Skip to main content
Top
Published in: Journal of Computational Neuroscience 1/2012

01-08-2012

Modeling the impact of common noise inputs on the network activity of retinal ganglion cells

Authors: Michael Vidne, Yashar Ahmadian, Jonathon Shlens, Jonathan W. Pillow, Jayant Kulkarni, Alan M. Litke, E. J. Chichilnisky, Eero Simoncelli, Liam Paninski

Published in: Journal of Computational Neuroscience | Issue 1/2012

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Synchronized spontaneous firing among retinal ganglion cells (RGCs), on timescales faster than visual responses, has been reported in many studies. Two candidate mechanisms of synchronized firing include direct coupling and shared noisy inputs. In neighboring parasol cells of primate retina, which exhibit rapid synchronized firing that has been studied extensively, recent experimental work indicates that direct electrical or synaptic coupling is weak, but shared synaptic input in the absence of modulated stimuli is strong. However, previous modeling efforts have not accounted for this aspect of firing in the parasol cell population. Here we develop a new model that incorporates the effects of common noise, and apply it to analyze the light responses and synchronized firing of a large, densely-sampled network of over 250 simultaneously recorded parasol cells. We use a generalized linear model in which the spike rate in each cell is determined by the linear combination of the spatio-temporally filtered visual input, the temporally filtered prior spikes of that cell, and unobserved sources representing common noise. The model accurately captures the statistical structure of the spike trains and the encoding of the visual stimulus, without the direct coupling assumption present in previous modeling work. Finally, we examined the problem of decoding the visual stimulus from the spike train given the estimated parameters. The common-noise model produces Bayesian decoding performance as accurate as that of a model with direct coupling, but with significantly more robustness to spike timing perturbations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
It is also useful to recall the relationship between the spatial covariance C s and the mixing matrix M here: as noted above, since the common noise terms q t have unit variance and are independent from the stimulus and from one another, the spatial covariance C s is given by M T M. However, since \(\mathbf{C}_s = (\mathbf{UM})^T(\mathbf{UM})\) for any unitary matrix U, we can not estimate M directly; we can only obtain an estimate of C s . Therefore, we can proceed with the estimation of the spatial covariance C s and use any convenient decomposition of this matrix for our calculations below. (We emphasize the non-uniqueness of M because it is tempting to interpret M as a kind of effective connectivity matrix, and this over-interpretation should be avoided.)
 
2
Estimating the spatio-temporal filters k i simultaneously while marginalizing over the common noise q is possible but computationally challenging. Therefore we held the shape of k i fixed in this second stage but optimized its Euclidean length ||k i ||2. The resulting model explained the data well, as discussed in Section 3 below.
 
3
We make one further simplifying approximation in the case of the population model with no direct coupling terms. Here the dimensionality of the common noise terms is extremely large: dim(q) = n cells ×T, where T is the number of timebins in the experimental data. As discussed in Appendix A, direct optimization over q can be performed in \(O(n_{\rm cells}^3 T)\) time, i.e., computational time scaling linearly with T but unfortunately cubically in n cells (see Paninski et al. 2010 for further discussion). This cubic scaling becomes prohibitive for large populations. However, if we make the simplifying approximation that the common noise injected into each RGC is nearly conditionally independent given the observed spikes y when computing the marginal likelihood p(y | Θ, C s ), then the optimizations over the n cells independent noise terms q i can be performed independently, with the total computation time scaling linearly in both n cells and T. We found this approximation to perform reasonably in practice (see Section 3 below), largely because the pairwise correlation in the common-noise terms was always significantly less than one (see Fig. 4 below). No such approximation was necessary in the pairwise case, where the computation always scales as O(T).
 
4
In many of the three point correlation functions one can notice persistent diagonal structures. If we consider the three point correlation of neuron 1 with the time shifted firing of neurons 2 and 3, the diagonal structure is the sign of a correlation between the time shifted neurons (2 and 3).
 
5
Since x is binary, strictly speaking, u i is not a Gaussian vector solely described by its covariance. However, because the filters k i have a relatively large spatiotemporal dimension, the components of u i are weighted sums of many independent identically distributed binary random variables, and their prior marginal distributions can be well approximated by Gaussian distributions (see Pillow et al. 2011 and Ahmadian et al. 2011 for further discussion of this point). For this reason, we replaced the true (non-Gaussian) joint prior distribution of y i with a Gaussian distribution with zero mean and covariance Eq. (24).
 
Literature
go back to reference Agresti, A. (2002). Categorical data analysis. In Wiley series in probability and mathematical statistics. Agresti, A. (2002). Categorical data analysis. In Wiley series in probability and mathematical statistics.
go back to reference Ahmadian, Y., Pillow, J., Shlens, J., Chichilnisky, E., Simoncelli, E., & Paninski, L. (2009). A decoder-based spike train metric for analyzing the neural code in the retina. In COSYNE09. Ahmadian, Y., Pillow, J., Shlens, J., Chichilnisky, E., Simoncelli, E., & Paninski, L. (2009). A decoder-based spike train metric for analyzing the neural code in the retina. In COSYNE09.
go back to reference Ahmadian, Y., Pillow, J. W., & Paninski, L. (2011). Efficient Markov chain Monte Carlo methods for decoding neural spike trains. Neural Computation, 23, 46–96.PubMedCrossRef Ahmadian, Y., Pillow, J. W., & Paninski, L. (2011). Efficient Markov chain Monte Carlo methods for decoding neural spike trains. Neural Computation, 23, 46–96.PubMedCrossRef
go back to reference Arnett, D. (1978). Statistical dependence between neighboring retinal ganglion cells in goldfish. Experimental Brain Research, 32(1), 49–53.CrossRef Arnett, D. (1978). Statistical dependence between neighboring retinal ganglion cells in goldfish. Experimental Brain Research, 32(1), 49–53.CrossRef
go back to reference Bickel, P., & Doksum, K. (2001). Mathematical statistics: Basic ideas and selected topics. Prentice Hall. Bickel, P., & Doksum, K. (2001). Mathematical statistics: Basic ideas and selected topics. Prentice Hall.
go back to reference Brivanlou, I., Warland, D., & Meister, M. (1998). Mechanisms of concerted firing among retinal ganglion cells. Neuron, 20(3), 527–539.PubMedCrossRef Brivanlou, I., Warland, D., & Meister, M. (1998). Mechanisms of concerted firing among retinal ganglion cells. Neuron, 20(3), 527–539.PubMedCrossRef
go back to reference Cafaro, J., & Rieke, F. (2010). Noise correlations improve response fidelity and stimulus encoding. Nature, 468(7326), 964–967.PubMedCrossRef Cafaro, J., & Rieke, F. (2010). Noise correlations improve response fidelity and stimulus encoding. Nature, 468(7326), 964–967.PubMedCrossRef
go back to reference Chornoboy, E., Schramm, L., & Karr, A. (1988). Maximum likelihood identification of neural point process systems. Biological Cybernetics, 59, 265–275.PubMedCrossRef Chornoboy, E., Schramm, L., & Karr, A. (1988). Maximum likelihood identification of neural point process systems. Biological Cybernetics, 59, 265–275.PubMedCrossRef
go back to reference Cocco, S., Leibler, S., & Monasson, R. (2009). Neuronal couplings between retinal ganglion cells inferred by efficient inverse statistical physics methods. Proceedings of the National Academy of Sciences, 106(33), 14058.CrossRef Cocco, S., Leibler, S., & Monasson, R. (2009). Neuronal couplings between retinal ganglion cells inferred by efficient inverse statistical physics methods. Proceedings of the National Academy of Sciences, 106(33), 14058.CrossRef
go back to reference Cossart, R., Aronov, D., & Yuste, R. (2003). Attractor dynamics of network up states in the neocortex. Nature, 423, 283–288.PubMedCrossRef Cossart, R., Aronov, D., & Yuste, R. (2003). Attractor dynamics of network up states in the neocortex. Nature, 423, 283–288.PubMedCrossRef
go back to reference Dacey, D., & Brace, S. (1992). A coupled network for parasol but not midget ganglion cells in the primate retina. Visual Neuroscience, 9(3–4), 279–290.PubMedCrossRef Dacey, D., & Brace, S. (1992). A coupled network for parasol but not midget ganglion cells in the primate retina. Visual Neuroscience, 9(3–4), 279–290.PubMedCrossRef
go back to reference DeVries, S. H. (1999). Correlated firing in rabbit retinal ganglion cells. Journal of Neurophysiology, 81(2), 908–920.PubMed DeVries, S. H. (1999). Correlated firing in rabbit retinal ganglion cells. Journal of Neurophysiology, 81(2), 908–920.PubMed
go back to reference Dombeck, D., Khabbaz, A., Collman, F., Adelman, T., & Tank, D. (2007). Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron, 56(1), 43–57.PubMedCrossRef Dombeck, D., Khabbaz, A., Collman, F., Adelman, T., & Tank, D. (2007). Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron, 56(1), 43–57.PubMedCrossRef
go back to reference Dorn, J. D., & Ringach, D. L. (2003). Estimating membrane voltage correlations from extracellular spike trains. Journal of Neurophysiology, 89(4), 2271–2278.PubMedCrossRef Dorn, J. D., & Ringach, D. L. (2003). Estimating membrane voltage correlations from extracellular spike trains. Journal of Neurophysiology, 89(4), 2271–2278.PubMedCrossRef
go back to reference Fahrmeir, L., & Kaufmann, H. (1991). On Kalman filtering, posterior mode estimation and fisher scoring in dynamic exponential family regression. Metrika, 38, 37–60.CrossRef Fahrmeir, L., & Kaufmann, H. (1991). On Kalman filtering, posterior mode estimation and fisher scoring in dynamic exponential family regression. Metrika, 38, 37–60.CrossRef
go back to reference Fahrmeir, L., & Tutz, G. (1994). Multivariate statistical modelling based on generalized linear models. Springer. Fahrmeir, L., & Tutz, G. (1994). Multivariate statistical modelling based on generalized linear models. Springer.
go back to reference Field, G., Gauthier, J., Sher, A., Greschner, M., Machado, T., Jepson, L., et al. (2010). Mapping a neural circuit: A complete input-output diagram in the primate retina. Nature, 467, 673–677.PubMedCrossRef Field, G., Gauthier, J., Sher, A., Greschner, M., Machado, T., Jepson, L., et al. (2010). Mapping a neural circuit: A complete input-output diagram in the primate retina. Nature, 467, 673–677.PubMedCrossRef
go back to reference Frechette, E., Sher, A., Grivich, M., Petrusca, D., Litke, A., & Chichilnisky, E. (2005). Fidelity of the ensemble code for visual motion in primate retina. Journal of Neurophysiology, 94(1), 119.PubMedCrossRef Frechette, E., Sher, A., Grivich, M., Petrusca, D., Litke, A., & Chichilnisky, E. (2005). Fidelity of the ensemble code for visual motion in primate retina. Journal of Neurophysiology, 94(1), 119.PubMedCrossRef
go back to reference Gauthier, J., Field, G., Sher, A., Greschner, M., Shlens, J., Litke, A., et al. (2009). Receptive fields in primate retina are coordinated to sample visual space more uniformly. PLoS Biology, 7(4), e1000,063.CrossRef Gauthier, J., Field, G., Sher, A., Greschner, M., Shlens, J., Litke, A., et al. (2009). Receptive fields in primate retina are coordinated to sample visual space more uniformly. PLoS Biology, 7(4), e1000,063.CrossRef
go back to reference Greschner, M., Shlens, J., Bakolitsa, C., Field, G., Gauthier, J., Jepson, L., et al. (2011). Correlated firing among major ganglion cell types in primate retina. The Journal of Physiology, 589(1), 75.PubMedCrossRef Greschner, M., Shlens, J., Bakolitsa, C., Field, G., Gauthier, J., Jepson, L., et al. (2011). Correlated firing among major ganglion cell types in primate retina. The Journal of Physiology, 589(1), 75.PubMedCrossRef
go back to reference Gutnisky, D., & Josic, K. (2010). Generation of spatiotemporally correlated spike trains and local field potentials using a multivariate autoregressive process. Journal of Neurophysiology, 103(5), 2912.PubMedCrossRef Gutnisky, D., & Josic, K. (2010). Generation of spatiotemporally correlated spike trains and local field potentials using a multivariate autoregressive process. Journal of Neurophysiology, 103(5), 2912.PubMedCrossRef
go back to reference Harris, K., Csicsvari, J., Hirase, H., Dragoi, G., & Buzsaki, G. (2003). Organization of cell assemblies in the hippocampus. Nature, 424, 552–556.PubMedCrossRef Harris, K., Csicsvari, J., Hirase, H., Dragoi, G., & Buzsaki, G. (2003). Organization of cell assemblies in the hippocampus. Nature, 424, 552–556.PubMedCrossRef
go back to reference Hayes, M. H. (1996). Statistical digital signal processing and modeling. Wiley. Hayes, M. H. (1996). Statistical digital signal processing and modeling. Wiley.
go back to reference Haykin, S. (2001). Adaptive filter theory. Pearson Education India. Haykin, S. (2001). Adaptive filter theory. Pearson Education India.
go back to reference Higham, N. (1988). Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications, 103, 103–118.CrossRef Higham, N. (1988). Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications, 103, 103–118.CrossRef
go back to reference Iyengar, S. (2001). The analysis of multiple neural spike trains. In Advances in methodological and applied aspects of probability and statistics, Gordon and Breach (pp. 507–524). Iyengar, S. (2001). The analysis of multiple neural spike trains. In Advances in methodological and applied aspects of probability and statistics, Gordon and Breach (pp. 507–524).
go back to reference Kass, R., & Raftery, A. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773–795. Kass, R., & Raftery, A. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773–795.
go back to reference Keat, J., Reinagel, P., Reid, R., & Meister, M. (2001). Predicting every spike: A model for the responses of visual neurons. Neuron, 30, 803–817.PubMedCrossRef Keat, J., Reinagel, P., Reid, R., & Meister, M. (2001). Predicting every spike: A model for the responses of visual neurons. Neuron, 30, 803–817.PubMedCrossRef
go back to reference Kelly, R., Smith, M., Samonds, J., Kohn, A., Bonds, J., Movshon, A. B., et al. (2007). Comparison of recordings from microelectrode arrays and single electrodes in the visual cortex. Journal of Neuroscience, 27, 261–264.PubMedCrossRef Kelly, R., Smith, M., Samonds, J., Kohn, A., Bonds, J., Movshon, A. B., et al. (2007). Comparison of recordings from microelectrode arrays and single electrodes in the visual cortex. Journal of Neuroscience, 27, 261–264.PubMedCrossRef
go back to reference Kerr, J. N. D., Greenberg, D., & Helmchen, F. (2005). Imaging input and output of neocortical networks in vivo. PNAS, 102(39), 14063–14068.PubMedCrossRef Kerr, J. N. D., Greenberg, D., & Helmchen, F. (2005). Imaging input and output of neocortical networks in vivo. PNAS, 102(39), 14063–14068.PubMedCrossRef
go back to reference Koyama, S., & Paninski, L. (2010). Efficient computation of the map path and parameter estimation in integrate-and-fire and more general state-space models. Journal of Computational Neuroscience, 29, 89–105.PubMedCrossRef Koyama, S., & Paninski, L. (2010). Efficient computation of the map path and parameter estimation in integrate-and-fire and more general state-space models. Journal of Computational Neuroscience, 29, 89–105.PubMedCrossRef
go back to reference Krumin, M., & Shoham, S. (2009). Generation of spike trains with controlled auto-and cross-correlation functions. Neural Computation, 21(6), 1642–1664.PubMedCrossRef Krumin, M., & Shoham, S. (2009). Generation of spike trains with controlled auto-and cross-correlation functions. Neural Computation, 21(6), 1642–1664.PubMedCrossRef
go back to reference Kulkarni, J., & Paninski, L. (2007). Common-input models for multiple neural spike-train data. Network: Computation in Neural Systems, 18, 375–407.CrossRef Kulkarni, J., & Paninski, L. (2007). Common-input models for multiple neural spike-train data. Network: Computation in Neural Systems, 18, 375–407.CrossRef
go back to reference Latham, P., & Nirenberg, S. (2005). Synergy, redundancy, and independence in population codes, revisited. The Journal of Neuroscience, 25(21), 5195.PubMedCrossRef Latham, P., & Nirenberg, S. (2005). Synergy, redundancy, and independence in population codes, revisited. The Journal of Neuroscience, 25(21), 5195.PubMedCrossRef
go back to reference Lawhern, V., Wu, W., Hatsopoulos, N., & Paninski, L. (2010). Population decoding of motor cortical activity using a generalized linear model with hidden states. Journal of Neuroscience Methods, 189(2), 267–280.PubMedCrossRef Lawhern, V., Wu, W., Hatsopoulos, N., & Paninski, L. (2010). Population decoding of motor cortical activity using a generalized linear model with hidden states. Journal of Neuroscience Methods, 189(2), 267–280.PubMedCrossRef
go back to reference Litke, A., Bezayiff N., Chichilnisky E., Cunningham W., Dabrowski W., Grillo A., et al. (2004). What does the eye tell the brain? Development of a system for the large scale recording of retinal output activity. IEEE Transactions on Nuclear Science, 51, 1434–1440.CrossRef Litke, A., Bezayiff N., Chichilnisky E., Cunningham W., Dabrowski W., Grillo A., et al. (2004). What does the eye tell the brain? Development of a system for the large scale recording of retinal output activity. IEEE Transactions on Nuclear Science, 51, 1434–1440.CrossRef
go back to reference Macke, J., Berens, P., Ecker, A., Tolias, A., & Bethge, M. (2009). Generating spike trains with specified correlation coefficients. Neural Computation, 21, 397–423.PubMedCrossRef Macke, J., Berens, P., Ecker, A., Tolias, A., & Bethge, M. (2009). Generating spike trains with specified correlation coefficients. Neural Computation, 21, 397–423.PubMedCrossRef
go back to reference MacLean, J., Watson, B., Aaron, G., & Yuste, R. (2005). Internal dynamics determine the cortical response to thalamic stimulation. Neuron, 48, 811–823.PubMedCrossRef MacLean, J., Watson, B., Aaron, G., & Yuste, R. (2005). Internal dynamics determine the cortical response to thalamic stimulation. Neuron, 48, 811–823.PubMedCrossRef
go back to reference Martignon, L., Deco, G., Laskey, K., Diamond, M., Freiwald, W., & Vaadia, E. (2000). Neural coding: Higher-order temporal patterns in the neuro-statistics of cell assemblies. Neural Computation, 12, 2621–2653.PubMedCrossRef Martignon, L., Deco, G., Laskey, K., Diamond, M., Freiwald, W., & Vaadia, E. (2000). Neural coding: Higher-order temporal patterns in the neuro-statistics of cell assemblies. Neural Computation, 12, 2621–2653.PubMedCrossRef
go back to reference Masmoudi, K., Antonini, M., & Kornprobst, P. (2010). Encoding and decoding stimuli using a biological realistic model: The non-determinism in spike timings seen as a dither signal. In Proc of research in encoding and decoding of neural ensembles. Masmoudi, K., Antonini, M., & Kornprobst, P. (2010). Encoding and decoding stimuli using a biological realistic model: The non-determinism in spike timings seen as a dither signal. In Proc of research in encoding and decoding of neural ensembles.
go back to reference Mastronarde, D. (1983). Correlated firing of cat retinal ganglion cells. I. Spontaneously active inputs to x-and y-cells. Journal of Neurophysiology, 49(2), 303.PubMed Mastronarde, D. (1983). Correlated firing of cat retinal ganglion cells. I. Spontaneously active inputs to x-and y-cells. Journal of Neurophysiology, 49(2), 303.PubMed
go back to reference McCulloch, C., Searle, S., & Neuhaus, J. (2008). Generalized, linear, and mixed models. In Wiley series in probability and statistics. McCulloch, C., Searle, S., & Neuhaus, J. (2008). Generalized, linear, and mixed models. In Wiley series in probability and statistics.
go back to reference Meister, M., Lagnado, L., & Baylor, D. (1995). Concerted signaling by retinal ganglion cells. Science, 270(5239), 1207.PubMedCrossRef Meister, M., Lagnado, L., & Baylor, D. (1995). Concerted signaling by retinal ganglion cells. Science, 270(5239), 1207.PubMedCrossRef
go back to reference Mishchenko, Y., Vogelstein, J., & Paninski, L. (2011). A Bayesian approach for inferring neuronal connectivity from calcium fluorescent imaging data. The Annals of Applied Statistics, 5(2B), 1229–1261.CrossRef Mishchenko, Y., Vogelstein, J., & Paninski, L. (2011). A Bayesian approach for inferring neuronal connectivity from calcium fluorescent imaging data. The Annals of Applied Statistics, 5(2B), 1229–1261.CrossRef
go back to reference Nicolelis, M., Dimitrov, D., Carmena, J., Crist, R., Lehew, G., Kralik, J., et al. (2003). Chronic, multisite, multielectrode recordings in macaque monkeys. PNAS, 100, 11,041–11,046.PubMedCrossRef Nicolelis, M., Dimitrov, D., Carmena, J., Crist, R., Lehew, G., Kralik, J., et al. (2003). Chronic, multisite, multielectrode recordings in macaque monkeys. PNAS, 100, 11,041–11,046.PubMedCrossRef
go back to reference Niebur, E. (2007). Generation of synthetic spike trains with defined pairwise correlations. Neural Computation, 19(7), 1720–1738.PubMedCrossRef Niebur, E. (2007). Generation of synthetic spike trains with defined pairwise correlations. Neural Computation, 19(7), 1720–1738.PubMedCrossRef
go back to reference Nirenberg, S., Carcieri, S., Jacobs, A., & Latham, P. (2002). Retinal ganglion cells act largely as independent encoders. Nature, 411, 698–701.CrossRef Nirenberg, S., Carcieri, S., Jacobs, A., & Latham, P. (2002). Retinal ganglion cells act largely as independent encoders. Nature, 411, 698–701.CrossRef
go back to reference Nykamp, D. (2005). Revealing pairwise coupling in linear-nonlinear networks. SIAM Journal on Applied Mathematics, 65, 2005–2032.CrossRef Nykamp, D. (2005). Revealing pairwise coupling in linear-nonlinear networks. SIAM Journal on Applied Mathematics, 65, 2005–2032.CrossRef
go back to reference Nykamp, D. (2008). Exploiting history-dependent effects to infer network connectivity. SIAM Journal on Applied Mathematics, 68(2), 354–391.CrossRef Nykamp, D. (2008). Exploiting history-dependent effects to infer network connectivity. SIAM Journal on Applied Mathematics, 68(2), 354–391.CrossRef
go back to reference Nykamp, D. (2009). A stimulus-dependent connectivity analysis of neuronal networks. Journal of Mathematical Biology, 59(2), 147–173.PubMedCrossRef Nykamp, D. (2009). A stimulus-dependent connectivity analysis of neuronal networks. Journal of Mathematical Biology, 59(2), 147–173.PubMedCrossRef
go back to reference Ohki, K., Chung, S., Kara, P., Hübener, M., Bonhoeffer, T., & Reid, R. (2006). Highly ordered arrangement of single neurons in orientation pinwheels. Nature, 442(7105), 925–928.PubMedCrossRef Ohki, K., Chung, S., Kara, P., Hübener, M., Bonhoeffer, T., & Reid, R. (2006). Highly ordered arrangement of single neurons in orientation pinwheels. Nature, 442(7105), 925–928.PubMedCrossRef
go back to reference Okatan, M., Wilson, M., & Brown, E. (2005). Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity. Neural Computation, 17, 1927–1961.PubMedCrossRef Okatan, M., Wilson, M., & Brown, E. (2005). Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity. Neural Computation, 17, 1927–1961.PubMedCrossRef
go back to reference Paninski, L. (2004). Maximum likelihood estimation of cascade point-process neural encoding models. Network: Computation in Neural Systems, 15, 243–262.CrossRef Paninski, L. (2004). Maximum likelihood estimation of cascade point-process neural encoding models. Network: Computation in Neural Systems, 15, 243–262.CrossRef
go back to reference Paninski, L. (2005). Log-concavity results on Gaussian process methods for supervised and unsupervised learning. Advances in Neural Information Processing Systems 17. Paninski, L. (2005). Log-concavity results on Gaussian process methods for supervised and unsupervised learning. Advances in Neural Information Processing Systems 17.
go back to reference Paninski, L., Pillow, J., & Simoncelli, E. (2004). Maximum likelihood estimation of a stochastic integrate-and-fire neural model. Neural Computation, 16, 2533–2561.PubMedCrossRef Paninski, L., Pillow, J., & Simoncelli, E. (2004). Maximum likelihood estimation of a stochastic integrate-and-fire neural model. Neural Computation, 16, 2533–2561.PubMedCrossRef
go back to reference Paninski, L., Ahmadian, Y., Ferreira, D., Koyama, S., Rahnama Rad, K., Vidne, M., et al. (2010) A new look at state-space models for neural data. Journal of Computational Neuroscience, 29, 107–126.PubMedCrossRef Paninski, L., Ahmadian, Y., Ferreira, D., Koyama, S., Rahnama Rad, K., Vidne, M., et al. (2010) A new look at state-space models for neural data. Journal of Computational Neuroscience, 29, 107–126.PubMedCrossRef
go back to reference Pillow, J., & Latham, P. (2007). Neural characterization in partially observed populations of spiking neurons. In NIPS. Pillow, J., & Latham, P. (2007). Neural characterization in partially observed populations of spiking neurons. In NIPS.
go back to reference Pillow, J., Paninski, L., Uzzell, V., Simoncelli, E., & Chichilnisky, E. (2005). Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. Journal of Neuroscience, 25, 11,003–11,013.PubMedCrossRef Pillow, J., Paninski, L., Uzzell, V., Simoncelli, E., & Chichilnisky, E. (2005). Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. Journal of Neuroscience, 25, 11,003–11,013.PubMedCrossRef
go back to reference Pillow, J., Shlens, J., Paninski, L., Sher, A., Litke, A., Chichilnisky, E., et al. (2008). Spatiotemporal correlations and visual signaling in a complete neuronal population. Nature, 454, 995–999.PubMedCrossRef Pillow, J., Shlens, J., Paninski, L., Sher, A., Litke, A., Chichilnisky, E., et al. (2008). Spatiotemporal correlations and visual signaling in a complete neuronal population. Nature, 454, 995–999.PubMedCrossRef
go back to reference Pillow, J., Ahmadian, Y., & Paninski, L. (2011). Model-based decoding, information estimation, and change-point detection in multi-neuron spike trains. Neural Computation, 23, 1–45.PubMedCrossRef Pillow, J., Ahmadian, Y., & Paninski, L. (2011). Model-based decoding, information estimation, and change-point detection in multi-neuron spike trains. Neural Computation, 23, 1–45.PubMedCrossRef
go back to reference Rigat, F., de Gunst, M., & van Pelt, J. (2006). Bayesian modelling and analysis of spatio-temporal neuronal networks. Bayesian Analysis, 1, 733–764.CrossRef Rigat, F., de Gunst, M., & van Pelt, J. (2006). Bayesian modelling and analysis of spatio-temporal neuronal networks. Bayesian Analysis, 1, 733–764.CrossRef
go back to reference de la Rocha, J., Doiron, B., Shea-Brown, E., Josic, K., & Reyes, A. (2007). Correlation between neural spike trains increases with firing rate. Nature, 448, 802–806.PubMedCrossRef de la Rocha, J., Doiron, B., Shea-Brown, E., Josic, K., & Reyes, A. (2007). Correlation between neural spike trains increases with firing rate. Nature, 448, 802–806.PubMedCrossRef
go back to reference Rybicki, G., & Hummer, D. (1991). An accelerated lambda iteration method for multilevel radiative transfer, appendix b: Fast solution for the diagonal elements of the inverse of a tridiagonal matrix. Astronomy and Astrophysics, 245, 171. Rybicki, G., & Hummer, D. (1991). An accelerated lambda iteration method for multilevel radiative transfer, appendix b: Fast solution for the diagonal elements of the inverse of a tridiagonal matrix. Astronomy and Astrophysics, 245, 171.
go back to reference Schneidman, E., Bialek, W., & Berry, M. (2003). Synergy, redundancy, and independence in population codes. The Journal of Neuroscience, 23(37), 11,539.PubMed Schneidman, E., Bialek, W., & Berry, M. (2003). Synergy, redundancy, and independence in population codes. The Journal of Neuroscience, 23(37), 11,539.PubMed
go back to reference Schneidman, E., Berry, M., Segev, R., & Bialek, W. (2006). Weak pairwise correlations imply strongly correlated network states in a neural population. Nature, 440, 1007–1012.PubMedCrossRef Schneidman, E., Berry, M., Segev, R., & Bialek, W. (2006). Weak pairwise correlations imply strongly correlated network states in a neural population. Nature, 440, 1007–1012.PubMedCrossRef
go back to reference Schnitzer, M., & Meister, M. (2003). Multineuronal firing patterns in the signal from eye to brain. Neuron, 37, 499–511.PubMedCrossRef Schnitzer, M., & Meister, M. (2003). Multineuronal firing patterns in the signal from eye to brain. Neuron, 37, 499–511.PubMedCrossRef
go back to reference Segev, R., Goodhouse, J., Puchalla, J., & Berry, M. (2004). Recording spikes from a large fraction of the ganglion cells in a retinal patch. Nature Neuroscience, 7, 1154–1161.PubMedCrossRef Segev, R., Goodhouse, J., Puchalla, J., & Berry, M. (2004). Recording spikes from a large fraction of the ganglion cells in a retinal patch. Nature Neuroscience, 7, 1154–1161.PubMedCrossRef
go back to reference Shlens, J., Field, G., Gauthier, J., Grivich, M., Petrusca, D., Sher, A., et al. (2006). The structure of multi-neuron firing patterns in primate retina. The Journal of Neuroscience, 26(32), 8254.PubMedCrossRef Shlens, J., Field, G., Gauthier, J., Grivich, M., Petrusca, D., Sher, A., et al. (2006). The structure of multi-neuron firing patterns in primate retina. The Journal of Neuroscience, 26(32), 8254.PubMedCrossRef
go back to reference Smith, A., & Brown, E. (2003). Estimating a state-space model from point process observations. Neural Computation, 15, 965–991.PubMedCrossRef Smith, A., & Brown, E. (2003). Estimating a state-space model from point process observations. Neural Computation, 15, 965–991.PubMedCrossRef
go back to reference Stein, R., Weber, D., Aoyagi, Y., Prochazka, A., Wagenaar, J., Shoham, S., et al. (2004). Coding of position by simultaneously recorded sensory neurones in the cat dorsal root ganglion. The Journal of Physiology, 560(3), 883–896.PubMedCrossRef Stein, R., Weber, D., Aoyagi, Y., Prochazka, A., Wagenaar, J., Shoham, S., et al. (2004). Coding of position by simultaneously recorded sensory neurones in the cat dorsal root ganglion. The Journal of Physiology, 560(3), 883–896.PubMedCrossRef
go back to reference Stevenson, I., Rebesco, J., Miller, L., & Körding, K. (2008). Inferring functional connections between neurons. Current Opinion in Neurobiology, 18(6), 582–588.PubMedCrossRef Stevenson, I., Rebesco, J., Miller, L., & Körding, K. (2008). Inferring functional connections between neurons. Current Opinion in Neurobiology, 18(6), 582–588.PubMedCrossRef
go back to reference Stevenson, I., Rebesco, J., Hatsopoulos, N., Haga, Z., Miller, L., & Körding, K. (2009). Bayesian inference of functional connectivity and network structure from spikes. IEEE Transactions On Neural Systems And Rehabilitation Engineering, 17(3), 203.PubMedCrossRef Stevenson, I., Rebesco, J., Hatsopoulos, N., Haga, Z., Miller, L., & Körding, K. (2009). Bayesian inference of functional connectivity and network structure from spikes. IEEE Transactions On Neural Systems And Rehabilitation Engineering, 17(3), 203.PubMedCrossRef
go back to reference Trong, P., & Rieke, F. (2008). Origin of correlated activity between parasol retinal ganglion cells. Nature Neuroscience, 11(11), 1343–1351.PubMedCrossRef Trong, P., & Rieke, F. (2008). Origin of correlated activity between parasol retinal ganglion cells. Nature Neuroscience, 11(11), 1343–1351.PubMedCrossRef
go back to reference Truccolo, W., Eden, U., Fellows, M., Donoghue, J., & Brown, E. (2005). A point process framework for relating neural spiking activity to spiking history, neural ensemble and extrinsic covariate effects. Journal of Neurophysiology, 93, 1074–1089.PubMedCrossRef Truccolo, W., Eden, U., Fellows, M., Donoghue, J., & Brown, E. (2005). A point process framework for relating neural spiking activity to spiking history, neural ensemble and extrinsic covariate effects. Journal of Neurophysiology, 93, 1074–1089.PubMedCrossRef
go back to reference Usrey, W., & Reid, R. (1999). Synchronous activity in the visual system. Annual Review of Physiology, 61(1), 435–456.PubMedCrossRef Usrey, W., & Reid, R. (1999). Synchronous activity in the visual system. Annual Review of Physiology, 61(1), 435–456.PubMedCrossRef
go back to reference Utikal, K. (1997). A new method for detecting neural interconnectivity. Biological Cyberkinetics, 76, 459–470.CrossRef Utikal, K. (1997). A new method for detecting neural interconnectivity. Biological Cyberkinetics, 76, 459–470.CrossRef
go back to reference Van Pelt, J., Vajda, I., Wolters, P., Corner, M., & Ramakers, G. (2005). Dynamics and plasticity in developing neuronal networks in vitro. Progress in Brain Research, 147, 173–188.PubMed Van Pelt, J., Vajda, I., Wolters, P., Corner, M., & Ramakers, G. (2005). Dynamics and plasticity in developing neuronal networks in vitro. Progress in Brain Research, 147, 173–188.PubMed
go back to reference Vidne, M., Kulkarni, J., Ahmadian, Y., Pillow, J., Shlens, J., Chichilnisky, E., et al. (2009). Inferring functional connectivity in an ensemble of retinal ganglion cells sharing a common input. In Frontiers in systems neuroscience conference abstract: Computational and systems neuroscience 2009. Vidne, M., Kulkarni, J., Ahmadian, Y., Pillow, J., Shlens, J., Chichilnisky, E., et al. (2009). Inferring functional connectivity in an ensemble of retinal ganglion cells sharing a common input. In Frontiers in systems neuroscience conference abstract: Computational and systems neuroscience 2009.
go back to reference Warland, D., Reinagel, P., & Meister, M. (1997). Decoding visual information from a population of retinal ganglion cells. Journal of Neurophysiology, 78, 2336–2350.PubMed Warland, D., Reinagel, P., & Meister, M. (1997). Decoding visual information from a population of retinal ganglion cells. Journal of Neurophysiology, 78, 2336–2350.PubMed
go back to reference Wilson, J. M., Dombeck, D. A., Diaz-Rios, M., Harris-Warrick, R. M., & Brownstone, R. M. (2007). Two-photon calcium imaging of network activity in XFP-expressing neurons in the mouse. Journal of Neurophysiology, 97(4), 3118–3125.PubMedCrossRef Wilson, J. M., Dombeck, D. A., Diaz-Rios, M., Harris-Warrick, R. M., & Brownstone, R. M. (2007). Two-photon calcium imaging of network activity in XFP-expressing neurons in the mouse. Journal of Neurophysiology, 97(4), 3118–3125.PubMedCrossRef
go back to reference Wu, W., Kulkarni, J., Hatsopoulos, N., & Paninski, L. (2008). Neural decoding of goal-directed movements using a linear statespace model with hidden states. In Computational and systems neuroscience meeting. Wu, W., Kulkarni, J., Hatsopoulos, N., & Paninski, L. (2008). Neural decoding of goal-directed movements using a linear statespace model with hidden states. In Computational and systems neuroscience meeting.
go back to reference Yu, B., Afshar, A., Santhanam, G., Ryu, S., Shenoy, K., & Sahani, M. (2006). Extracting dynamical structure embedded in neural activity. In NIPS. Yu, B., Afshar, A., Santhanam, G., Ryu, S., Shenoy, K., & Sahani, M. (2006). Extracting dynamical structure embedded in neural activity. In NIPS.
go back to reference Yu, B., Cunningham, J., Santhanam, G., Ryu, S., Shenoy, K., & Sahani, M. (2009). Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity. In NIPS. Yu, B., Cunningham, J., Santhanam, G., Ryu, S., Shenoy, K., & Sahani, M. (2009). Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity. In NIPS.
go back to reference Zhang, K., Ginzburg, I., McNaughton, B., & Sejnowski, T. (1998). Interpreting neuronal population activity by reconstruction: Unified framework with application to hippocampal place cells. Journal of Neurophysiology, 79, 1017–1044.PubMed Zhang, K., Ginzburg, I., McNaughton, B., & Sejnowski, T. (1998). Interpreting neuronal population activity by reconstruction: Unified framework with application to hippocampal place cells. Journal of Neurophysiology, 79, 1017–1044.PubMed
Metadata
Title
Modeling the impact of common noise inputs on the network activity of retinal ganglion cells
Authors
Michael Vidne
Yashar Ahmadian
Jonathon Shlens
Jonathan W. Pillow
Jayant Kulkarni
Alan M. Litke
E. J. Chichilnisky
Eero Simoncelli
Liam Paninski
Publication date
01-08-2012
Publisher
Springer US
Published in
Journal of Computational Neuroscience / Issue 1/2012
Print ISSN: 0929-5313
Electronic ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-011-0376-2

Other articles of this Issue 1/2012

Journal of Computational Neuroscience 1/2012 Go to the issue

Premium Partner