Skip to main content
Top
Published in: Journal of Nanoparticle Research 12/2022

01-12-2022 | Research paper

Modeling the lattice expansion and contraction of nanocrystals in different interface environments

Authors: Hongchao Sheng, Tieyuan Yin, Beibei Xiao, Xiaobao Jiang

Published in: Journal of Nanoparticle Research | Issue 12/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The lattice strain ε(D) function of nanocrystals within different interface environments was modeled. For nanoparticles and nanocrystals embedded in incoherent interfaces, the lattice shrinks with the decrease of size, resulting in the reduction of ε(D). For nanostructure materials and the nanocrystals embedded in the coherent interfaces, ε(D) increases due to lattice expansion. These changes in interfacial lattice parameters depend on the sign of interfacial stress fss, i.e., the lattice contracts when fss > 0 and expands when fss < 0. In addition, we also give a criterion to judge the sign of fss, fss is negative when the surface stress f of the matrix is larger than that of the embedded nanocrystals, and vice versa. The variation in the sign of fss is also applicable to explain the thermal stability of the interface.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Xu Z, Xiao FS, Purnell SK, Alexeev O, Kawi S, Deutsch SE, Gates BC (1994) Size-dependent catalytic activity of supported metal clusters. Nature 372(6504):346–348CrossRef Xu Z, Xiao FS, Purnell SK, Alexeev O, Kawi S, Deutsch SE, Gates BC (1994) Size-dependent catalytic activity of supported metal clusters. Nature 372(6504):346–348CrossRef
2.
go back to reference Zhou SM, He LF, Zhao SY, Guo YQ, Zhao JY, Shi L (2009) Size-dependent structural and magnetic properties of LaCoO3 nanoparticles. J Phys Chem C 113(31):13522–13526CrossRef Zhou SM, He LF, Zhao SY, Guo YQ, Zhao JY, Shi L (2009) Size-dependent structural and magnetic properties of LaCoO3 nanoparticles. J Phys Chem C 113(31):13522–13526CrossRef
3.
go back to reference van Buuren T, Dinh LN, Chase LL, Siekhaus WJ, Terminello LJ (1998) Changes in the electronic properties of Si nanocrystals as a function of particle size. Phys Rev Lett 80(17):3803–3806CrossRef van Buuren T, Dinh LN, Chase LL, Siekhaus WJ, Terminello LJ (1998) Changes in the electronic properties of Si nanocrystals as a function of particle size. Phys Rev Lett 80(17):3803–3806CrossRef
4.
go back to reference Liu W, Zhao YH, Li Y, Jiang Q, Lavernia EJ (2009) Enhanced hydrogen storage on Li-dispersed carbon nanotubes. J Phys Chem C 113(5):2028–2033CrossRef Liu W, Zhao YH, Li Y, Jiang Q, Lavernia EJ (2009) Enhanced hydrogen storage on Li-dispersed carbon nanotubes. J Phys Chem C 113(5):2028–2033CrossRef
5.
go back to reference Xiao BB, Jiang XB, Yang XL, Jiang Q, Zheng F (2016) The segregation resistance of the Pt2ML/Os/Pd3Al sandwich catalyst for oxygen reduction reaction: a density functional theory study. Phys Chem Chem Phys 18(43):30174–30182CrossRef Xiao BB, Jiang XB, Yang XL, Jiang Q, Zheng F (2016) The segregation resistance of the Pt2ML/Os/Pd3Al sandwich catalyst for oxygen reduction reaction: a density functional theory study. Phys Chem Chem Phys 18(43):30174–30182CrossRef
6.
go back to reference Wang X, Su J, Chen H, Li GD, Shi ZF, Zou HF, Zou XX (2017) Ultrathin In2O3 nanosheets with uniform mesopores for highly sensitive nitric oxide detection. ACS Appl Mater Inter 9(19):16335–16342CrossRef Wang X, Su J, Chen H, Li GD, Shi ZF, Zou HF, Zou XX (2017) Ultrathin In2O3 nanosheets with uniform mesopores for highly sensitive nitric oxide detection. ACS Appl Mater Inter 9(19):16335–16342CrossRef
7.
go back to reference Mays CW, Vermaak JS, Kuhlmann-Wilsdorf D (1968) On surface stress and surface tension: II. Determination of the surface stress of gold. Surf Sci 12(2):134–140CrossRef Mays CW, Vermaak JS, Kuhlmann-Wilsdorf D (1968) On surface stress and surface tension: II. Determination of the surface stress of gold. Surf Sci 12(2):134–140CrossRef
8.
go back to reference Wasserman HJ, Vermaak JS (1970) On the determination of a lattice contraction in very small silver particles. Surf Sci 22(1):164–172CrossRef Wasserman HJ, Vermaak JS (1970) On the determination of a lattice contraction in very small silver particles. Surf Sci 22(1):164–172CrossRef
9.
go back to reference Wasserman HJ, Vermaak JS (1972) On the determination of the surface stress of copper and platinum. Surf Sci 32(1):168–174CrossRef Wasserman HJ, Vermaak JS (1972) On the determination of the surface stress of copper and platinum. Surf Sci 32(1):168–174CrossRef
10.
go back to reference Montano PA, Schulze W, Tesche B, Shenoy GK, Morrison TI (1984) Extended X-ray-absorption fine-structure study of Ag particles isolated in solid argon. Phys Rev B 30(2):672–677CrossRef Montano PA, Schulze W, Tesche B, Shenoy GK, Morrison TI (1984) Extended X-ray-absorption fine-structure study of Ag particles isolated in solid argon. Phys Rev B 30(2):672–677CrossRef
11.
go back to reference Montano PA, Zhao J, Ramanathan M, Shenoy GK, Schulze W, Urban J (1989) Structure of silver microclusters. Chem Phys Lett 164(2):126–130CrossRef Montano PA, Zhao J, Ramanathan M, Shenoy GK, Schulze W, Urban J (1989) Structure of silver microclusters. Chem Phys Lett 164(2):126–130CrossRef
12.
go back to reference Medasani B, Park YH, Vasiliev I (2007) Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticles. Phys Rev B 75(23):235436CrossRef Medasani B, Park YH, Vasiliev I (2007) Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticles. Phys Rev B 75(23):235436CrossRef
13.
go back to reference Solliard C, Flueli M (1985) Surface stress and size effect on the lattice parameter in small particles of gold and platinum. Surf Sci 156:487–494CrossRef Solliard C, Flueli M (1985) Surface stress and size effect on the lattice parameter in small particles of gold and platinum. Surf Sci 156:487–494CrossRef
14.
go back to reference Liang LH, Li JC, Jiang Q (2003) Size-dependent melting depression and lattice contraction of Bi nanocrystals. Physica B 334(1):49–53CrossRef Liang LH, Li JC, Jiang Q (2003) Size-dependent melting depression and lattice contraction of Bi nanocrystals. Physica B 334(1):49–53CrossRef
15.
go back to reference Kellermann G, Craievich AF (2002) Structure and melting of Bi nanocrystals embedded in a B2O3-Na2O glass. Phys Rev B 65(13):134204CrossRef Kellermann G, Craievich AF (2002) Structure and melting of Bi nanocrystals embedded in a B2O3-Na2O glass. Phys Rev B 65(13):134204CrossRef
16.
go back to reference Yu XF, Liu X, Zhang K, Hu ZQ (1999) The lattice contraction of nanometre-sized Sn and Bi particles produced by an electrohydrodynamic technique. J Phys D: Appl Phys 11(4):937–944 Yu XF, Liu X, Zhang K, Hu ZQ (1999) The lattice contraction of nanometre-sized Sn and Bi particles produced by an electrohydrodynamic technique. J Phys D: Appl Phys 11(4):937–944
17.
go back to reference Apai G, Hamilton JF, Stohr J, Thompson A (1979) Extended X-ray-absorption fine structure of small Cu and Ni clusters: binding-energy and bond-length changes with cluster size. Phys Rev Lett 43(2):165–169CrossRef Apai G, Hamilton JF, Stohr J, Thompson A (1979) Extended X-ray-absorption fine structure of small Cu and Ni clusters: binding-energy and bond-length changes with cluster size. Phys Rev Lett 43(2):165–169CrossRef
18.
go back to reference da Silva EZ, Antonelli A (1996) Size dependence of the lattice parameter for Pd clusters: a molecular-dynamics study. Phys Rev B 54(23):17057–17060CrossRef da Silva EZ, Antonelli A (1996) Size dependence of the lattice parameter for Pd clusters: a molecular-dynamics study. Phys Rev B 54(23):17057–17060CrossRef
19.
go back to reference Lamber R, Wetjen S, Jaeger NI (1995) Size dependence of the lattice parameter of small palladium particles. Phys Rev B 51(16):10968–10971CrossRef Lamber R, Wetjen S, Jaeger NI (1995) Size dependence of the lattice parameter of small palladium particles. Phys Rev B 51(16):10968–10971CrossRef
20.
go back to reference Tsunekawa S, Ishikawa K, Li ZQ, Kawazoe Y, Kasuya A (2000) Origin of anomalous lattice expansion in oxide nanoparticles. Phys Rev Lett 85(16):3440–3443CrossRef Tsunekawa S, Ishikawa K, Li ZQ, Kawazoe Y, Kasuya A (2000) Origin of anomalous lattice expansion in oxide nanoparticles. Phys Rev Lett 85(16):3440–3443CrossRef
21.
go back to reference Nafday D, Sarkar S, Ayyub P, Saha-Dasgupta T (2018) A reduction in particle size generally causes body-centered-cubic metals to expand but face-centered-cubic metals to contract. ACS Nano 12(7):7246–7252CrossRef Nafday D, Sarkar S, Ayyub P, Saha-Dasgupta T (2018) A reduction in particle size generally causes body-centered-cubic metals to expand but face-centered-cubic metals to contract. ACS Nano 12(7):7246–7252CrossRef
22.
go back to reference Manuel DP, Péter Á, Karsten A (2012) Size-dependent lattice expansion in nanoparticles: reality or anomaly? ChemPhysChem 13(10):2443–2454CrossRef Manuel DP, Péter Á, Karsten A (2012) Size-dependent lattice expansion in nanoparticles: reality or anomaly? ChemPhysChem 13(10):2443–2454CrossRef
23.
go back to reference Qin W, Szpunar JA (2005) Origin of lattice strain in nanocrystalline materials. Phil Mag Lett 85(12):649–656CrossRef Qin W, Szpunar JA (2005) Origin of lattice strain in nanocrystalline materials. Phil Mag Lett 85(12):649–656CrossRef
24.
go back to reference Shen TD, Zhang JZ, Zhao YS (2008) What is the theoretical density of a nanocrystalline material? Acta Mater 56(14):3663–3671CrossRef Shen TD, Zhang JZ, Zhao YS (2008) What is the theoretical density of a nanocrystalline material? Acta Mater 56(14):3663–3671CrossRef
25.
go back to reference Oehl N, Michalowski P, Knipper M, Kolny-Olesiak J, Plaggenborg T, Parisi J (2014) Size-dependent strain of Sn/SnOx core/shell nanoparticles. J Phys Chem C 118(51):30238–30243CrossRef Oehl N, Michalowski P, Knipper M, Kolny-Olesiak J, Plaggenborg T, Parisi J (2014) Size-dependent strain of Sn/SnOx core/shell nanoparticles. J Phys Chem C 118(51):30238–30243CrossRef
26.
go back to reference Lewin E, Råsander M, Klintenberg M, Bergman A, Eriksson O, Jansson U (2010) Design of the lattice parameter of embedded nanoparticles. Chem Phys Lett 496(1):95–99CrossRef Lewin E, Råsander M, Klintenberg M, Bergman A, Eriksson O, Jansson U (2010) Design of the lattice parameter of embedded nanoparticles. Chem Phys Lett 496(1):95–99CrossRef
27.
go back to reference Zhong J (2000) Thesis, Institute of Metal Research, Chinese Academy of Sciences Zhong J (2000) Thesis, Institute of Metal Research, Chinese Academy of Sciences
28.
go back to reference Jiang Q, Zhang Z, Li JC (2000) Melting thermodynamics of nanocrystals embedded in a matrix. Acta Mater 48(20):4791–4795CrossRef Jiang Q, Zhang Z, Li JC (2000) Melting thermodynamics of nanocrystals embedded in a matrix. Acta Mater 48(20):4791–4795CrossRef
29.
go back to reference Jiang XB, Xiao BB, Lan R, Gu XY, Sheng HC, Yang HY, Zhang XH (2018) Definition of interface parameter and its application on estimating the thermal stability of metallic nanoparticles. J Phys Chem C 122(45):26260–26266CrossRef Jiang XB, Xiao BB, Lan R, Gu XY, Sheng HC, Yang HY, Zhang XH (2018) Definition of interface parameter and its application on estimating the thermal stability of metallic nanoparticles. J Phys Chem C 122(45):26260–26266CrossRef
30.
go back to reference Buttard D, Dolino G, Faivre C, Halimaoui A, Comin F, Formoso V, Ortega L (1999) Porous silicon strain during in situ ultrahigh vacuum thermal annealing. J Appl Phys 85(10):7105–7111CrossRef Buttard D, Dolino G, Faivre C, Halimaoui A, Comin F, Formoso V, Ortega L (1999) Porous silicon strain during in situ ultrahigh vacuum thermal annealing. J Appl Phys 85(10):7105–7111CrossRef
31.
go back to reference Stoneham AM (1999) Comment on ‘The lattice contraction of nanometre-sized Sn and Bi particles produced by an electrohydrodynamic technique’. J Phys D: Appl Phys 11(42):8351–8352 Stoneham AM (1999) Comment on ‘The lattice contraction of nanometre-sized Sn and Bi particles produced by an electrohydrodynamic technique’. J Phys D: Appl Phys 11(42):8351–8352
32.
go back to reference Jiang Q, Liang LH, Zhao DS (2001) Lattice contraction and surface stress of fcc nanocrystals. J Phys Chem B 105(27):6275–6277CrossRef Jiang Q, Liang LH, Zhao DS (2001) Lattice contraction and surface stress of fcc nanocrystals. J Phys Chem B 105(27):6275–6277CrossRef
33.
go back to reference Ouyang G, Zhu WG, Sun CQ, Zhu ZM, Liao SZ (2010) Atomistic origin of lattice strain on stiffness of nanoparticles. Phys Chem Chem Phys 12(7):1543–1549CrossRef Ouyang G, Zhu WG, Sun CQ, Zhu ZM, Liao SZ (2010) Atomistic origin of lattice strain on stiffness of nanoparticles. Phys Chem Chem Phys 12(7):1543–1549CrossRef
34.
go back to reference Sun CQ (2014) Skin bond relaxation and nanosolid densification. Springer, Singapore, pp 223–238CrossRef Sun CQ (2014) Skin bond relaxation and nanosolid densification. Springer, Singapore, pp 223–238CrossRef
35.
go back to reference Sun CQ (2007) Size dependence of nanostructures: impact of bond order deficiency. Prog Solid State Ch 35(1):1–159CrossRef Sun CQ (2007) Size dependence of nanostructures: impact of bond order deficiency. Prog Solid State Ch 35(1):1–159CrossRef
36.
go back to reference Omar MS (2013) Critical size structure parameters for Au nanoparticles. Adv Mater Res 626:976–979CrossRef Omar MS (2013) Critical size structure parameters for Au nanoparticles. Adv Mater Res 626:976–979CrossRef
37.
go back to reference Omar MS (2016) Structural and thermal properties of elementary and binary tetrahedral semiconductor nanoparticles. Int J Thermophys 37:11CrossRef Omar MS (2016) Structural and thermal properties of elementary and binary tetrahedral semiconductor nanoparticles. Int J Thermophys 37:11CrossRef
38.
go back to reference Omar MS (2012) Models for mean bonding length, melting point and lattice thermal expansion of nanoparticle materials. Mater Res Bull 47(11):3518–3522CrossRef Omar MS (2012) Models for mean bonding length, melting point and lattice thermal expansion of nanoparticle materials. Mater Res Bull 47(11):3518–3522CrossRef
39.
go back to reference Abdullah BJ, Omar MS, Jiang Q (2018) Size dependence of the bulk modulus of Si nanocrystals. Sādhanā 43:174CrossRef Abdullah BJ, Omar MS, Jiang Q (2018) Size dependence of the bulk modulus of Si nanocrystals. Sādhanā 43:174CrossRef
40.
go back to reference Omar MS, Taha HT (2009) Lattice dislocation in Si nanowires. Physica B 404(23–24):5203–5206CrossRef Omar MS, Taha HT (2009) Lattice dislocation in Si nanowires. Physica B 404(23–24):5203–5206CrossRef
41.
go back to reference Zhu YF, Zheng WT, Jiang Q (2009) Modeling lattice expansion and cohesive energy of nanostructured materials. Appl Phys Lett 95(8):083110CrossRef Zhu YF, Zheng WT, Jiang Q (2009) Modeling lattice expansion and cohesive energy of nanostructured materials. Appl Phys Lett 95(8):083110CrossRef
42.
go back to reference Jiang Q, Zhao DS, Zhao M (2001) Size-dependent interface energy and related interface stress. Acta Mater 49(16):3143–3147CrossRef Jiang Q, Zhao DS, Zhao M (2001) Size-dependent interface energy and related interface stress. Acta Mater 49(16):3143–3147CrossRef
43.
go back to reference Sheng HC, Gao R, Xiao BB, Jiang XB (2021) Prediction of the surface and interface stress of metallic elements. Vacuum 192:110428CrossRef Sheng HC, Gao R, Xiao BB, Jiang XB (2021) Prediction of the surface and interface stress of metallic elements. Vacuum 192:110428CrossRef
44.
go back to reference Jiang XB, Xiao BB, Lan R, Gu XY, Zhang XH, Sheng HC (2019) Estimation of the solid-liquid interface energy for metal elements. Comp Mater Sci 170:109174CrossRef Jiang XB, Xiao BB, Lan R, Gu XY, Zhang XH, Sheng HC (2019) Estimation of the solid-liquid interface energy for metal elements. Comp Mater Sci 170:109174CrossRef
45.
go back to reference Yang CC, Jiang Q (2005) Size and interface effects on critical temperatures of ferromagnetic, ferroelectric and superconductive nanocrystals. Acta Mater 53(11):3305–3311CrossRef Yang CC, Jiang Q (2005) Size and interface effects on critical temperatures of ferromagnetic, ferroelectric and superconductive nanocrystals. Acta Mater 53(11):3305–3311CrossRef
46.
go back to reference Lang XY, Zheng WT, Jiang Q (2006) Size and interface effects on ferromagnetic and antiferromagnetic transition temperatures. Phys Rev B 73(22):224444CrossRef Lang XY, Zheng WT, Jiang Q (2006) Size and interface effects on ferromagnetic and antiferromagnetic transition temperatures. Phys Rev B 73(22):224444CrossRef
47.
go back to reference Li XL (2014) Modeling the size- and shape-dependent cohesive energy of nanomaterials and its applications in heterogeneous systems. Nanotechnology 25(18):185702CrossRef Li XL (2014) Modeling the size- and shape-dependent cohesive energy of nanomaterials and its applications in heterogeneous systems. Nanotechnology 25(18):185702CrossRef
48.
go back to reference Zhao M, Yao X, Zhu YF, Jiang Q (2018) Effect of the interface energy on the pressure-induced superheating of metallic nanoparticles embedded in a matrix. Scripta Mater 142:23–27CrossRef Zhao M, Yao X, Zhu YF, Jiang Q (2018) Effect of the interface energy on the pressure-induced superheating of metallic nanoparticles embedded in a matrix. Scripta Mater 142:23–27CrossRef
49.
go back to reference Wang YR, Tang K, Yao X, Jin B, Zhu YF, Jiang Q (2018) Interface effect on the cohesive energy of nanostructured materials and substrate-supported nanofilms. Dalton 47(14):4856–4865CrossRef Wang YR, Tang K, Yao X, Jin B, Zhu YF, Jiang Q (2018) Interface effect on the cohesive energy of nanostructured materials and substrate-supported nanofilms. Dalton 47(14):4856–4865CrossRef
50.
go back to reference Zhao M, Jiang Q (2004) Melting and surface melting of low-dimensional In crystals. Solid State Commun 130(1):37–39CrossRef Zhao M, Jiang Q (2004) Melting and surface melting of low-dimensional In crystals. Solid State Commun 130(1):37–39CrossRef
51.
go back to reference Jiang Q, Liang LH, Li JC (2003) Thermodynamic superheating of low-dimensional metals embedded in matrix. Vacuum 72(3):249–255CrossRef Jiang Q, Liang LH, Li JC (2003) Thermodynamic superheating of low-dimensional metals embedded in matrix. Vacuum 72(3):249–255CrossRef
52.
go back to reference Banerjee R, Sperling EA, Thompson GB, Fraser HL, Bose S, Ayyub P (2003) Lattice expansion in nanocrystalline niobium thin films. Appl Phys Lett 82(24):4250–4252CrossRef Banerjee R, Sperling EA, Thompson GB, Fraser HL, Bose S, Ayyub P (2003) Lattice expansion in nanocrystalline niobium thin films. Appl Phys Lett 82(24):4250–4252CrossRef
53.
go back to reference Qian LH, Wang SC, Zhao YH, Lu K (2002) Microstrain effect on thermal properties of nanocrystalline Cu. Acta Mater 50(13):3425–3434CrossRef Qian LH, Wang SC, Zhao YH, Lu K (2002) Microstrain effect on thermal properties of nanocrystalline Cu. Acta Mater 50(13):3425–3434CrossRef
54.
go back to reference Ohshima K, Yatsuya S, Harada J (1981) Characterization of ultra fine palladium particles with the mean size of 20 Å by X-ray diffraction. J Phys Soc Jpn 50:3071–3074CrossRef Ohshima K, Yatsuya S, Harada J (1981) Characterization of ultra fine palladium particles with the mean size of 20 Å by X-ray diffraction. J Phys Soc Jpn 50:3071–3074CrossRef
Metadata
Title
Modeling the lattice expansion and contraction of nanocrystals in different interface environments
Authors
Hongchao Sheng
Tieyuan Yin
Beibei Xiao
Xiaobao Jiang
Publication date
01-12-2022
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 12/2022
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-022-05634-w

Other articles of this Issue 12/2022

Journal of Nanoparticle Research 12/2022 Go to the issue

Premium Partners