOCHEM), 767, 75.
go back to reference Mackay, A. L. (1962). A dense non-crystallographic packing of equal spheres. Acta Crystallographica, 15, 916. Mackay, A. L. (1962). A dense non-crystallographic packing of equal spheres. Acta Crystallographica, 15, 916.
go back to reference Maiti, A. (2008). Multiscale modeling with carbon nanotubes. Microelectronics Journal, 39, 208. Maiti, A. (2008). Multiscale modeling with carbon nanotubes. Microelectronics Journal, 39, 208.
go back to reference Malcioglu, O. B., & Erkoc, S. (2004). Stability of C60 chains: Molecular Dynamics Simulations. Journal of Molecular Graphics and Modelling, 23, 367. Malcioglu, O. B., & Erkoc, S. (2004). Stability of C60 chains: Molecular Dynamics Simulations. Journal of Molecular Graphics and Modelling, 23, 367.
go back to reference Martin, T. P. (1996). Shells of atom. Physics Reports, 273, 199. Martin, T. P. (1996). Shells of atom. Physics Reports, 273, 199.
go back to reference Mermin, N. D. (1968). Cristalline order in two dimensions. Physical Review, 176, 250. Mermin, N. D. (1968). Cristalline order in two dimensions. Physical Review, 176, 250.
go back to reference Meyer, J. C., Geim, A. K., Katsnelson, M. I., Novoselov, K. S., Booth, T. J., & Roth, S. (2007). The structure of suspended graphene sheets. Nature, 446, 60. Meyer, J. C., Geim, A. K., Katsnelson, M. I., Novoselov, K. S., Booth, T. J., & Roth, S. (2007). The structure of suspended graphene sheets. Nature, 446, 60.
go back to reference Michaelian, K., Rendon, N., & Garzon, I. L. (1999). Structure and energetics of Ni, Ag, and Au nanoclusters. Physical Review B, 60, 2000. Michaelian, K., Rendon, N., & Garzon, I. L. (1999). Structure and energetics of Ni, Ag, and Au nanoclusters. Physical Review B, 60, 2000.
go back to reference Migas, D. B., & Borisenko, V. E. (2008). Effects of oxygen, fluorine, and hydroxyl passivation on electronic properties of 〈001〉-oriented silicon nanowires. Journal of Applied Physics, 104, 024314. Migas, D. B., & Borisenko, V. E. (2008). Effects of oxygen, fluorine, and hydroxyl passivation on electronic properties of 〈001〉-oriented silicon nanowires. Journal of Applied Physics, 104, 024314.
go back to reference Moraga, G. G. (1993). Cluster chemistry. Berlin: Springer Moraga, G. G. (1993). Cluster chemistry. Berlin: Springer
go back to reference Morse, M. D. (1986). Clusters of transition-metal atoms. Chemical Reviews, 86, 1049. Morse, M. D. (1986). Clusters of transition-metal atoms. Chemical Reviews, 86, 1049.
go back to reference Nakabayashi, J., Yamamoto, D., & Kurihara, S. (2009). Band-selective filter in a zigzag graphene nanoribbon. Physical Review Letters, 102, 066803. Nakabayashi, J., Yamamoto, D., & Kurihara, S. (2009). Band-selective filter in a zigzag graphene nanoribbon. Physical Review Letters, 102, 066803.
go back to reference Nava, P., Seierka, M., & Ahlrichs, R. (2003). Density functional study of palladium clusters. Physical Chemistry Chemical Physics, 5, 3372. Nava, P., Seierka, M., & Ahlrichs, R. (2003). Density functional study of palladium clusters. Physical Chemistry Chemical Physics, 5, 3372.
go back to reference Neto, A. H. C., Guinea, F., Peres, N. M. R., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of Modern Physics, 81, 109. Neto, A. H. C., Guinea, F., Peres, N. M. R., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of Modern Physics, 81, 109.
go back to reference Novoselov,K.S.,Geim,A.K.,Morozov,S.V.,Jiang, D.,Zhang,Y.,Dubonos,S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306, 666. Novoselov,K.S.,Geim,A.K.,Morozov,S.V.,Jiang, D.,Zhang,Y.,Dubonos,S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306, 666.
go back to reference Noya, E. G., & Doye, J. P. K. (2006), Structural transitions in the 309-atom magic number Lennard-Jones cluster. Journal of Physical Chemistry, 124, 104503. Noya, E. G., & Doye, J. P. K. (2006), Structural transitions in the 309-atom magic number Lennard-Jones cluster. Journal of Physical Chemistry, 124, 104503.
go back to reference Pan, Z. W., Dai, Z. R., & Wang, Z. L. (2001). Nanobelts of semiconducting oxides. Science, 291, 1947. Pan, Z. W., Dai, Z. R., & Wang, Z. L. (2001). Nanobelts of semiconducting oxides. Science, 291, 1947.
go back to reference Pathak, S., Shenoy, V. B., & Baskaran, G. (2008). Possibility of High Tc Superconductivity in doped Graphene, arXiv:0809.0244v1 [cond-mat.supr-con] 1 Sep 2008. Pathak, S., Shenoy, V. B., & Baskaran, G. (2008). Possibility of High Tc Superconductivity in doped Graphene, arXiv:0809.0244v1 [cond-mat.supr-con] 1 Sep 2008.
go back to reference Pawluk, T., Hirata, Y., & Wang, L. (2005). Studies of iridium nanoparticles using density functional theory calculations. Journal of Physical Chemistry B, 109, 20817. Pawluk, T., Hirata, Y., & Wang, L. (2005). Studies of iridium nanoparticles using density functional theory calculations. Journal of Physical Chemistry B, 109, 20817.
go back to reference Payne, F. W., Jiang, W., & Bloomfield, L. A. (2006). Magnetism and magnetic isomers in free chromium clusters. Physical Review Letters, 97, 193401. Payne, F. W., Jiang, W., & Bloomfield, L. A. (2006). Magnetism and magnetic isomers in free chromium clusters. Physical Review Letters, 97, 193401.
go back to reference Pedersen, T. G., Flindt, C., Pedersen, J., Jauho, A.-P., Mortensen, N. A., & Pedersen, K. (2008). Optical properties of graphene antidot lattices. Physical Review B, 77, 245431. Pedersen, T. G., Flindt, C., Pedersen, J., Jauho, A.-P., Mortensen, N. A., & Pedersen, K. (2008). Optical properties of graphene antidot lattices. Physical Review B, 77, 245431.
go back to reference Pedersen, T. G., Flindt, C., Pedersen, J., Mortensen, N. A., Jauho, A.-P., & Pedersen, K. (2008). Graphene antidot lattices: Designed defects and spin qubits. Physical Review Letters, 100, 136804. Pedersen, T. G., Flindt, C., Pedersen, J., Mortensen, N. A., Jauho, A.-P., & Pedersen, K. (2008). Graphene antidot lattices: Designed defects and spin qubits. Physical Review Letters, 100, 136804.
go back to reference Pekoz, R., & Erkoc, S. (2008). Quantum chemical treatment of Li/Li+ doped defected carbon nanocapsules. Physica E, 40, 2752. Pekoz, R., & Erkoc, S. (2008). Quantum chemical treatment of Li/Li+ doped defected carbon nanocapsules. Physica E, 40, 2752.
go back to reference Peres, N., Castro, A., & Guinea, F. (2006). Conductance quantization in mesoscopic graphene. Physical Review B, 73, 195411. Peres, N., Castro, A., & Guinea, F. (2006). Conductance quantization in mesoscopic graphene. Physical Review B, 73, 195411.
go back to reference Peres, N. M. R., Guinea, F., & Neto, A. H. C. (2006). Electronic properties of two-dimensional carbon. Annals of Physics, 321, 1559. Peres, N. M. R., Guinea, F., & Neto, A. H. C. (2006). Electronic properties of two-dimensional carbon. Annals of Physics, 321, 1559.
go back to reference Pisani, L., Chan, J. A., Montanari, B., & Harrison, N. M. (2007). Electronic structure and magnetic properties of graphitic ribbons. Physical Review B, 75, 064418. Pisani, L., Chan, J. A., Montanari, B., & Harrison, N. M. (2007). Electronic structure and magnetic properties of graphitic ribbons. Physical Review B, 75, 064418.
go back to reference Qi, J., Shi, D., Zhao, J., & Jiang, X. (2008). Stable structures and electronic properties of the oriented Bi Nanowires and Nanotubes from first-principle calculations. Journal of Physical Chemistry C, 112, 10745. Qi, J., Shi, D., Zhao, J., & Jiang, X. (2008). Stable structures and electronic properties of the oriented Bi Nanowires and Nanotubes from first-principle calculations. Journal of Physical Chemistry C, 112, 10745.
go back to reference Rathi, S. J., & Ray, A. K. (2008). On the existence and stability of single walled SiGe nanotubes. Chemical Physics Letters, 466, 79. Rathi, S. J., & Ray, A. K. (2008). On the existence and stability of single walled SiGe nanotubes. Chemical Physics Letters, 466, 79.
go back to reference Rey, C., Gallego, L. J., Garcia-Rodeja, J., Alonso, J. A., & Iniguez, M. P. (1993). Molecular-dynamics study of the binding energy and melting of transition-metal clusters. Physical Review B, 48, 8253. Rey, C., Gallego, L. J., Garcia-Rodeja, J., Alonso, J. A., & Iniguez, M. P. (1993). Molecular-dynamics study of the binding energy and melting of transition-metal clusters. Physical Review B, 48, 8253.
go back to reference Rodriguez-Lopez, J. L., Aguilera-Granja, F., Michaelian, K., & Vega, A. (2003). Structure and magnetism of cobalt clusters. Physical Review B, 67, 174413. Rodriguez-Lopez, J. L., Aguilera-Granja, F., Michaelian, K., & Vega, A. (2003). Structure and magnetism of cobalt clusters. Physical Review B, 67, 174413.
go back to reference Rosales, L., Pacheco, M., Barticevic, Z., Latge, A., & Orellana, P. A. (2008). Transport properties of graphene nanoribbons with side-attached organic molecules. Nanotechnology, 19, 065402. Rosales, L., Pacheco, M., Barticevic, Z., Latge, A., & Orellana, P. A. (2008). Transport properties of graphene nanoribbons with side-attached organic molecules. Nanotechnology, 19, 065402.
go back to reference Rudd, R. E., & Lee, B. (2008). Mechanics of silicon nanowires: size-dependent elasticity from first principles. Molecular Simulation, 34, 1. Rudd, R. E., & Lee, B. (2008). Mechanics of silicon nanowires: size-dependent elasticity from first principles. Molecular Simulation, 34, 1.
go back to reference Rurali, R. (2005). Electronic and structural properties of silicon carbide nanowires. Physical Review B, 71, 205405. Rurali, R. (2005). Electronic and structural properties of silicon carbide nanowires. Physical Review B, 71, 205405.
go back to reference Rurali, R., & Lorente, N. (2005). Metallic and semimetallic silicon 〈100〉 nanowires. Physical Review Letters, 94, 026805. Rurali, R., & Lorente, N. (2005). Metallic and semimetallic silicon 〈100〉 nanowires. Physical Review Letters, 94, 026805.
go back to reference Sadowski, T., & Ramprasad, R. (2007). Stability and electronic structure of CdSe nanorods from first principles. Physical Review B, 76, 235310. Sadowski, T., & Ramprasad, R. (2007). Stability and electronic structure of CdSe nanorods from first principles. Physical Review B, 76, 235310.
go back to reference Sasaki, K. I., Murakami, S., & Saito, R. (2006). Gauge field for edge state in graphene. Journal of the Physical Society of Japan, 75, 074713. Sasaki, K. I., Murakami, S., & Saito, R. (2006). Gauge field for edge state in graphene. Journal of the Physical Society of Japan, 75, 074713.
go back to reference Sevincli, H., Topsakal, M., Durgun, E., & Ciraci, S. (2008). Electronic and magnetic properties of 3d transition-metal atom adsorbed graphene and graphene nanoribbons. Physical Review B, 77, 195434. Sevincli, H., Topsakal, M., Durgun, E., & Ciraci, S. (2008). Electronic and magnetic properties of 3d transition-metal atom adsorbed graphene and graphene nanoribbons. Physical Review B, 77, 195434.
go back to reference Shevlin, S. A., & Guo, Z. X. (2006). Transition-metal-doping-enhanced hydrogen storage in boron nitride systems. Applied Physics Letters, 89, 153104. Shevlin, S. A., & Guo, Z. X. (2006). Transition-metal-doping-enhanced hydrogen storage in boron nitride systems. Applied Physics Letters, 89, 153104.
go back to reference Shvartsburg, A. A., & Jarrold, M. F. (1999). Tin clusters adopt prolate geometries. Physical Review A, 60, 1235. Shvartsburg, A. A., & Jarrold, M. F. (1999). Tin clusters adopt prolate geometries. Physical Review A, 60, 1235.
go back to reference Shvartsburg, A. A., & Jarrold, M. F. (2000). Transition from covalent to metallic behavior in group-14 clusters. Chemical Physics Letters, 317, 615. Shvartsburg, A. A., & Jarrold, M. F. (2000). Transition from covalent to metallic behavior in group-14 clusters. Chemical Physics Letters, 317, 615.
go back to reference Sieck, A., Frauenheim, T., & Jackson, K. A. (2003). Shape transition of medium-sized neutral silicon clusters. Physica Status Solidi B, 240, 537. Sieck, A., Frauenheim, T., & Jackson, K. A. (2003). Shape transition of medium-sized neutral silicon clusters. Physica Status Solidi B, 240, 537.
go back to reference Singh, R., & Kroll, P. (2009). Magnetism in graphene due to single-atom defects: dependence on the concentration and packing geometry of defects. Journal of Physics: Condensed Matter, 21, 196002. Singh, R., & Kroll, P. (2009). Magnetism in graphene due to single-atom defects: dependence on the concentration and packing geometry of defects. Journal of Physics: Condensed Matter, 21, 196002.
go back to reference Son, Y. W., Cohen, M. L., & Louie, S. G. (2006). Half-metallic graphene nanoribbons. Nature, 444, 347. Son, Y. W., Cohen, M. L., & Louie, S. G. (2006). Half-metallic graphene nanoribbons. Nature, 444, 347.
go back to reference Stillinger, F. H., & Weber, T. A. (1985). Computer simulation of local order in condensed phases of silicon. Physical Review B, 31, 5262. Stillinger, F. H., & Weber, T. A. (1985). Computer simulation of local order in condensed phases of silicon. Physical Review B, 31, 5262.
go back to reference Sun, X. H., Li, C. P., Wong, W. K., Wong, N. B., Lee, C. S., Lee, S. T., & Teo, B. K. (2002). Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes. Journal of the American Chemical Society, 124, 14464. Sun, X. H., Li, C. P., Wong, W. K., Wong, N. B., Lee, C. S., Lee, S. T., & Teo, B. K. (2002). Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes. Journal of the American Chemical Society, 124, 14464.
go back to reference Tang, C., Yan, W., Zheng, Y., Li, G., & Li, L. (2008). Dirac equation description on the electronic states and magnetic properties of a square graphene quantum dot, arXiv:0811.4312v1 [cond-mat.str-el] 26 Nov 2008. Tang, C., Yan, W., Zheng, Y., Li, G., & Li, L. (2008). Dirac equation description on the electronic states and magnetic properties of a square graphene quantum dot, arXiv:0811.4312v1 [cond-mat.str-el] 26 Nov 2008.
go back to reference Tiago, M. L., Zhou, Y., Alemany, M. M. G., Saad, Y., & Chelikowski, J. R. (2006). Evolution of magnetism in iron from the atom to the bulk. Physical Review Letters, 97, 147201. Tiago, M. L., Zhou, Y., Alemany, M. M. G., Saad, Y., & Chelikowski, J. R. (2006). Evolution of magnetism in iron from the atom to the bulk. Physical Review Letters, 97, 147201.
go back to reference Topsakal, M., Akturk, E., Sevincli, H., and Ciraci, S. (2008). First-principles aoach to monitoring the band gap and magnetic state of a graphene nanoribbon via its vacancies. Physical Review B, 78, 235435. Topsakal, M., Akturk, E., Sevincli, H., and Ciraci, S. (2008). First-principles aoach to monitoring the band gap and magnetic state of a graphene nanoribbon via its vacancies. Physical Review B, 78, 235435.
go back to reference Ustunel, H., & Erkoc, S. (2007). Structural properties and stability of nanoclusters. Journal of Computational and Theoretical Nanoscience, 4, 928. Ustunel, H., & Erkoc, S. (2007). Structural properties and stability of nanoclusters. Journal of Computational and Theoretical Nanoscience, 4, 928.
go back to reference Ustunel, H., Roundy, D., & Arias, T. A. (2005). Modelling a suspended nanotube oscillator. Nano Letters, 5, 523. Ustunel, H., Roundy, D., & Arias, T. A. (2005). Modelling a suspended nanotube oscillator. Nano Letters, 5, 523.
go back to reference Venkataramanan, N. J., Khazaei, M., Sahara, R., Mizuseki, H., & Kawazoe, Y. (2009). First-principles study of hydrogen storage over Ni and Rh doped BN sheets. Chemical Physics, 359, 173. Venkataramanan, N. J., Khazaei, M., Sahara, R., Mizuseki, H., & Kawazoe, Y. (2009). First-principles study of hydrogen storage over Ni and Rh doped BN sheets. Chemical Physics, 359, 173.
go back to reference Vvedensky, D. D. (2004). Multiscale modelling of nanostructures. Journal of Physics: Condensed Matter, 16, R1537. Vvedensky, D. D. (2004). Multiscale modelling of nanostructures. Journal of Physics: Condensed Matter, 16, R1537.
go back to reference Wales, D. J. & Doye, J. P. K. (1997). Global optimization by basin-hong and the lowest energy structures of lennard-jones clusters containing up to 110 atoms. Journal of Physical Chemistry A, 101, 5111. Wales, D. J. & Doye, J. P. K. (1997). Global optimization by basin-hong and the lowest energy structures of lennard-jones clusters containing up to 110 atoms. Journal of Physical Chemistry A, 101, 5111.
go back to reference Wang, G., & Li, X. (2008). Predicting Young’s modulus of nanowires from first-principles calculations on their surface and bulk materials. Journal of Applied Physics, 104, 113517. Wang, G., & Li, X. (2008). Predicting Young’s modulus of nanowires from first-principles calculations on their surface and bulk materials. Journal of Applied Physics, 104, 113517.
go back to reference Wang, W. L., Meng, S., & Kaxiras, E. (2008). Graphene nanoflakes with large spin. Nano Letters, 8, 241. Wang, W. L., Meng, S., & Kaxiras, E. (2008). Graphene nanoflakes with large spin. Nano Letters, 8, 241.
go back to reference Wang, Z. F., Li, Q., Zheng, H., Ren, H., Su, H., Shi, Q. W., & Chen, J. (2007). Tuning the electronic structure of graphene nanoribbons through chemical edge modification: a theoretical study. Physical Review B, 75, 113406. Wang, Z. F., Li, Q., Zheng, H., Ren, H., Su, H., Shi, Q. W., & Chen, J. (2007). Tuning the electronic structure of graphene nanoribbons through chemical edge modification: a theoretical study. Physical Review B, 75, 113406.
go back to reference Wang, Z. L. (2004). Functional oxide nanobelts: materials, properties and potential applications in nanosystems and biotechnology. Annual Review of Physical Chemistry, 55, 159. Wang, Z. L. (2004). Functional oxide nanobelts: materials, properties and potential applications in nanosystems and biotechnology. Annual Review of Physical Chemistry, 55, 159.
go back to reference Weltner, W. J., & Van Zee, R. J. (1984). Transition metal molecules. Annual Review of Physical Chemistry, 35, 291. Weltner, W. J., & Van Zee, R. J. (1984). Transition metal molecules. Annual Review of Physical Chemistry, 35, 291.
go back to reference Wright, A. R., Wang, G. X., Xu, W., Zeng, Z., & Zhang, C. (2009). The spin-orbit interaction enhanced terahertz absorption in graphene around the K point. Microelectronics Journal, 40, 857. Wright, A. R., Wang, G. X., Xu, W., Zeng, Z., & Zhang, C. (2009). The spin-orbit interaction enhanced terahertz absorption in graphene around the K point. Microelectronics Journal, 40, 857.
go back to reference Wu, K. L., Lai, S. K., & Lin, S. D. (2005). Finite temperature properties for zinc nanoclusters. Molecular Simulation, 31, 399. Wu, K. L., Lai, S. K., & Lin, S. D. (2005). Finite temperature properties for zinc nanoclusters. Molecular Simulation, 31, 399.
go back to reference Wu, X., & Zeng, X. C. (2008). Sawtooth-like graphene nanoribbon. Nano Research, 1, 40. Wu, X., & Zeng, X. C. (2008). Sawtooth-like graphene nanoribbon. Nano Research, 1, 40.
go back to reference Wu, X., Pei, Y., & Zeng, X. C. (2009). B2C graphene, nanotubes, and nanoribbons. Nano Letters. doi: 10.1021/nl803758s. Wu, X., Pei, Y., & Zeng, X. C. (2009). B2C graphene, nanotubes, and nanoribbons. Nano Letters. doi: 10.1021/nl803758s.
go back to reference Xie, Y. E., Chen, Y. P., Sun, L. Z., Zhang, K. W., & Zhong, J. X. (2009). The effect of corner form on electron transport of L-shaped graphene nanoribbons. Physica B, 404, 1771. Xie, Y. E., Chen, Y. P., Sun, L. Z., Zhang, K. W., & Zhong, J. X. (2009). The effect of corner form on electron transport of L-shaped graphene nanoribbons. Physica B, 404, 1771.
go back to reference Yang, M., Jackson, K. A., Koehler, C., Frauenheim, T., & Jellinek, J. (2006). Structure and shape variations in intermediate-size cor clusters. Journal of Chemical Physics, 124, 024308. Yang, M., Jackson, K. A., Koehler, C., Frauenheim, T., & Jellinek, J. (2006). Structure and shape variations in intermediate-size cor clusters. Journal of Chemical Physics, 124, 024308.
go back to reference Yang, R., & Wang, Z. L. (2006). Springs, rings, and spirals of rutile-structured tin oxide nanobelts. Journal of the American Chemical Society, 128, 1466. Yang, R., & Wang, Z. L. (2006). Springs, rings, and spirals of rutile-structured tin oxide nanobelts. Journal of the American Chemical Society, 128, 1466.
go back to reference Yao, Y. H., Gu, X., Ji, M., Gong, X. G., & Wang, D.-S. (2007). Structures and magnetic moments of Ni n (\(n = 10 - 60\)) clusters. Physics Letters A, 360, 629. Yao, Y. H., Gu, X., Ji, M., Gong, X. G., & Wang, D.-S. (2007). Structures and magnetic moments of Ni n (\(n = 10 - 60\)) clusters. Physics Letters A, 360, 629.
go back to reference Zhang, C., Chen, L., & Ma, Z. S. (2008). Orientation dependence of the optical spectra in graphene at high frequencies. Physical Review B, 77, 241402. Zhang, C., Chen, L., & Ma, Z. S. (2008). Orientation dependence of the optical spectra in graphene at high frequencies. Physical Review B, 77, 241402.
go back to reference Zhang, W., Ran, X., Zhao, H., & Wang, L. (2004). The nonmetallicity of molybdenum clusters. Journal of Chemical Physics, 121, 7717. Zhang, W., Ran, X., Zhao, H., & Wang, L. (2004). The nonmetallicity of molybdenum clusters. Journal of Chemical Physics, 121, 7717.
go back to reference Zhang, X. W., & Yang, G. W. (2009). Novel band structures and transport properties from graphene nanoribbons with armchair edges. Journal of Physical Chemistry C, 113, 4662. Zhang, X. W., & Yang, G. W. (2009). Novel band structures and transport properties from graphene nanoribbons with armchair edges. Journal of Physical Chemistry C, 113, 4662.
go back to reference Zhang, Y. Y., Wang, C. M., & Tan, V. B. C. (2008). Examining the effects of wall numbers on buckling behavior and mechanical properties of multiwalled carbon nanotubes via molecular dynamics simulations. Journal of Applied Physics, 103, 053505. Zhang, Y. Y., Wang, C. M., & Tan, V. B. C. (2008). Examining the effects of wall numbers on buckling behavior and mechanical properties of multiwalled carbon nanotubes via molecular dynamics simulations. Journal of Applied Physics, 103, 053505.
go back to reference Zhou, J., & Dong, J. (2008). Radial breathing-like mode of wide carbon nanoribbon. Physics Letters A. doi: 10.1016/j.physleta.2008.10.059. Zhou, J., & Dong, J. (2008). Radial breathing-like mode of wide carbon nanoribbon. Physics Letters A. doi: 10.1016/j.physleta.2008.10.059.
Metadata
Title
Modeling of Nanostructures
Authors
Hande Toffoli
Sakir Erkoç
Daniele Toffoli
Copyright Year
2012
Publisher
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-0711-5_27

Premium Partner