Skip to main content
Top

2022 | OriginalPaper | Chapter

17. Modeling of Stratified Flow

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter describes step-by-step procedure involved in solving the stratified flow model using three different methods. The three models presented in this chapter are the flat surface model, apparent rough surface model, and the double circle model. An illustrative example demonstrating the use of these three models in determining the void fraction and two-phase frictional pressure drop in stratified flow is also provided.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Badie, S., Hale, C. P., Lawrence, C. J., & Hewitt, G. F. (2000). Pressure gradient and holdup in horizontal two-phase gas liquid flows with low liquid loading. International Journal of Multiphase Flow, 26, 1525–1543.CrossRef Badie, S., Hale, C. P., Lawrence, C. J., & Hewitt, G. F. (2000). Pressure gradient and holdup in horizontal two-phase gas liquid flows with low liquid loading. International Journal of Multiphase Flow, 26, 1525–1543.CrossRef
go back to reference Blasius, H. (1913). Das Anhlichkeitsgesetz bei Reibungsvorgangen in Flussikeiten. Gebiete Ingenieurw, 134. Blasius, H. (1913). Das Anhlichkeitsgesetz bei Reibungsvorgangen in Flussikeiten. Gebiete Ingenieurw, 134.
go back to reference Chen, X. T., Cai, X. D., & Brill, J. P. (1997). Gas liquid stratified wavy flow in horizontal pipelines. Journal of Energy Resources Technology, 119, 209–216.CrossRef Chen, X. T., Cai, X. D., & Brill, J. P. (1997). Gas liquid stratified wavy flow in horizontal pipelines. Journal of Energy Resources Technology, 119, 209–216.CrossRef
go back to reference Crowley, C. J., Wallis, G. B., & Barry, J. J. (1992). Validation of one-dimensional wave model for the stratified to slug flow regime transition with consequences for wave growth and slug frequency. International Journal of Multiphase Flow, 18, 249–271.CrossRef Crowley, C. J., Wallis, G. B., & Barry, J. J. (1992). Validation of one-dimensional wave model for the stratified to slug flow regime transition with consequences for wave growth and slug frequency. International Journal of Multiphase Flow, 18, 249–271.CrossRef
go back to reference Hamersma, P. J., & Hart, J. (1987). A pressure drop correlation for gas-liquid pipe flow with a small liquid holdup. Chemical Engineering Science, 42, 1187–1196.CrossRef Hamersma, P. J., & Hart, J. (1987). A pressure drop correlation for gas-liquid pipe flow with a small liquid holdup. Chemical Engineering Science, 42, 1187–1196.CrossRef
go back to reference Hart, J., Hamersma, P. J., & Fortuin, J. M. H. (1989). Correlations predicting frictional pressure drop and liquid holdup during horizontal gas-liquid pipe flow with a small liquid holdup. International Journal of Multiphase Flow, 15, 947–964.CrossRef Hart, J., Hamersma, P. J., & Fortuin, J. M. H. (1989). Correlations predicting frictional pressure drop and liquid holdup during horizontal gas-liquid pipe flow with a small liquid holdup. International Journal of Multiphase Flow, 15, 947–964.CrossRef
go back to reference Ottens, M., Hoefsloot, H. C. J., & Kamersma, P. J. (2001). Correlations predicting liquid holdup and pressure gradient in steady state nearly horizontal cocurrent gas-liquid pipe flow. Institution of Chemical Engineers, Trans IChemE, 79, 581–592.CrossRef Ottens, M., Hoefsloot, H. C. J., & Kamersma, P. J. (2001). Correlations predicting liquid holdup and pressure gradient in steady state nearly horizontal cocurrent gas-liquid pipe flow. Institution of Chemical Engineers, Trans IChemE, 79, 581–592.CrossRef
go back to reference Taitel, Y., & Dukler, A. E. (1976). A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow. AICHE Journal, 22, 47–55.CrossRef Taitel, Y., & Dukler, A. E. (1976). A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow. AICHE Journal, 22, 47–55.CrossRef
Metadata
Title
Modeling of Stratified Flow
Author
Afshin J. Ghajar
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-87281-6_17

Premium Partners