Skip to main content
Top

2024 | OriginalPaper | Chapter

Modeling of Solar Ammonia Production Using ASPEN Plus

Authors : Indraneel Natu, Pratham Arora

Published in: Proceedings from the International Conference on Hydro and Renewable Energy

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A steady-state model of green ammonia production using hydrogen produced from Polymer Electrolyte Membrane (PEM) electrolysis has been developed using ASPEN Plus Simulation software. Since the ASPEN plus does not offer the facility to directly model electrolysis cells, Aspen Custom Modeler (ACM) is used to develop the PEM stack. Stack is based on semi-empirical equations describing cell voltage and water transport across the membrane. The power requirement for electrolysis is expected to come from solar energy. This model of the PEM electrolyzer is integrated with the ammonia production model in a single flowsheet. With a power input of 4.25 kW, the PEM stack with 26 cells produced 0.048 kmol/h of H2. The corresponding ammonia production utilizing the conventional Haber–Bosch reactor was simulated to be 0.026 kmol/h. Such a model is expected to assist in the future design and scale-up of green ammonia processes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abdin Z, Webb C, Gray EM (2015) Modelling and simulation of a proton exchange membrane (PEM) electrolyser cell. Int J Hydrogen Energy 40(39):13243–13257CrossRef Abdin Z, Webb C, Gray EM (2015) Modelling and simulation of a proton exchange membrane (PEM) electrolyser cell. Int J Hydrogen Energy 40(39):13243–13257CrossRef
2.
go back to reference Andersson J, Lundgren J (2014) Techno-economic analysis of ammonia production via integrated biomass gasification. Appl Energy 130:484–490CrossRef Andersson J, Lundgren J (2014) Techno-economic analysis of ammonia production via integrated biomass gasification. Appl Energy 130:484–490CrossRef
3.
go back to reference Appl M (1999) Ammonia: principles & industrial practice Appl M (1999) Ammonia: principles & industrial practice
4.
go back to reference Arora P, Hoadley AF, Mahajani SM, Ganesh A (2016) Small-scale ammonia production from biomass: a techno-enviro-economic perspective. Ind Eng Chem Res 55(22):6422–6434CrossRef Arora P, Hoadley AF, Mahajani SM, Ganesh A (2016) Small-scale ammonia production from biomass: a techno-enviro-economic perspective. Ind Eng Chem Res 55(22):6422–6434CrossRef
5.
go back to reference Awasthi A, Scott K, Basu S (2011) Dynamic modeling and simulation of a proton exchange membrane electrolyzer for hydrogen production. Int J Hydrogen Energy 36(22):14779–14786CrossRef Awasthi A, Scott K, Basu S (2011) Dynamic modeling and simulation of a proton exchange membrane electrolyzer for hydrogen production. Int J Hydrogen Energy 36(22):14779–14786CrossRef
6.
go back to reference Bhosale AC, Mane SR, Singdeo D, Ghosh P (2017) Modeling and experimental validation of a unitized regenerative fuel cell in electrolysis mode of operation. Energy 121:256–263CrossRef Bhosale AC, Mane SR, Singdeo D, Ghosh P (2017) Modeling and experimental validation of a unitized regenerative fuel cell in electrolysis mode of operation. Energy 121:256–263CrossRef
7.
go back to reference Carmo M, Fritz DL, Mergel J, Stolten D (2013) A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy 38(12):4901–4934CrossRef Carmo M, Fritz DL, Mergel J, Stolten D (2013) A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy 38(12):4901–4934CrossRef
8.
go back to reference Colbertaldo P, Aláez SLG, Campanari S (2017) Zero-dimensional dynamic modeling of PEM electrolyzers. Energy Procedia 142:1468–1473CrossRef Colbertaldo P, Aláez SLG, Campanari S (2017) Zero-dimensional dynamic modeling of PEM electrolyzers. Energy Procedia 142:1468–1473CrossRef
9.
go back to reference D’Angelo SC, Cobo S, Tulus V, Nabera A, Martín AJ, Pérez-Ramírez J, Guillén-Gosálbez G (2021) Planetary boundaries analysis of low-carbon ammonia production routes. ACS Sustain Chem Eng 9(29):9740–9749CrossRef D’Angelo SC, Cobo S, Tulus V, Nabera A, Martín AJ, Pérez-Ramírez J, Guillén-Gosálbez G (2021) Planetary boundaries analysis of low-carbon ammonia production routes. ACS Sustain Chem Eng 9(29):9740–9749CrossRef
10.
go back to reference Dutta S, Shimpalee S, Van Zee J (2001) Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell. Int J Heat Mass Transf 44(11):2029–2042CrossRef Dutta S, Shimpalee S, Van Zee J (2001) Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell. Int J Heat Mass Transf 44(11):2029–2042CrossRef
11.
go back to reference Falcão D, Pinto A (2020) A review on PEM electrolyzer modelling: guidelines for beginners. J Clean Prod 261:121184CrossRef Falcão D, Pinto A (2020) A review on PEM electrolyzer modelling: guidelines for beginners. J Clean Prod 261:121184CrossRef
12.
go back to reference García-Valverde R, Espinosa N, Urbina A (2012) Simple PEM water electrolyser model and experimental validation. Int J Hydrogen Energy 37(2):1927–1938CrossRef García-Valverde R, Espinosa N, Urbina A (2012) Simple PEM water electrolyser model and experimental validation. Int J Hydrogen Energy 37(2):1927–1938CrossRef
13.
go back to reference Görgün H (2006) Dynamic modelling of a proton exchange membrane (PEM) electrolyzer. Int J Hydrogen Energy 31(1):29–38CrossRef Görgün H (2006) Dynamic modelling of a proton exchange membrane (PEM) electrolyzer. Int J Hydrogen Energy 31(1):29–38CrossRef
14.
go back to reference Grigoriev S, Porembsky V, Fateev V (2006) Pure hydrogen production by PEM electrolysis for hydrogen energy. Int J Hydrogen Energy 31(2):171–175CrossRef Grigoriev S, Porembsky V, Fateev V (2006) Pure hydrogen production by PEM electrolysis for hydrogen energy. Int J Hydrogen Energy 31(2):171–175CrossRef
15.
go back to reference Han B, Steen SM III, Mo J, Zhang F-Y (2015) Electrochemical performance modeling of a proton exchange membrane electrolyzer cell for hydrogen energy. Int J Hydrogen Energy 40(22):7006–7016CrossRef Han B, Steen SM III, Mo J, Zhang F-Y (2015) Electrochemical performance modeling of a proton exchange membrane electrolyzer cell for hydrogen energy. Int J Hydrogen Energy 40(22):7006–7016CrossRef
16.
go back to reference Lebbal M, Lecœuche S (2009) Identification and monitoring of a PEM electrolyser based on dynamical modelling. Int J Hydrogen Energy 34(14):5992–5999CrossRef Lebbal M, Lecœuche S (2009) Identification and monitoring of a PEM electrolyser based on dynamical modelling. Int J Hydrogen Energy 34(14):5992–5999CrossRef
17.
go back to reference Liu X, Elgowainy A, Wang M (2020) Life cycle energy use and greenhouse gas emissions of ammonia production from renewable resources and industrial by-products. Green Chem 22(17):5751–5761CrossRef Liu X, Elgowainy A, Wang M (2020) Life cycle energy use and greenhouse gas emissions of ammonia production from renewable resources and industrial by-products. Green Chem 22(17):5751–5761CrossRef
18.
go back to reference Marangio F, Santarelli M, Calì M (2009) Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production. Int J Hydrogen Energy 34(3):1143–1158CrossRef Marangio F, Santarelli M, Calì M (2009) Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production. Int J Hydrogen Energy 34(3):1143–1158CrossRef
19.
go back to reference Medina P, Santarelli M (2010) Analysis of water transport in a high pressure PEM electrolyzer. Int J Hydrogen Energy 35(11):5173–5186CrossRef Medina P, Santarelli M (2010) Analysis of water transport in a high pressure PEM electrolyzer. Int J Hydrogen Energy 35(11):5173–5186CrossRef
20.
go back to reference Santarelli M, Torchio M, management. (2007) Experimental analysis of the effects of the operating variables on the performance of a single PEMFC. Energy Conv 48(1):40–51CrossRef Santarelli M, Torchio M, management. (2007) Experimental analysis of the effects of the operating variables on the performance of a single PEMFC. Energy Conv 48(1):40–51CrossRef
21.
go back to reference SUSlick KSJJW, York SN (1998) Kirk-Othmer encyclopedia of chemical technology, vol 26, pp 517–541 SUSlick KSJJW, York SN (1998) Kirk-Othmer encyclopedia of chemical technology, vol 26, pp 517–541
22.
go back to reference Tijani AS, Kamarudin NAB, Mazlan FAB (2018) Investigation of the effect of charge transfer coefficient (CTC) on the operating voltage of polymer electrolyte membrane (PEM) electrolyzer. Int J Hydrogen Energy 43(19):9119–9132CrossRef Tijani AS, Kamarudin NAB, Mazlan FAB (2018) Investigation of the effect of charge transfer coefficient (CTC) on the operating voltage of polymer electrolyte membrane (PEM) electrolyzer. Int J Hydrogen Energy 43(19):9119–9132CrossRef
23.
go back to reference Yigit T, Selamet OF (2016) Mathematical modeling and dynamic Simulink simulation of high-pressure PEM electrolyzer system. Int J Hydrogen Energy 41(32):13901–13914CrossRef Yigit T, Selamet OF (2016) Mathematical modeling and dynamic Simulink simulation of high-pressure PEM electrolyzer system. Int J Hydrogen Energy 41(32):13901–13914CrossRef
24.
go back to reference Zhang H, Wang L, Maréchal F, Desideri U (2020) Techno-economic comparison of green ammonia production processes. Appl Energy 259:114135CrossRef Zhang H, Wang L, Maréchal F, Desideri U (2020) Techno-economic comparison of green ammonia production processes. Appl Energy 259:114135CrossRef
Metadata
Title
Modeling of Solar Ammonia Production Using ASPEN Plus
Authors
Indraneel Natu
Pratham Arora
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-6616-5_7