Skip to main content
Top

2012 | OriginalPaper | Chapter

Modeling of Quasi-One-Dimensional Carbon Nanostructures with Density Functional Theory

Authors : Veronica Barone, Oded Hod, Juan E. Peralta

Published in: Handbook of Computational Chemistry

Publisher: Springer Netherlands

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The purpose of this chapter is to describe and review examples of how theoretical investigations can be applied to elucidate the behavior of carbon nanostructures and to understand the physical mechanisms taking place at the molecular level. We will place a special emphasis in theoretical works utilizing density functional theory. We assume that the reader is familiar with the basics of density functional theory as well as the electronic properties of single-walled carbon nanotubes and graphene nanoribbons (GNRs). We do not intend to present an extensive review; instead, we focus on several examples to illustrate the powerful predictive capabilities of current computational approaches.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Adamo, C., & Barone, V. (1999). Toward reliable density functional methods without adjustable parameters: The PBE0 model. The Journal of Chemical Physics, 110, 6158–6170. Adamo, C., & Barone, V. (1999). Toward reliable density functional methods without adjustable parameters: The PBE0 model. The Journal of Chemical Physics, 110, 6158–6170.
go back to reference Adamson, R., Dombroski, J., & Gill, P. (1996). Chemistry without Coulomb tails. Chemical Physics Letters, 254, 329–336. Adamson, R., Dombroski, J., & Gill, P. (1996). Chemistry without Coulomb tails. Chemical Physics Letters, 254, 329–336.
go back to reference Adamson, R., Dombroski, J., & Gill, P. (1999). Efficient calculation of short-range Coulomb energies. Journal of Computational Chemistry, 20, 921–927. Adamson, R., Dombroski, J., & Gill, P. (1999). Efficient calculation of short-range Coulomb energies. Journal of Computational Chemistry, 20, 921–927.
go back to reference Bachilo, S. M., Strano, M. S., Kittrell, C., Hauge, R. H., Smalley, R. E., & Weisman, R. B. (2002). Structure-assigned optical spectra of single-walled carbon nanotubes. Science, 298, 2361–2366. Bachilo, S. M., Strano, M. S., Kittrell, C., Hauge, R. H., Smalley, R. E., & Weisman, R. B. (2002). Structure-assigned optical spectra of single-walled carbon nanotubes. Science, 298, 2361–2366.
go back to reference Balaban, A. T., & Klein, D. J. (2009). Claromatic carbon nanostructures. Journal of Physical Chemistry C, 113, 19123–19133. Balaban, A. T., & Klein, D. J. (2009). Claromatic carbon nanostructures. Journal of Physical Chemistry C, 113, 19123–19133.
go back to reference Baldoni, M., Sgamellotti, A., & Mercuri, F. (2007). Finite-length models of carbon nanotubes based on clar sextet theory. Organic Letters, 9, 4267–4270. Baldoni, M., Sgamellotti, A., & Mercuri, F. (2007). Finite-length models of carbon nanotubes based on clar sextet theory. Organic Letters, 9, 4267–4270.
go back to reference Baldoni, M., Sgamellotti, A., & Mercuri, F. (2008). Electronic properties and stability of graphene nanoribbons: An interpretation based on Clar sextet theory. Chemical Physics Letters, 464, 202–207. Baldoni, M., Sgamellotti, A., & Mercuri, F. (2008). Electronic properties and stability of graphene nanoribbons: An interpretation based on Clar sextet theory. Chemical Physics Letters, 464, 202–207.
go back to reference Barone, V., & Scuseria, G. E. (2004). Theoretical study of the electronic properties of narrow single-walled carbon nanotubes: Beyond the local density approximation. The Journal of Chemical Physics, 121, 10376–10379. Barone, V., & Scuseria, G. E. (2004). Theoretical study of the electronic properties of narrow single-walled carbon nanotubes: Beyond the local density approximation. The Journal of Chemical Physics, 121, 10376–10379.
go back to reference Barone, V., Peralta, J. E., & Scuseria, G. E. (2005a). Optical transitions in metallic single-walled carbon nanotubes. Nano Letters, 5, 1830–1833. Barone, V., Peralta, J. E., & Scuseria, G. E. (2005a). Optical transitions in metallic single-walled carbon nanotubes. Nano Letters, 5, 1830–1833.
go back to reference Barone, V., Peralta, J. E., Wert, M., Heyd, J., & Scuseria, G. E. (2005b). Density functional theory study of optical transitions in semiconducting single-walled carbon nanotubes. Nano Letters, 5, 1621–1624. Barone, V., Peralta, J. E., Wert, M., Heyd, J., & Scuseria, G. E. (2005b). Density functional theory study of optical transitions in semiconducting single-walled carbon nanotubes. Nano Letters, 5, 1621–1624.
go back to reference Barone, V., Hod, O., & Scuseria, G. E. (2006). Electronic structure and stability of semiconducting graphene nanoribbons. Nano Letters, 6, 2748–2754. Barone, V., Hod, O., & Scuseria, G. E. (2006). Electronic structure and stability of semiconducting graphene nanoribbons. Nano Letters, 6, 2748–2754.
go back to reference Batista, E. R., Heyd, J., Hennig, R. G., Uberuaga, B. P., Martin, R. L., Scuseria, G. E., Umrigar, C. J., & Wilkins, J. W. (2006). Comparison of screened hybrid density functional theory to diffusion Monte Carlo in calculations of total energies of silicon phases and defects. Physical Review B, 74, 121102. Batista, E. R., Heyd, J., Hennig, R. G., Uberuaga, B. P., Martin, R. L., Scuseria, G. E., Umrigar, C. J., & Wilkins, J. W. (2006). Comparison of screened hybrid density functional theory to diffusion Monte Carlo in calculations of total energies of silicon phases and defects. Physical Review B, 74, 121102.
go back to reference Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98, 5648–5652. Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98, 5648–5652.
go back to reference Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass, J., Marchenkov, A. N., Conrad, E. H., First, P. N., & de Heer, W. A. (2006). Electronic confinement and coherence in patterned epitaxial graphene. Science, 312, 1191. Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass, J., Marchenkov, A. N., Conrad, E. H., First, P. N., & de Heer, W. A. (2006). Electronic confinement and coherence in patterned epitaxial graphene. Science, 312, 1191.
go back to reference Bhardwaj, T., Antic, A., Pavan, B., Barone, V., & Fahlman, B. D. (2010). Enhanced electrochemical lithium storage by graphene nanoribbons. Journal of the American Chemical Society, 132, 12556–12559. Bhardwaj, T., Antic, A., Pavan, B., Barone, V., & Fahlman, B. D. (2010). Enhanced electrochemical lithium storage by graphene nanoribbons. Journal of the American Chemical Society, 132, 12556–12559.
go back to reference Blase, X., Benedict, L. X., Shirley, E. L., & Louie, S. G. (1994). Hybridization effects and metallicity in small radius carbon nanotubes. Physical Review Letters, 72, 1878–1881. Blase, X., Benedict, L. X., Shirley, E. L., & Louie, S. G. (1994). Hybridization effects and metallicity in small radius carbon nanotubes. Physical Review Letters, 72, 1878–1881.
go back to reference Brothers, E. N., Izmaylov, A. F., Normand, J. O., Barone, V., & Scuseria, G. E. (2008). Accurate solid-state band gaps via screened hybrid electronic structure calculations. The Journal of Chemical Physics, 129, 011102. Brothers, E. N., Izmaylov, A. F., Normand, J. O., Barone, V., & Scuseria, G. E. (2008). Accurate solid-state band gaps via screened hybrid electronic structure calculations. The Journal of Chemical Physics, 129, 011102.
go back to reference Bunch, J. S., van der Zande, A. M., Verbridge, S. S., Frank, I. W., Tanenbaum, D. M., Parpia, J. M., Craighead, H. G., & McEuen, P. L. (2007). Electromechanical resonators from graphene sheets. Science, 315, 490–493. Bunch, J. S., van der Zande, A. M., Verbridge, S. S., Frank, I. W., Tanenbaum, D. M., Parpia, J. M., Craighead, H. G., & McEuen, P. L. (2007). Electromechanical resonators from graphene sheets. Science, 315, 490–493.
go back to reference Cabria, I., Mintmire, J. W., & White, C. T. (2003). Metallic and semiconducting narrow carbon nanotubes. Physical Review B, 67, 121406. Cabria, I., Mintmire, J. W., & White, C. T. (2003). Metallic and semiconducting narrow carbon nanotubes. Physical Review B, 67, 121406.
go back to reference Cai, J., Ruffieux, P., Jaafar, R., Bieri, M., Braun, T., Blankenburg, S., Muoth, M., Seitsonen, A. P., Saleh, M., Feng, X., Müllen, K., & Faseel, R. (2010). Atomically precise bottom-up fabrication of graphene nanoribbons. Nature, 466, 470–473. Cai, J., Ruffieux, P., Jaafar, R., Bieri, M., Braun, T., Blankenburg, S., Muoth, M., Seitsonen, A. P., Saleh, M., Feng, X., Müllen, K., & Faseel, R. (2010). Atomically precise bottom-up fabrication of graphene nanoribbons. Nature, 466, 470–473.
go back to reference Cao, J., Wang, Q., & Dai, H. (2003). Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching. Physical Review Letters, 90, 157601. Cao, J., Wang, Q., & Dai, H. (2003). Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching. Physical Review Letters, 90, 157601.
go back to reference Cervantes-Sodi, F., Csányi, G., Piscanec, S., & Ferrari, A. C. (2008a). Edge-functionalized and substitutionally doped graphene nanoribbons: Electronic and spin properties. Physical Review B, 77, 165427. Cervantes-Sodi, F., Csányi, G., Piscanec, S., & Ferrari, A. C. (2008a). Edge-functionalized and substitutionally doped graphene nanoribbons: Electronic and spin properties. Physical Review B, 77, 165427.
go back to reference Cervantes-Sodi, F., Csányi, G., Piscanec, S., & Ferrari, A. C. (2008b). Electronic properties of chemically modified graphene ribbons. Physica Status Solidi B, 245, 2068–2071. Cervantes-Sodi, F., Csányi, G., Piscanec, S., & Ferrari, A. C. (2008b). Electronic properties of chemically modified graphene ribbons. Physica Status Solidi B, 245, 2068–2071.
go back to reference Chen, Z., Kobashi, K., Rauwald, U., Booker, R., Fan, H., Hwang, W.-F., & Tour, J. M. (2006a). Soluble ultra-short single-walled carbon nanotubes. Journal of the American Chemical Society, 128, 10568–10571. Chen, Z., Kobashi, K., Rauwald, U., Booker, R., Fan, H., Hwang, W.-F., & Tour, J. M. (2006a). Soluble ultra-short single-walled carbon nanotubes. Journal of the American Chemical Society, 128, 10568–10571.
go back to reference Chen, Z., Ziegler, K., Shaver, J., Hauge, R., & Smalley, R. (2006b). Cutting of single-walled carbon nanotubes by ozonolysis. Journal of Physical Chemistry B, 110, 11624–11627. Chen, Z., Ziegler, K., Shaver, J., Hauge, R., & Smalley, R. (2006b). Cutting of single-walled carbon nanotubes by ozonolysis. Journal of Physical Chemistry B, 110, 11624–11627.
go back to reference Chen, Z., Lin, Y.-M., Rooks, M. J., & Avouris, P. (2007). Graphene nano-ribbon electronics. Physica E, 40, 228–232. Chen, Z., Lin, Y.-M., Rooks, M. J., & Avouris, P. (2007). Graphene nano-ribbon electronics. Physica E, 40, 228–232.
go back to reference Choi, S.-M., & Jhi, S.-H. (2008). Self-assembled metal atom chains on graphene nanoribbons. Physical Review Letters, 101, 266105. Choi, S.-M., & Jhi, S.-H. (2008). Self-assembled metal atom chains on graphene nanoribbons. Physical Review Letters, 101, 266105.
go back to reference Cohen-Karni, T., Segev, L., Srur-Lavi, O., Cohen, S. R., & Joselevich, E. (2006). Torsional electromechanical quantum oscillations in carbon nanotubes. Nature Nanotechnology, 1, 36–41. Cohen-Karni, T., Segev, L., Srur-Lavi, O., Cohen, S. R., & Joselevich, E. (2006). Torsional electromechanical quantum oscillations in carbon nanotubes. Nature Nanotechnology, 1, 36–41.
go back to reference Deslippe, J., Spataru, C. D., Prendergast, D., & Louie, S. G. (2007). Bound excitons in metallic single-walled carbon nanotubes. Nano Letters, 7, 1626–1630. Deslippe, J., Spataru, C. D., Prendergast, D., & Louie, S. G. (2007). Bound excitons in metallic single-walled carbon nanotubes. Nano Letters, 7, 1626–1630.
go back to reference Ernzerhof, M., & Scuseria, G. E. (1999). Assessment of the perdewburkeernzerhof exchange-correlation functional. The Journal of Chemical Physics, 110, 5029–5036. Ernzerhof, M., & Scuseria, G. E. (1999). Assessment of the perdewburkeernzerhof exchange-correlation functional. The Journal of Chemical Physics, 110, 5029–5036.
go back to reference Ezawa, M. (2006). Peculiar width dependence of the electronic properties of carbon nanoribbons. Physical Review B, 73, 045432. Ezawa, M. (2006). Peculiar width dependence of the electronic properties of carbon nanoribbons. Physical Review B, 73, 045432.
go back to reference Ezawa, M. (2007). Metallic graphene nanodisks: Electronic and magnetic properties. Physical Review B, 76, 245415. Ezawa, M. (2007). Metallic graphene nanodisks: Electronic and magnetic properties. Physical Review B, 76, 245415.
go back to reference Faccio, R., Denis, P. A., Pardo, H., Goyenola, C., & Mombru, A. W. (2009). Mechanical properties of graphene nanoribbons. Journal of Physics Condensed Matter, 21, 285304. Faccio, R., Denis, P. A., Pardo, H., Goyenola, C., & Mombru, A. W. (2009). Mechanical properties of graphene nanoribbons. Journal of Physics Condensed Matter, 21, 285304.
go back to reference Fantini, C., Jorio, A., Souza, M., Strano, M. S., Dresselhaus, M. S., & Pimenta, M. A. (2004). Optical transition energies for carbon nanotubes from resonant raman spectroscopy: Environment and temperature effects. Physical Review Letters, 93, 147406. Fantini, C., Jorio, A., Souza, M., Strano, M. S., Dresselhaus, M. S., & Pimenta, M. A. (2004). Optical transition energies for carbon nanotubes from resonant raman spectroscopy: Environment and temperature effects. Physical Review Letters, 93, 147406.
go back to reference Feller, D. (1996). The role of databases in support of computational chemistry calculations. Journal of Computational Chemistry, 17, 1571–1586. Feller, D. (1996). The role of databases in support of computational chemistry calculations. Journal of Computational Chemistry, 17, 1571–1586.
go back to reference Fennimore, A., Yuzvinsky, T., Han, W., Fuhrer, M., Cumings, J., & Zettl, A. (2003). Rotational actuators based on carbon nanotubes. Nature, 424, 408–410. Fennimore, A., Yuzvinsky, T., Han, W., Fuhrer, M., Cumings, J., & Zettl, A. (2003). Rotational actuators based on carbon nanotubes. Nature, 424, 408–410.
go back to reference Fernandez-Rossier, J., & Palacios, J. J. (2007). Magnetism in graphene nanoislands. Physical Review Letters, 99, 177204. Fernandez-Rossier, J., & Palacios, J. J. (2007). Magnetism in graphene nanoislands. Physical Review Letters, 99, 177204.
go back to reference Frank, I. W., Tanenbaum, D. M., Van der Zande, A. M., & McEuen, P. L. (2007). Mechanical properties of suspended graphene sheets. Journal of Vacuum Science & Technology B, 25, 2558–2561. Frank, I. W., Tanenbaum, D. M., Van der Zande, A. M., & McEuen, P. L. (2007). Mechanical properties of suspended graphene sheets. Journal of Vacuum Science & Technology B, 25, 2558–2561.
go back to reference Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, N. J., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., & Fox, D. J. (2006). GAUSSIAN development version, revision f.02. Wallingford CT: Gaussian Inc. 2009. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, N. J., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., & Fox, D. J. (2006). GAUSSIAN development version, revision f.02. Wallingford CT: Gaussian Inc. 2009.
go back to reference Fujita, M., Wakabayashi, K., Nakada, K., & Kusakabe, K. (1996). Peculiar localized state at zigzag graphite edge. Journal of the Physical Society of Japan, 65, 1920–1923. Fujita, M., Wakabayashi, K., Nakada, K., & Kusakabe, K. (1996). Peculiar localized state at zigzag graphite edge. Journal of the Physical Society of Japan, 65, 1920–1923.
go back to reference Gomez-Navarro, C., de Pablo, P., & Gomez-Herrero, J. (2004). Radial electromechanical properties of carbon nanotubes. Advanced Materials, 16, 549. Gomez-Navarro, C., de Pablo, P., & Gomez-Herrero, J. (2004). Radial electromechanical properties of carbon nanotubes. Advanced Materials, 16, 549.
go back to reference Gruneich, A., & Hess, B. (1998). Choosing GTO basis sets for periodic HF calculations. Theoretical Chemistry Accounts, 100, 253–263. Gruneich, A., & Hess, B. (1998). Choosing GTO basis sets for periodic HF calculations. Theoretical Chemistry Accounts, 100, 253–263.
go back to reference Gu, Z., Peng, H., Hauge, R., Smalley, R., & Margrave, J. (2002). Cutting single-wall carbon nanotubes through fluorination. Nano Letters, 2, 1009–1013. Gu, Z., Peng, H., Hauge, R., Smalley, R., & Margrave, J. (2002). Cutting single-wall carbon nanotubes through fluorination. Nano Letters, 2, 1009–1013.
go back to reference Gülseren, O., Yildirim, T., & Ciraci, S. (2002). Systematic ab initio study of curvature effects in carbon nanotubes. Physical Review B, 65, 153405. Gülseren, O., Yildirim, T., & Ciraci, S. (2002). Systematic ab initio study of curvature effects in carbon nanotubes. Physical Review B, 65, 153405.
go back to reference Gunlycke, D., Li, J., Mintmire, J., & White, C. (2007). Altering low-bias transport in zigzag-edge graphene nanostrips with edge chemistry. Applied Physics Letters, 91, 112108. Gunlycke, D., Li, J., Mintmire, J., & White, C. (2007). Altering low-bias transport in zigzag-edge graphene nanostrips with edge chemistry. Applied Physics Letters, 91, 112108.
go back to reference Guo, G., Liu, L., Chu, K., Jayanthi, C., & Wu, S. (2005). Electromechanical responses of single-walled carbon nanotubes: Interplay between the strain-induced energy-gap opening and the pinning of the Fermi level. Journal of Applied Physics Letters, 98, 044311. Guo, G., Liu, L., Chu, K., Jayanthi, C., & Wu, S. (2005). Electromechanical responses of single-walled carbon nanotubes: Interplay between the strain-induced energy-gap opening and the pinning of the Fermi level. Journal of Applied Physics Letters, 98, 044311.
go back to reference Hall, A. R., Falvo, M. R., Superfine, R., & Washburn, S. (2007). Electromechanical response of single-walled carbon nanotubes to torsional strain in a self-contained device. Nature Nanotechnology, 2, 413–416. Hall, A. R., Falvo, M. R., Superfine, R., & Washburn, S. (2007). Electromechanical response of single-walled carbon nanotubes to torsional strain in a self-contained device. Nature Nanotechnology, 2, 413–416.
go back to reference Hamada, N., Sawada, S., & Oshiyama, A. (1992). New one-dimensional conductors – Graphitic microtubules. Physical Review Letters, 68, 1579. Hamada, N., Sawada, S., & Oshiyama, A. (1992). New one-dimensional conductors – Graphitic microtubules. Physical Review Letters, 68, 1579.
go back to reference Han, M. Y., Oezyilmaz, B., Zhang, Y., & Kim, P. (2007). Energy band-gap engineering of graphene nanoribbons. Physical Review Letters, 98, 206805. Han, M. Y., Oezyilmaz, B., Zhang, Y., & Kim, P. (2007). Energy band-gap engineering of graphene nanoribbons. Physical Review Letters, 98, 206805.
go back to reference Heyd, J., & Scuseria, G. E. (2004). Efficient hybrid density functional calculations in solids: Assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional. The Journal of Chemical Physics, 121, 1187–1192. Heyd, J., & Scuseria, G. E. (2004). Efficient hybrid density functional calculations in solids: Assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional. The Journal of Chemical Physics, 121, 1187–1192.
go back to reference Heyd, R., Charlier, A., & McRae, E. (1997). Uniaxial-stress effects on the electronic properties of carbon nanotubes. Physical Review B, 55(11), 6820–6824. Heyd, R., Charlier, A., & McRae, E. (1997). Uniaxial-stress effects on the electronic properties of carbon nanotubes. Physical Review B, 55(11), 6820–6824.
go back to reference Heyd, J., Scuseria, G. E., & Ernzerhof, M. (2003). Hybrid functionals based on a screened Coulomb potential. The Journal of Chemical Physics, 118, 8207–8215. Heyd, J., Scuseria, G. E., & Ernzerhof, M. (2003). Hybrid functionals based on a screened Coulomb potential. The Journal of Chemical Physics, 118, 8207–8215.
go back to reference Heyd, J., Peralta, J., Scuseria, G., & Martin, R. (2005). Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. The Journal of Chemical Physics, 123, 174101. Heyd, J., Peralta, J., Scuseria, G., & Martin, R. (2005). Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. The Journal of Chemical Physics, 123, 174101.
go back to reference Heyd, J., Scuseria, G. E., & Ernzerhof, M. (2006). Erratum: Hybrid functionals based on a screened Coulomb potential [The Journal of Chemical Physics, 118, 8207 (2003)]. The Journal of Chemical Physics, 124, 219906. Heyd, J., Scuseria, G. E., & Ernzerhof, M. (2006). Erratum: Hybrid functionals based on a screened Coulomb potential [The Journal of Chemical Physics, 118, 8207 (2003)]. The Journal of Chemical Physics, 124, 219906.
go back to reference Higuchi, Y., Kusakabe, K., Suzuki, N., Tsuneyuki, S., Yamauchi, J., Akagi, K., & Yoshimoto, Y. (2004). Nanotube-based molecular magnets with spin-polarized edge states. Journal of Physics Condensed Matter, 16, S5689–S5692. Higuchi, Y., Kusakabe, K., Suzuki, N., Tsuneyuki, S., Yamauchi, J., Akagi, K., & Yoshimoto, Y. (2004). Nanotube-based molecular magnets with spin-polarized edge states. Journal of Physics Condensed Matter, 16, S5689–S5692.
go back to reference Hod, O., & Scuseria, G. E. (2008). Half-metallic-zigzag carbon nanotube dots. ACS Nano, 2, 2243–2249. Hod, O., & Scuseria, G. E. (2008). Half-metallic-zigzag carbon nanotube dots. ACS Nano, 2, 2243–2249.
go back to reference Hod, O., & Scuseria, G. E. (2009). Electromechanical properties of suspended graphene nanoribbons. Nano Letters, 9, 2619–2622. Hod, O., & Scuseria, G. E. (2009). Electromechanical properties of suspended graphene nanoribbons. Nano Letters, 9, 2619–2622.
go back to reference Hod, O., Peralta, J. E., & Scuseria, G. E. (2006). First-principles electronic transport calculations in finite elongated systems: A divide and conquer approach. The Journal of Chemical Physics, 125, 114704. Hod, O., Peralta, J. E., & Scuseria, G. E. (2006). First-principles electronic transport calculations in finite elongated systems: A divide and conquer approach. The Journal of Chemical Physics, 125, 114704.
go back to reference Hod, O., Barone, V., Peralta, J. E., & Scuseria, G. E. (2007a). Enhanced half-metallicity in edge-oxidized zigzag graphene nanoribbons. Nano Letters, 7, 2295–2299. Hod, O., Barone, V., Peralta, J. E., & Scuseria, G. E. (2007a). Enhanced half-metallicity in edge-oxidized zigzag graphene nanoribbons. Nano Letters, 7, 2295–2299.
go back to reference Hod, O., Peralta, J. E., & Scuseria, G. E. (2007b). Edge effects in finite elongated graphene nanoribbons. Physical Review B, 76, 233401. Hod, O., Peralta, J. E., & Scuseria, G. E. (2007b). Edge effects in finite elongated graphene nanoribbons. Physical Review B, 76, 233401.
go back to reference Hod, O., Barone, V., & Scuseria, G. E. (2008). Half-metallic graphene nanodots: A comprehensive first-principles theoretical study. Physical Review B, 77, 035411. Hod, O., Barone, V., & Scuseria, G. E. (2008). Half-metallic graphene nanodots: A comprehensive first-principles theoretical study. Physical Review B, 77, 035411.
go back to reference Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 58–56. Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 58–56.
go back to reference Javey, A., Qi, P., Wang, Q., & Dai, H. (2004). Ten- to 50-nm-long quasi-ballistic carbon nanotube devices obtained without complex lithography. Proceedings of the National Academy of Sciences of the United States of America, 101, 13408–13410. Javey, A., Qi, P., Wang, Q., & Dai, H. (2004). Ten- to 50-nm-long quasi-ballistic carbon nanotube devices obtained without complex lithography. Proceedings of the National Academy of Sciences of the United States of America, 101, 13408–13410.
go back to reference Jiang, H., Bu, W., Jiang, J., & Dong, J. (2004). Electronic structure in finite-length deformed metallic carbon nanotubes. The European Physical Journal B, 42, 503–508. Jiang, H., Bu, W., Jiang, J., & Dong, J. (2004). Electronic structure in finite-length deformed metallic carbon nanotubes. The European Physical Journal B, 42, 503–508.
go back to reference Jiang, D. E., Sumpter, B. G., & Dai, S. (2007). First principles study of magnetism in nanographenes. The Journal of Chemical Physics, 127, 124703. Jiang, D. E., Sumpter, B. G., & Dai, S. (2007). First principles study of magnetism in nanographenes. The Journal of Chemical Physics, 127, 124703.
go back to reference Kan, E. J., Li, Z., Yang, J., & Hou, J. G. (2007). Will zigzag graphene nanoribbon turn to half metal under electric field? Applied Physics Letters, 91, 243116. Kan, E. J., Li, Z., Yang, J., & Hou, J. G. (2007). Will zigzag graphene nanoribbon turn to half metal under electric field? Applied Physics Letters, 91, 243116.
go back to reference Kane, C. L., & Mele, E. J. (1997). Size, shape, and low energy electronic structure of carbon nanotubes. Physical Review Letters, 78(10), 1932–1935. Kane, C. L., & Mele, E. J. (1997). Size, shape, and low energy electronic structure of carbon nanotubes. Physical Review Letters, 78(10), 1932–1935.
go back to reference Kataura, H., Kumazawa, Y., Maniwa, Y., Umezu, I., Suzuki, S., Ohtsuka, Y., & Achiba, Y. (1999). Optical properties of single-wall carbon nanotubes. Synthetic Metals, 103, 2555–2558. Kataura, H., Kumazawa, Y., Maniwa, Y., Umezu, I., Suzuki, S., Ohtsuka, Y., & Achiba, Y. (1999). Optical properties of single-wall carbon nanotubes. Synthetic Metals, 103, 2555–2558.
go back to reference Khabashesku, V., Billups, W., & Margrave, J. (2002). Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions. Accounts of Chemical Research, 35, 1087–1095. Khabashesku, V., Billups, W., & Margrave, J. (2002). Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions. Accounts of Chemical Research, 35, 1087–1095.
go back to reference Kim, Y., Choi, J., Chang, K., & Tomanek, D. (2003). Defective fullerenes and nanotubes as molecular magnets: An ab initio study. Physical Review B, 68, 125420. Kim, Y., Choi, J., Chang, K., & Tomanek, D. (2003). Defective fullerenes and nanotubes as molecular magnets: An ab initio study. Physical Review B, 68, 125420.
go back to reference Klein, D. (1994). Graphitic polymer strips with edge states. Chemical Physics Letters, 217, 261–265. Klein, D. (1994). Graphitic polymer strips with edge states. Chemical Physics Letters, 217, 261–265.
go back to reference Kleiner, A., & Eggert, S. (2001). Band gaps of primary metallic carbon nanotubes. Physical Review B, 63(7), 073408. Kleiner, A., & Eggert, S. (2001). Band gaps of primary metallic carbon nanotubes. Physical Review B, 63(7), 073408.
go back to reference Kobayashi, K. (1993). Electronic-structure of a stepped graphite surface. Physical Review B, 48, 1757–1760. Kobayashi, K. (1993). Electronic-structure of a stepped graphite surface. Physical Review B, 48, 1757–1760.
go back to reference Kobayashi, Y., Fukui, K., Enoki, T., Kusakabe, K., & Kaburagi, Y. (2005). Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy. Physical Review B, 71, 193406. Kobayashi, Y., Fukui, K., Enoki, T., Kusakabe, K., & Kaburagi, Y. (2005). Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy. Physical Review B, 71, 193406.
go back to reference Kobayashi, Y., Fukui, K., Enoki, T., Kusakabe, K., & Kaburagi, Y. (2006). Edge state on hydrogen-terminated graphite edges investigated by scanning tunneling microscopy. Physical Review B, 73, 125415. Kobayashi, Y., Fukui, K., Enoki, T., Kusakabe, K., & Kaburagi, Y. (2006). Edge state on hydrogen-terminated graphite edges investigated by scanning tunneling microscopy. Physical Review B, 73, 125415.
go back to reference Krepel, D., & Hod, O. (2011). Lithium adsorption on armchair graphene nanoribbons. Surface Science, 605, 1633–1642. Krepel, D., & Hod, O. (2011). Lithium adsorption on armchair graphene nanoribbons. Surface Science, 605, 1633–1642.
go back to reference Kroto, H., Heath, J., Obrien, S., Curl, R., & Smalley, R. (1985). C-60 – Buckminsterfullerene. Nature, 318(6042), 162–163. Kroto, H., Heath, J., Obrien, S., Curl, R., & Smalley, R. (1985). C-60 – Buckminsterfullerene. Nature, 318(6042), 162–163.
go back to reference Kudin, K. N. (2008). Zigzag graphene nanoribbons with saturated edges. ACS Nano, 2, 516–522. Kudin, K. N. (2008). Zigzag graphene nanoribbons with saturated edges. ACS Nano, 2, 516–522.
go back to reference Kümmel, S., & Kronik, L. (2008). Orbital-dependent density functionals: Theory and applications. Reviews of Modern Physics, 80, 3–60. Kümmel, S., & Kronik, L. (2008). Orbital-dependent density functionals: Theory and applications. Reviews of Modern Physics, 80, 3–60.
go back to reference Kusakabe, K., & Maruyama, M. (2003). Magnetic nanographite. Physical Review B, 67, 092406. Kusakabe, K., & Maruyama, M. (2003). Magnetic nanographite. Physical Review B, 67, 092406.
go back to reference Lammert, P. E., Zhang, P., & Crespi, V. H. (2000). Gapping by squashing: Metal-insulator and insulator-metal transitions in collapsed carbon nanotubes. Physical Review Letters, 84(11), 2453–2456. Lammert, P. E., Zhang, P., & Crespi, V. H. (2000). Gapping by squashing: Metal-insulator and insulator-metal transitions in collapsed carbon nanotubes. Physical Review Letters, 84(11), 2453–2456.
go back to reference Lee, G., & Cho, K. (2009). Electronic structures of zigzag graphene nanoribbons with edge hydrogenation and oxidation. Physical Review B, 79, 165440. Lee, G., & Cho, K. (2009). Electronic structures of zigzag graphene nanoribbons with edge hydrogenation and oxidation. Physical Review B, 79, 165440.
go back to reference Li, Z., Tang, Z., Liu, H., Wang, N., Chan, C., Saito, R., Okada, S., Li, G., Chen, J., Nagasawa, N., & Tsuda, S. (2001). Polarized absorption spectra of single-walled 4 angstrom carbon nanotubes aligned in channels of an AlPO4 − 5 single crystal. Physical Review Letters, 87, 127401. Li, Z., Tang, Z., Liu, H., Wang, N., Chan, C., Saito, R., Okada, S., Li, G., Chen, J., Nagasawa, N., & Tsuda, S. (2001). Polarized absorption spectra of single-walled 4 angstrom carbon nanotubes aligned in channels of an AlPO4 − 5 single crystal. Physical Review Letters, 87, 127401.
go back to reference Li, J., Zhang, Y., & Zhang, M. (2002). The electronic structure and its theoretical simulation of carbon nanotube with finited length. Part I: The frontier orbitals and its properties of short armchair nanotubes. Chemical Physics Letters, 364, 328–337. Li, J., Zhang, Y., & Zhang, M. (2002). The electronic structure and its theoretical simulation of carbon nanotube with finited length. Part I: The frontier orbitals and its properties of short armchair nanotubes. Chemical Physics Letters, 364, 328–337.
go back to reference Lieb, E. (1989). 2 theorems on the Hubbard-model. Physical Review Letters, 62, 1201–1204. Lieb, E. (1989). 2 theorems on the Hubbard-model. Physical Review Letters, 62, 1201–1204.
go back to reference Liu, H. J., & Chan, C. T. (2002). Properties of 4 angstrom carbon nanotubes from first-principles calculations. Physical Review B, 66, 115416. Liu, H. J., & Chan, C. T. (2002). Properties of 4 angstrom carbon nanotubes from first-principles calculations. Physical Review B, 66, 115416.
go back to reference Liu, L., Jayanthi, C. S., Tang, M., Wu, S. Y., Tombler, T. W., Zhou, C., Alexseyev, L., Kong, J., & Dai, H. (2000). Controllable reversibility of an sp2 to sp3 transition of a single wall nanotube under the manipulation of an afm tip: A nanoscale electromechanical switch? Physical Review Letters, 84(21), 4950–4953. Liu, L., Jayanthi, C. S., Tang, M., Wu, S. Y., Tombler, T. W., Zhou, C., Alexseyev, L., Kong, J., & Dai, H. (2000). Controllable reversibility of an sp2 to sp3 transition of a single wall nanotube under the manipulation of an afm tip: A nanoscale electromechanical switch? Physical Review Letters, 84(21), 4950–4953.
go back to reference Liu, L., Jayanthi, C., Guo, H., & Wu, S. (2001). Broken symmetry, boundary conditions, and band-gap oscillations in finite single-wall carbon nanotubes. Physical Review B, 64, 033414. Liu, L., Jayanthi, C., Guo, H., & Wu, S. (2001). Broken symmetry, boundary conditions, and band-gap oscillations in finite single-wall carbon nanotubes. Physical Review B, 64, 033414.
go back to reference Lu, J.-Q., Wu, J., Duan, W., Liu, F., Zhu, B.-F., & Gu, B.-L. (2003). Metal-to-semiconductor transition in squashed armchair carbon nanotubes. Physical Review Letters, 90(15), 156601. Lu, J.-Q., Wu, J., Duan, W., Liu, F., Zhu, B.-F., & Gu, B.-L. (2003). Metal-to-semiconductor transition in squashed armchair carbon nanotubes. Physical Review Letters, 90(15), 156601.
go back to reference Machón, M., Reich, S., Thomsen, C., Sánchez-Portal, D., & Ordejón, P. (2002). Ab initio calculations of the optical properties of 4-angstrom-diameter single-walled nanotubes. Physical Review B, 66, 155410. Machón, M., Reich, S., Thomsen, C., Sánchez-Portal, D., & Ordejón, P. (2002). Ab initio calculations of the optical properties of 4-angstrom-diameter single-walled nanotubes. Physical Review B, 66, 155410.
go back to reference Maiti, A. (2001). Application of carbon nanotubes as electromechanical sensors – Results from first-principles simulations. Physica Status Solidi, 226, 87–93. Maiti, A. (2001). Application of carbon nanotubes as electromechanical sensors – Results from first-principles simulations. Physica Status Solidi, 226, 87–93.
go back to reference Maiti, A. (2003). Carbon nanotubes – Bandgap engineering with strain. Nature Materials, 2, 440–442. Maiti, A. (2003). Carbon nanotubes – Bandgap engineering with strain. Nature Materials, 2, 440–442.
go back to reference Maiti, A. (2009). Integrated analytical systems, computational methods for sensor material selection. New York: Springer. Maiti, A. (2009). Integrated analytical systems, computational methods for sensor material selection. New York: Springer.
go back to reference Maiti, A., Svizhenko, A., & Anantram, M. (2002). Electronic transport through carbon nanotubes: Effects of structural deformation and tube chirality. Physical Review Letters, 88, 126805. Maiti, A., Svizhenko, A., & Anantram, M. (2002). Electronic transport through carbon nanotubes: Effects of structural deformation and tube chirality. Physical Review Letters, 88, 126805.
go back to reference Mananes, A., Duque, F., Ayuela, A., Lopez, M. J., & Alonso, J. A. (2008). Half-metallic finite zigzag single-walled carbon nanotubes from first principles. Physical Review B, 78, 035432. Mananes, A., Duque, F., Ayuela, A., Lopez, M. J., & Alonso, J. A. (2008). Half-metallic finite zigzag single-walled carbon nanotubes from first principles. Physical Review B, 78, 035432.
go back to reference Mehrez, H., Svizhenko, A., Anantram, M., Elstner, M., & Frauenheim, T. (2005). Analysis of band-gap formation in squashed armchair carbon nanotubes. Physical Review B, 71, 155421. Mehrez, H., Svizhenko, A., Anantram, M., Elstner, M., & Frauenheim, T. (2005). Analysis of band-gap formation in squashed armchair carbon nanotubes. Physical Review B, 71, 155421.
go back to reference Mickelson, E., Huffman, C., Rinzler, A., Smalley, R., Hauge, R., & Margrave, J. (1998). Fluorination of single-wall carbon nanotubes. Chemical Physics Letters, 296, 188–194. Mickelson, E., Huffman, C., Rinzler, A., Smalley, R., Hauge, R., & Margrave, J. (1998). Fluorination of single-wall carbon nanotubes. Chemical Physics Letters, 296, 188–194.
go back to reference Milaninia, K. M., Baldo, M. A., Reina, A., & Kong, J. (2009). All graphene electromechanical switch fabricated by chemical vapor deposition. Applied Physics Letters, 95, 183105. Milaninia, K. M., Baldo, M. A., Reina, A., & Kong, J. (2009). All graphene electromechanical switch fabricated by chemical vapor deposition. Applied Physics Letters, 95, 183105.
go back to reference Minot, E., Yaish, Y., Sazonova, V., Park, J., Brink, M., & McEuen, P. (2003). Tuning carbon nanotube band gaps with strain. Physical Review Letters, 90, 156401. Minot, E., Yaish, Y., Sazonova, V., Park, J., Brink, M., & McEuen, P. (2003). Tuning carbon nanotube band gaps with strain. Physical Review Letters, 90, 156401.
go back to reference Mintmire, J., Dunlap, B., & White, C. (1992). Are fullerene tubules metallic? Physical Review Letters, 68, 631. Mintmire, J., Dunlap, B., & White, C. (1992). Are fullerene tubules metallic? Physical Review Letters, 68, 631.
go back to reference Nagapriya, K. S., Berber, S., Cohen-Karni, T., Segev, L., Srur-Lavi, O., Tomanek, D., & Joselevich, E. (2008). Origin of torsion-induced conductance oscillations in carbon nanotubes. Physical Review B, 78, 165417. Nagapriya, K. S., Berber, S., Cohen-Karni, T., Segev, L., Srur-Lavi, O., Tomanek, D., & Joselevich, E. (2008). Origin of torsion-induced conductance oscillations in carbon nanotubes. Physical Review B, 78, 165417.
go back to reference Nakada, K., Fujita, M., Dresselhaus, G., & Dresselhaus, M. S. (1996). Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Physical Review B, 54, 17954–17961. Nakada, K., Fujita, M., Dresselhaus, G., & Dresselhaus, M. S. (1996). Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Physical Review B, 54, 17954–17961.
go back to reference Nakamura, E., Tahara, K., Matsuo, Y., & Sawamura, M. (2003). Synthesis, structure, and aromaticity of a hoop-shaped cyclic benzenoid [10]cyclophenacene. Journal of the American Chemical Society, 125, 2834–2835. Nakamura, E., Tahara, K., Matsuo, Y., & Sawamura, M. (2003). Synthesis, structure, and aromaticity of a hoop-shaped cyclic benzenoid [10]cyclophenacene. Journal of the American Chemical Society, 125, 2834–2835.
go back to reference Nardelli, M. B. (1999). Electronic transport in extended systems: Application to carbon nanotubes. Physical Review B, 60(11), 7828–7833. Nardelli, M. B. (1999). Electronic transport in extended systems: Application to carbon nanotubes. Physical Review B, 60(11), 7828–7833.
go back to reference Nardelli, M. B., & Bernholc, J. (1999). Mechanical deformations and coherent transport in carbon nanotubes. Physical Review B, 60(24), R16338–R16341. Nardelli, M. B., & Bernholc, J. (1999). Mechanical deformations and coherent transport in carbon nanotubes. Physical Review B, 60(24), R16338–R16341.
go back to reference Niimi, Y., Matsui, T., Kambara, H., Tagami, K., Tsukada, M., & Fukuyama, H. (2005). Scanning tunneling microscopy and spectroscopy studies of graphite edges. Applied Surface Science, 241, 43–48. Niimi, Y., Matsui, T., Kambara, H., Tagami, K., Tsukada, M., & Fukuyama, H. (2005). Scanning tunneling microscopy and spectroscopy studies of graphite edges. Applied Surface Science, 241, 43–48.
go back to reference Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306, 666–669. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306, 666–669.
go back to reference Okada, S., & Oshiyama, A. (2003). Nanometer-scale ferromagnet: Carbon nanotubes with finite length. Journal of the Physical Society of Japan, 72, 1510–1515. Okada, S., & Oshiyama, A. (2003). Nanometer-scale ferromagnet: Carbon nanotubes with finite length. Journal of the Physical Society of Japan, 72, 1510–1515.
go back to reference Onida, G., Reining, L., & Rubio, A. (2002). Electronic excitations: Density-functional versus many-body Green’s-function approaches. Reviews of Modern Physics, 74, 601–659. Onida, G., Reining, L., & Rubio, A. (2002). Electronic excitations: Density-functional versus many-body Green’s-function approaches. Reviews of Modern Physics, 74, 601–659.
go back to reference Paier, J., Marsman, M., & Kresse, G. (2007). Why does the B3LYP hybrid functional fail for metals? The Journal of Chemical Physics, 127, 024103. Paier, J., Marsman, M., & Kresse, G. (2007). Why does the B3LYP hybrid functional fail for metals? The Journal of Chemical Physics, 127, 024103.
go back to reference Paulson, S., Falvo, M., Snider, N., Helser, A., Hudson, T., Seeger, A., Taylor, R., Superfine, R., & Washburn, S. (1999). In situ resistance measurements of strained carbon nanotubes. Applied Physics Letters, 75, 2936–2938. Paulson, S., Falvo, M., Snider, N., Helser, A., Hudson, T., Seeger, A., Taylor, R., Superfine, R., & Washburn, S. (1999). In situ resistance measurements of strained carbon nanotubes. Applied Physics Letters, 75, 2936–2938.
go back to reference Peng, S., & Cho, K. (2002). Nano electro mechanics of semiconducting carbon nanotube. Journal of Applied Mechanics, 69, 451. Peng, S., & Cho, K. (2002). Nano electro mechanics of semiconducting carbon nanotube. Journal of Applied Mechanics, 69, 451.
go back to reference Peralta, J. E., Heyd, J., Scuseria, G. E., & Martin, R. L. (2006). Spin-orbit splittings and energy band gaps calculated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. Physical Review B, 74, 073101. Peralta, J. E., Heyd, J., Scuseria, G. E., & Martin, R. L. (2006). Spin-orbit splittings and energy band gaps calculated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. Physical Review B, 74, 073101.
go back to reference Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77, 3865–3868. Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77, 3865–3868.
go back to reference Perdew, J. P., Ernzerhof, M., & Burke, K. (1997). Rationale for mixing exact exchange with density functional approximations. The Journal of Chemical Physics, 105, 9982–9985. Perdew, J. P., Ernzerhof, M., & Burke, K. (1997). Rationale for mixing exact exchange with density functional approximations. The Journal of Chemical Physics, 105, 9982–9985.
go back to reference Pimenta, M., Gomes, A., Fantini, C., Cancado, L., Araujo, P., Maciel, I., Santos, A., Furtado, C., Peressinotto, V., Plentz, F., & Jorio, A. (2007). Optical studies of carbon nanotubes and nanographites. Physica E, 37, 88–92. Pimenta, M., Gomes, A., Fantini, C., Cancado, L., Araujo, P., Maciel, I., Santos, A., Furtado, C., Peressinotto, V., Plentz, F., & Jorio, A. (2007). Optical studies of carbon nanotubes and nanographites. Physica E, 37, 88–92.
go back to reference Poot, M. & van der Zant, H. S. J. (2008). Nanomechanical properties of few-layer graphene membranes. Applied Physics Letters, 92, 063111. Poot, M. & van der Zant, H. S. J. (2008). Nanomechanical properties of few-layer graphene membranes. Applied Physics Letters, 92, 063111.
go back to reference Prezzi, D., Varsano, D., Ruini, A., Marini, A., & Molinari, E. (2008). Optical properties of graphene nanoribbons: The role of many-body effects. Physical Review B, 77, 041477. Prezzi, D., Varsano, D., Ruini, A., Marini, A., & Molinari, E. (2008). Optical properties of graphene nanoribbons: The role of many-body effects. Physical Review B, 77, 041477.
go back to reference Radovic, L. R., & Bockrath, B. (2005). On the chemical nature of graphene edges: Origin of stability and potential for magnetism in carbon materials. Journal of the American Chemical Society, 127, 5917–5927. Radovic, L. R., & Bockrath, B. (2005). On the chemical nature of graphene edges: Origin of stability and potential for magnetism in carbon materials. Journal of the American Chemical Society, 127, 5917–5927.
go back to reference Reich, S., Thomsen, C., & Ordejón, P. (2002). Systematic ab initio study of curvature effects in carbon nanotubes. Physical Review B, 65, 153405. Reich, S., Thomsen, C., & Ordejón, P. (2002). Systematic ab initio study of curvature effects in carbon nanotubes. Physical Review B, 65, 153405.
go back to reference Rigo, V. A., Martins, T. B., da Silva, A. J. R., Fazzio, A., & Miwa, R. H. (2009). Electronic, structural, and transport properties of Ni-doped graphene nanoribbons. Physical Review B, 79, 075435. Rigo, V. A., Martins, T. B., da Silva, A. J. R., Fazzio, A., & Miwa, R. H. (2009). Electronic, structural, and transport properties of Ni-doped graphene nanoribbons. Physical Review B, 79, 075435.
go back to reference Ritter, K. A., & Lyding, J. W. (2009). The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nature Materials, 8, 235–242. Ritter, K. A., & Lyding, J. W. (2009). The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nature Materials, 8, 235–242.
go back to reference Rochefort, A., Salahub, D. R., & Avouris, P. (1998). The effect of structural distortions on the electronic structure of carbon nanotubes. Chemical Physics Letters, 297, 45–50. Rochefort, A., Salahub, D. R., & Avouris, P. (1998). The effect of structural distortions on the electronic structure of carbon nanotubes. Chemical Physics Letters, 297, 45–50.
go back to reference Rochefort, A., Avouris, P., Lesage, F., & Salahub, D. R. (1999a). Electrical and mechanical properties of distorted carbon nanotubes. Physical Review B, 60(19), 13824–13830. Rochefort, A., Avouris, P., Lesage, F., & Salahub, D. R. (1999a). Electrical and mechanical properties of distorted carbon nanotubes. Physical Review B, 60(19), 13824–13830.
go back to reference Rochefort, A., Salahub, D., & Avouris, P. (1999b). Effects of finite length on the electronic structure of carbon nanotubes. Journal of Physical Chemistry B, 103, 641–646. Rochefort, A., Salahub, D., & Avouris, P. (1999b). Effects of finite length on the electronic structure of carbon nanotubes. Journal of Physical Chemistry B, 103, 641–646.
go back to reference Rudberg, E., Salek, P., & Luo, Y. (2007). Nonlocal exchange interaction removes half-metallicity in graphene nanoribbons. Nano Letters, 7, 2211–2213. Rudberg, E., Salek, P., & Luo, Y. (2007). Nonlocal exchange interaction removes half-metallicity in graphene nanoribbons. Nano Letters, 7, 2211–2213.
go back to reference Rueckes, T., Kim, K., Joselevich, E., Tseng, G., Cheung, C., & Lieber, C. (2000). Carbon nanotube-based nonvolatile random access memory for molecular computing. Science, 289, 94–97. Rueckes, T., Kim, K., Joselevich, E., Tseng, G., Cheung, C., & Lieber, C. (2000). Carbon nanotube-based nonvolatile random access memory for molecular computing. Science, 289, 94–97.
go back to reference Runge, E., & Gross, E. (1984). Density-functional theory for time-dependent systems. Physical Review Letters, 52, 997–1000. Runge, E., & Gross, E. (1984). Density-functional theory for time-dependent systems. Physical Review Letters, 52, 997–1000.
go back to reference Saito, R., Fujita, M., Dresselhaus, G., & Dresselhaus, M. (1992). Electronic structure of graphene tubules based on C60. Physical Review B, 46, 1804–1811. Saito, R., Fujita, M., Dresselhaus, G., & Dresselhaus, M. (1992). Electronic structure of graphene tubules based on C60. Physical Review B, 46, 1804–1811.
go back to reference Saito, R., Dresselhaus, G., & Dresselhaus, M. S. (1998). Physical properties of carbon nanotubes. London: Imperial College Press. Saito, R., Dresselhaus, G., & Dresselhaus, M. S. (1998). Physical properties of carbon nanotubes. London: Imperial College Press.
go back to reference Sazonova, V., Yaish, Y., Ustunel, H., Roundy, D., Arias, T., & McEuen, P. (2004). A tunable carbon nanotube electromechanical oscillator. Nature, 431, 284–287. Sazonova, V., Yaish, Y., Ustunel, H., Roundy, D., Arias, T., & McEuen, P. (2004). A tunable carbon nanotube electromechanical oscillator. Nature, 431, 284–287.
go back to reference Semet, V., Binh, V., Guillot, D., Teo, K., Chhowalla, M., Amaratunga, G., Milne, W., Legagneux, P., & Pribat, D. (2005). Reversible electromechanical characteristics of individual multiwall carbon nanotubes. Applied Physics Letters, 87, 223103. Semet, V., Binh, V., Guillot, D., Teo, K., Chhowalla, M., Amaratunga, G., Milne, W., Legagneux, P., & Pribat, D. (2005). Reversible electromechanical characteristics of individual multiwall carbon nanotubes. Applied Physics Letters, 87, 223103.
go back to reference Sevincli, H., Topsakal, M., Durgun, E., & Ciraci, S. (2008). Electronic and magnetic properties of 3d transition-metal atom adsorbed graphene and graphene nanoribbons. Physical Review B, 77, 195434. Sevincli, H., Topsakal, M., Durgun, E., & Ciraci, S. (2008). Electronic and magnetic properties of 3d transition-metal atom adsorbed graphene and graphene nanoribbons. Physical Review B, 77, 195434.
go back to reference Sfeir, M. Y., Beetz, T., Wang, F., Huang, L. M., Huang, X. M. H., Huang, M. Y., Hone, J., O’Brien, S., Misewich, J. A., Heinz, T. F., Wu, L. J., Zhu, Y. M., & Brus, L. E. (2006). Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure. Science, 312, 554–556. Sfeir, M. Y., Beetz, T., Wang, F., Huang, L. M., Huang, X. M. H., Huang, M. Y., Hone, J., O’Brien, S., Misewich, J. A., Heinz, T. F., Wu, L. J., Zhu, Y. M., & Brus, L. E. (2006). Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure. Science, 312, 554–556.
go back to reference Shaver, J., Kono, J., Portugall, O., Krstic, V., Rikken, G. L. J. A., Miyauchi, Y., Maruyama, S., & Perebeinos, V. (2007). Magnetic brightening of carbon nanotube photoluminescence through symmetry breaking. Nano Letters, 7, 1851–1855. Shaver, J., Kono, J., Portugall, O., Krstic, V., Rikken, G. L. J. A., Miyauchi, Y., Maruyama, S., & Perebeinos, V. (2007). Magnetic brightening of carbon nanotube photoluminescence through symmetry breaking. Nano Letters, 7, 1851–1855.
go back to reference Shemella, P., Zhang, Y., Mailman, M., Ajayan, P. M., & Nayak, S. K. (2007). Energy gaps in zero-dimensional graphene nanoribbons. Applied Physics Letters, 91, 042101. Shemella, P., Zhang, Y., Mailman, M., Ajayan, P. M., & Nayak, S. K. (2007). Energy gaps in zero-dimensional graphene nanoribbons. Applied Physics Letters, 91, 042101.
go back to reference Son, Y.-W., Cohen, M. L., & Louie, S. G. (2006a). Energy gaps in graphene nanoribbons. Physical Review Letters, 97, 216803. Son, Y.-W., Cohen, M. L., & Louie, S. G. (2006a). Energy gaps in graphene nanoribbons. Physical Review Letters, 97, 216803.
go back to reference Son, Y.-W., Cohen, M. L., & Louie, S. G. (2006b). Half-metallic graphene nanoribbons. Nature, 444, 347–349. Son, Y.-W., Cohen, M. L., & Louie, S. G. (2006b). Half-metallic graphene nanoribbons. Nature, 444, 347–349.
go back to reference Spataru, C. D., Ismael-Beigi, S., Benedict, L. X., & Louie, S. G. (2004). Excitonic effects and optical spectra of single-walled carbon nanotubes. Physical Review Letters, 92, 077402. Spataru, C. D., Ismael-Beigi, S., Benedict, L. X., & Louie, S. G. (2004). Excitonic effects and optical spectra of single-walled carbon nanotubes. Physical Review Letters, 92, 077402.
go back to reference Spataru, C. D., Ismael-Beigi, S., Capaz, R. B., & Louie, S. G. (2008). Quasiparticle and excitonic effects in the optical response of nanotubes and nanoribbons. Topics in Applied Physics, 111, 195–227. Spataru, C. D., Ismael-Beigi, S., Capaz, R. B., & Louie, S. G. (2008). Quasiparticle and excitonic effects in the optical response of nanotubes and nanoribbons. Topics in Applied Physics, 111, 195–227.
go back to reference Springborg, M., & Satpathy, S. (1994). Density-functional calculations of electronic and structural properties of small fullerene tubules. Chemical Physics Letters, 255, 454–461. Springborg, M., & Satpathy, S. (1994). Density-functional calculations of electronic and structural properties of small fullerene tubules. Chemical Physics Letters, 255, 454–461.
go back to reference Stampfer, C., Jungen, A., Linderman, R., Obergfell, D., Roth, S., & Hierold, C. (2006). Nano-electromechanical displacement sensing based on single-walled carbon nanotubes. Nano Letters, 6, 1449–1453. Stampfer, C., Jungen, A., Linderman, R., Obergfell, D., Roth, S., & Hierold, C. (2006). Nano-electromechanical displacement sensing based on single-walled carbon nanotubes. Nano Letters, 6, 1449–1453.
go back to reference Stein, S., & Brown, R. (1987). Pi-electron properties of large condensed polyaromatic hydrocarbons. Journal of the American Chemical Society, 109, 3721–3729. Stein, S., & Brown, R. (1987). Pi-electron properties of large condensed polyaromatic hydrocarbons. Journal of the American Chemical Society, 109, 3721–3729.
go back to reference Sun, L., Li, Q., Ren, H., Su, H., Shi, Q. W., & Yang, J. (2008). Strain effect on electronic structures of graphene nanoribbons: A first-principles study. Journal of Chemical Physics, 129, 074704. Sun, L., Li, Q., Ren, H., Su, H., Shi, Q. W., & Yang, J. (2008). Strain effect on electronic structures of graphene nanoribbons: A first-principles study. Journal of Chemical Physics, 129, 074704.
go back to reference Svizhenko, A., Mehrez, H., Anantram, A. M. P., & Maiti, A. (2005). Sensing mechanical deformation in carbon nanotubes by electrical response: a computational study. Proceedings of SPIE, 5593, 416–428. Svizhenko, A., Mehrez, H., Anantram, A. M. P., & Maiti, A. (2005). Sensing mechanical deformation in carbon nanotubes by electrical response: a computational study. Proceedings of SPIE, 5593, 416–428.
go back to reference Tanaka, K., Yamashita, S., Yamabe, H., & Yamabe, T. (1987). Electronic-properties of one-dimensional graphite family. Synthetic Metals, 17, 143–148. Tanaka, K., Yamashita, S., Yamabe, H., & Yamabe, T. (1987). Electronic-properties of one-dimensional graphite family. Synthetic Metals, 17, 143–148.
go back to reference Tang, Z. K., Sun, H. D., Wang, J., Chen, J., & Li, G. (1998). Mono-sized single-wall carbon nanotubes formed in channels of AlPO4 − 5 single crystal. Applied Physics Letters, 73, 2287–2289. Tang, Z. K., Sun, H. D., Wang, J., Chen, J., & Li, G. (1998). Mono-sized single-wall carbon nanotubes formed in channels of AlPO4 − 5 single crystal. Applied Physics Letters, 73, 2287–2289.
go back to reference Tao, J., Perdew, J. P., Staroverov, V. N., & Scuseria, G. E. (2003). Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids. Physical Review Letters, 91, 146401. Tao, J., Perdew, J. P., Staroverov, V. N., & Scuseria, G. E. (2003). Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids. Physical Review Letters, 91, 146401.
go back to reference Telg, H., Maultzsch, J., Reich, S., Hennrich, F., & Thompsen, C. (2004). Chirality distribution and transition energies of carbon nanotubes. Physical Review Letters, 93, 177401. Telg, H., Maultzsch, J., Reich, S., Hennrich, F., & Thompsen, C. (2004). Chirality distribution and transition energies of carbon nanotubes. Physical Review Letters, 93, 177401.
go back to reference Tombler, T., Zhou, C., Alexseyev, L., Kong, J., Dai, H., Lei, L., Jayanthi, C., Tang, M., & Wu, S. (2000). Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature, 405, 769–772. Tombler, T., Zhou, C., Alexseyev, L., Kong, J., Dai, H., Lei, L., Jayanthi, C., Tang, M., & Wu, S. (2000). Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature, 405, 769–772.
go back to reference Tsukada, M., Adachi, H., & Satoko, C. (1983). Theory of electronic-structure of oxide surfaces. Progress in Surface Science, 14, 113–173. Tsukada, M., Adachi, H., & Satoko, C. (1983). Theory of electronic-structure of oxide surfaces. Progress in Surface Science, 14, 113–173.
go back to reference Uthaisar, C., & Barone, V. (2010). Edge effects on the characteristics of li diffusion in graphene. Nano Letters, 10, 2838–2842. Uthaisar, C., & Barone, V. (2010). Edge effects on the characteristics of li diffusion in graphene. Nano Letters, 10, 2838–2842.
go back to reference Uthaisar, C., Barone, V., & Peralta, J. E. (2009). Lithium adsorption on zigzag graphene nanoribbons. Journal of Applied Physics, 106, 113715. Uthaisar, C., Barone, V., & Peralta, J. E. (2009). Lithium adsorption on zigzag graphene nanoribbons. Journal of Applied Physics, 106, 113715.
go back to reference Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 41, 7892–7895. Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 41, 7892–7895.
go back to reference Vosko, S. H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin-density calculations – A critical analysis. Canadian Journal of Physics, 58, 1200–1211. Vosko, S. H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin-density calculations – A critical analysis. Canadian Journal of Physics, 58, 1200–1211.
go back to reference Wakabayashi, K., Fujita, M., Ajiki, H., & Sigrist, M. (1999). Electronic and magnetic properties of nanographite ribbons. Physical Review B, 59, 8271–8282. Wakabayashi, K., Fujita, M., Ajiki, H., & Sigrist, M. (1999). Electronic and magnetic properties of nanographite ribbons. Physical Review B, 59, 8271–8282.
go back to reference Wang, F., Dukovic, G., Brus, L. E., & Heinz, T. F. (2005). The optical resonances in carbon nanotubes arise from excitons. Science, 308, 838–841. Wang, F., Dukovic, G., Brus, L. E., & Heinz, T. F. (2005). The optical resonances in carbon nanotubes arise from excitons. Science, 308, 838–841.
go back to reference Wang, X., Ouyang, Y., Li, X., Wang, H., Guo, J., & Dai, H. (2008). Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Physical Review Letters, 100, 206803. Wang, X., Ouyang, Y., Li, X., Wang, H., Guo, J., & Dai, H. (2008). Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Physical Review Letters, 100, 206803.
go back to reference Wassmann, T., Seitsonen, A. P., Saitta, A. M., Lazzeri, M., & Mauri, F. (2008). Structure, stability, edge states, and aromaticity of graphene ribbons. Physical Review Letters, 101, 096402. Wassmann, T., Seitsonen, A. P., Saitta, A. M., Lazzeri, M., & Mauri, F. (2008). Structure, stability, edge states, and aromaticity of graphene ribbons. Physical Review Letters, 101, 096402.
go back to reference Weisman, R. B., & Bachilo, S. M. (2003). Nano Letters, 3, 1235–1238. Weisman, R. B., & Bachilo, S. M. (2003). Nano Letters, 3, 1235–1238.
go back to reference Wu, J., Zang, J., Larade, B., Guo, H., Gong, X., & Liu, F. (2004). Computational design of carbon nanotube electromechanical pressure sensors. Physical Review B, 69, 153406. Wu, J., Zang, J., Larade, B., Guo, H., Gong, X., & Liu, F. (2004). Computational design of carbon nanotube electromechanical pressure sensors. Physical Review B, 69, 153406.
go back to reference Yang, L., & Han, J. (2000). Electronic structure of deformed carbon nanotubes. Physical Review Letters, 85(1), 154–157. Yang, L., & Han, J. (2000). Electronic structure of deformed carbon nanotubes. Physical Review Letters, 85(1), 154–157.
go back to reference Yang, L., Anantram, M. P., Han, J., & Lu, J. P. (1999). Band-gap change of carbon nanotubes: Effect of small uniaxial and torsional strain. Physical Review B, 60(19), 13874–13878. Yang, L., Anantram, M. P., Han, J., & Lu, J. P. (1999). Band-gap change of carbon nanotubes: Effect of small uniaxial and torsional strain. Physical Review B, 60(19), 13874–13878.
go back to reference Yang, L., Cohen, M. L., & Louie, S. G. (2007). Excitonic effects in the optical spectra of graphene nanoribbons. Nano Letters, 10, 3112–3115. Yang, L., Cohen, M. L., & Louie, S. G. (2007). Excitonic effects in the optical spectra of graphene nanoribbons. Nano Letters, 10, 3112–3115.
go back to reference Yang, X., Dou, X., Rouhanipour, A., Zhi, L., Rader, H. J., & Müllen, K. (2008). Two-dimensional graphene nanoribbons. Journal of the American Chemical Society, 130, 4216. Yang, X., Dou, X., Rouhanipour, A., Zhi, L., Rader, H. J., & Müllen, K. (2008). Two-dimensional graphene nanoribbons. Journal of the American Chemical Society, 130, 4216.
go back to reference Zhang, D.-B., James, R. D., & Dumitrica, T. (2009). Electromechanical characterization of carbon nanotubes in torsion via symmetry adapted tight-binding objective molecular dynamics. Physical Review B, 80(11), 115418. Zhang, D.-B., James, R. D., & Dumitrica, T. (2009). Electromechanical characterization of carbon nanotubes in torsion via symmetry adapted tight-binding objective molecular dynamics. Physical Review B, 80(11), 115418.
go back to reference Zhao, X., Liu, Y., Inoue, S., Suzuki, T., Jones, R. O., & Ando, Y. (2004). Smallest carbon nanotube Is 3 angstrom in diameter. Physical Review Letters, 92, 125502. Zhao, X., Liu, Y., Inoue, S., Suzuki, T., Jones, R. O., & Ando, Y. (2004). Smallest carbon nanotube Is 3 angstrom in diameter. Physical Review Letters, 92, 125502.
go back to reference Zheng, H., & Duley, W. (2008). First-principles study of edge chemical modifications in graphene nanodots. Physical Review B, 78, 045421. Zheng, H., & Duley, W. (2008). First-principles study of edge chemical modifications in graphene nanodots. Physical Review B, 78, 045421.
Metadata
Title
Modeling of Quasi-One-Dimensional Carbon Nanostructures with Density Functional Theory
Authors
Veronica Barone
Oded Hod
Juan E. Peralta
Copyright Year
2012
Publisher
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-0711-5_24

Premium Partner