Skip to main content
Top

2018 | OriginalPaper | Chapter

13. Modeling the Low-Carbon Transformation in Europe: Developing Paths for the European Energy System Until 2050

Authors : Konstantin Löffler, Thorsten Burandt, Karlo Hainsch, Claudia Kemfert, Pao-Yu Oei, Christian von Hirschhausen

Published in: Energiewende "Made in Germany"

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Long-term scenarios of the low-carbon energy transformation in Europe are quite diverse. In this chapter, we provide a detailed discussion of scenarios leading to a far-reaching decarbonization of the European energy system to 2050. We use an updated version of the Global Energy System Model (GENeSYS-MOD), developed by our group to study various low-carbon transformation processes at global, continental, or national level. The modeling results suggest that a largely renewables-based energy mix is the lowest cost solution to the decarbonization challenge, and that the distribution of the carbon budget has a strong impact on the results. Our model calculations thus confirm bottom-up results obtained for the electricity sector, in Chap. 10, suggesting that the solution to the carbon challenge is the increased use of renewable energy sources, mainly solar and wind. Section 13.2 provides a non-technical description of the model, the Global Energy System Model (GENeSYS-MOD); it is an energy system model developed recently for scenario analysis, providing a high level of technical detail, and the integrated coverage of all sectors and fuels. Section 13.3 presents different GHG emissions pathways, related to a 1.5° increase of the global mean temperature, a 2° increase, and a business-as-usual (BAU) case with a much larger emission budget. For each scenario, we distributed the emission budget to countries according to different criteria, i.e. free distribution, share of European GDP, share of current emissions, or share of population. Section 13.4 presents model results, suggesting that renewable technologies gradually replace fossil-fuel generation, starting in the power sector: By 2040, almost all electricity generation is provided by a combination of PV, wind, and hydropower, using significant amounts of storage. The pathways for transportation and heat are more diverse, but they follow a similar general trend. The commitment for a 2 °C target only comes with a cost increase of about 1–2% (dependent on the emission share) compared to a business-as-usual-pathway, while yielding reduced emissions of about 25%. The different regions and demand sectors each experience different decarbonization pathways, depending on their potentials, political settings, and technology options. Section 13.5 concludes that with already known technologies, even ambitions climate targets can be met in Europe, at moderate costs, as long as strict carbon constraints are applied.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
New technologies for electricity-based road freight transport: overhead-powered trucks, battery-electric trucks, plug-in hybrid electric trucks.
 
2
Fraunhofer ISI, Fraunhofer ISE, Institute for Resource Efficiency and Energy Strategies, Observ’ER, Technical University Vienna, Energy Economics Group, and TEP Energy. 2016. “Mapping and Analyses of the Current and Future (2020–2030) Heating/Cooling Fuel Deployment (Fossil/Renewables).”
 
3
The regional potential has been assumed to be evenly distributed across the categories, as per Gerbaulet and Lorenz (2017).
 
4
The value for Portugal & Spain is the average of the other values, since no reliable source for a specific value was found.
 
5
Only countries that currently mine hard coal are assumed to have this price advantage. Countries that have reserves, but do not currently mine hard coal, have their price increased by 5% compared to the market price to avoid the unrealistic domestic production in such cases.
 
6
The functionality of these tags has not been changed from the original OSeMOSYS version and is documented in Howells et al. (2011).
 
7
Kartha, Sivan. 2013. “The Three Salient Global Mitigation Pathways Assessed in Light of the IPCC Carbon Budgets.” Discussion Brief. Stockholm Environment Institute.
 
8
See http://​www.​globalcarbonatla​s.​org/​en/​CO2-emissions for further information. Data is based on Boden et al. (2017), UNFCC (2017), and BP (2017).
 
9
Instead of the previous six time slices.
 
Literature
go back to reference Boden, T., R. Andres, and G. Marland. 2017. Global, Regional, and National Fossil-Fuel CO 2 Emissions (1751–2014) (V. 2017). Oak Ridge, USA: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory. Boden, T., R. Andres, and G. Marland. 2017. Global, Regional, and National Fossil-Fuel CO 2 Emissions (1751–2014) (V. 2017). Oak Ridge, USA: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory.
go back to reference Bogdanov, D., and Christian Breyer. 2016. Eurasian Super Grid for 100% Renewable Energy Power Supply: Generation and Storage Technologies in the Cost Optimal Mix. Daegu, South Korea: International Solar Energy Society. Bogdanov, D., and Christian Breyer. 2016. Eurasian Super Grid for 100% Renewable Energy Power Supply: Generation and Storage Technologies in the Cost Optimal Mix. Daegu, South Korea: International Solar Energy Society.
go back to reference BP. 2017. BP Statistical Review of World Energy – June 2017. 66th ed. London, UK: British Petroleum. BP. 2017. BP Statistical Review of World Energy – June 2017. 66th ed. London, UK: British Petroleum.
go back to reference Burandt, Thorsten, Karlo Hainsch, Konstantin Löffler, Heinrich Böing, Jenny Erbe, Ivo-Valentin Kafemann, Mario Kendziorski, et al. 2016. Designing a Global Energy System Based on 100% Renewables for 2050. Student Research Project. Berlin, Germany: Technische Universität Berlin. Burandt, Thorsten, Karlo Hainsch, Konstantin Löffler, Heinrich Böing, Jenny Erbe, Ivo-Valentin Kafemann, Mario Kendziorski, et al. 2016. Designing a Global Energy System Based on 100% Renewables for 2050. Student Research Project. Berlin, Germany: Technische Universität Berlin.
go back to reference Bussar, C., P. Stöcker, Z. Cai, L. Moraes, R. Alvarez, H. Chen, C. Breuer, A. Moser, M. Leuthold, and D. U. Sauer. 2015. Large-Scale Integration of Renewable Energies and Impact on Storage Demand in a European Renewable Power System of 2050. Energy Procedia, 9th International renewable energy storage conference, IRES 2015, 73 (Supplement C): 145–153.CrossRef Bussar, C., P. Stöcker, Z. Cai, L. Moraes, R. Alvarez, H. Chen, C. Breuer, A. Moser, M. Leuthold, and D. U. Sauer. 2015. Large-Scale Integration of Renewable Energies and Impact on Storage Demand in a European Renewable Power System of 2050. Energy Procedia, 9th International renewable energy storage conference, IRES 2015, 73 (Supplement C): 145–153.CrossRef
go back to reference Clack, Christopher T.M., Staffan A. Qvist, Jay Apt, Morgan Bazilian, Adam R. Brandt, Ken Caldeira, Steven J. Davis, et al. 2017. Evaluation of a proposal for reliable low-cost grid power with 100% wind, water, and solar. Proceedings of the National Academy of Sciences 114 (26): 6722–6727.CrossRef Clack, Christopher T.M., Staffan A. Qvist, Jay Apt, Morgan Bazilian, Adam R. Brandt, Ken Caldeira, Steven J. Davis, et al. 2017. Evaluation of a proposal for reliable low-cost grid power with 100% wind, water, and solar. Proceedings of the National Academy of Sciences 114 (26): 6722–6727.CrossRef
go back to reference Czisch, Gregor. 2007. Joint Renewable Electricity Supply for Europe and Its Neighbours. Institute for Electrical Engineering, University of Kassel. Czisch, Gregor. 2007. Joint Renewable Electricity Supply for Europe and Its Neighbours. Institute for Electrical Engineering, University of Kassel.
go back to reference ENTSO-E. 2013. Scenario Outlook & Adequacy Forecast (SO&AF) 2013–2030. Brussels, Belgium: ENTSO-E. ENTSO-E. 2013. Scenario Outlook & Adequacy Forecast (SO&AF) 2013–2030. Brussels, Belgium: ENTSO-E.
go back to reference Farfan, Javier, and Christian Breyer. 2017. Structural changes of global power generation capacity towards sustainability and the risk of stranded investments supported by a sustainability indicator. Journal of Cleaner Production 141 (January): 370–384.CrossRef Farfan, Javier, and Christian Breyer. 2017. Structural changes of global power generation capacity towards sustainability and the risk of stranded investments supported by a sustainability indicator. Journal of Cleaner Production 141 (January): 370–384.CrossRef
go back to reference Foster, Vivien, and Daron Bedrosyan. 2014. Understanding CO 2 Emissions from the Global Energy Sector. Washington, DC: The World Bank. Foster, Vivien, and Daron Bedrosyan. 2014. Understanding CO 2 Emissions from the Global Energy Sector. Washington, DC: The World Bank.
go back to reference Fraunhofer ISI, Fraunhofer ISE, Institute for Resource Efficiency and Energy Strategies (IREES), Observ’ER, Technical University Vienna - Energy Economics Group, TEP Energy. 2016. Mapping and analyses of the current and future (2020–2030) heating/cooling fuel deployment (fossil/renewables) (Report). Karlsruhe: European Commission Directorate - General for Energy. Fraunhofer ISI, Fraunhofer ISE, Institute for Resource Efficiency and Energy Strategies (IREES), Observ’ER, Technical University Vienna - Energy Economics Group, TEP Energy. 2016. Mapping and analyses of the current and future (2020–2030) heating/cooling fuel deployment (fossil/renewables) (Report). Karlsruhe: European Commission Directorate - General for Energy.
go back to reference Gerbaulet, Clemens, and Casimir Lorenz. 2017. dynELMOD: a dynamic investment and dispatch model for the future European electricity market. Data Documentation No. 88. DIW Berlin: Berlin, Germany. Gerbaulet, Clemens, and Casimir Lorenz. 2017. dynELMOD: a dynamic investment and dispatch model for the future European electricity market. Data Documentation No. 88. DIW Berlin: Berlin, Germany.
go back to reference Gerbaulet, Clemens, Christian von Hirschhausen, Claudia Kemfert, Casimir Lorenz, and Pao-Yu Oei. 2017. Scenarios for Decarbonizing the European Electricity Sector. In 2017 14th international conference on the European Energy Market (EEM). Gerbaulet, Clemens, Christian von Hirschhausen, Claudia Kemfert, Casimir Lorenz, and Pao-Yu Oei. 2017. Scenarios for Decarbonizing the European Electricity Sector. In 2017 14th international conference on the European Energy Market (EEM).
go back to reference Hainsch, Karlo, Thorsten Burandt, Claudia Kemfert, Konstantin Löffler, Pao-Yu Oei, and Christian von Hirschhausen. 2018. Emission pathways towards a low-carbon energy system for Europe – a model-based analysis of decarbonization scenarios. DIW Berlin Discussion Paper no. 1745. Hainsch, Karlo, Thorsten Burandt, Claudia Kemfert, Konstantin Löffler, Pao-Yu Oei, and Christian von Hirschhausen. 2018. Emission pathways towards a low-carbon energy system for Europe – a model-based analysis of decarbonization scenarios. DIW Berlin Discussion Paper no. 1745.
go back to reference Hosenfeld, Hans, Alexandra Krumm, Linus Lawrenz, Luise Lorenz, Benjamin Wechmann, Bobby Xiong, Thorsten Burandt, et al. 2017. Designing an Energy Model for India and China for the Low-Carbon Transformation to 2050 – Assessing National Policies, Grids, and Modeling Regional Scenarios. Berlin, Germany: Technische Universität Berlin. Hosenfeld, Hans, Alexandra Krumm, Linus Lawrenz, Luise Lorenz, Benjamin Wechmann, Bobby Xiong, Thorsten Burandt, et al. 2017. Designing an Energy Model for India and China for the Low-Carbon Transformation to 2050 – Assessing National Policies, Grids, and Modeling Regional Scenarios. Berlin, Germany: Technische Universität Berlin.
go back to reference Howells, Mark, Holger Rogner, Neil Strachan, Charles Heaps, Hillard Huntington, Socrates Kypreos, Alison Hughes, et al. 2011. OSeMOSYS: the open source energy modeling system: an introduction to its ethos, structure and development. Energy Policy, Sustainability of Biofuels 39 (10): 5850–5870. Howells, Mark, Holger Rogner, Neil Strachan, Charles Heaps, Hillard Huntington, Socrates Kypreos, Alison Hughes, et al. 2011. OSeMOSYS: the open source energy modeling system: an introduction to its ethos, structure and development. Energy Policy, Sustainability of Biofuels 39 (10): 5850–5870.
go back to reference IEA. 2015. World Energy Outlook Special Report 2015: Energy and Climate Change. Paris, France: OECD. IEA. 2015. World Energy Outlook Special Report 2015: Energy and Climate Change. Paris, France: OECD.
go back to reference ———. 2016. World Energy Outlook 2016. Paris, France: OECD. ———. 2016. World Energy Outlook 2016. Paris, France: OECD.
go back to reference IPCC. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC. IPCC. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC.
go back to reference Jacobson, Mark Z., Mark A. Delucchi, Zack A.F. Bauer, Savannah C. Goodman, William E. Chapman, Mary A. Cameron, Cedric Bozonnat, et al. 2017a. 100% clean and renewable wind, water, and sunlight all-sector energy roadmaps for 139 Countries of the World. Joule 1 (1): 108–121.CrossRef Jacobson, Mark Z., Mark A. Delucchi, Zack A.F. Bauer, Savannah C. Goodman, William E. Chapman, Mary A. Cameron, Cedric Bozonnat, et al. 2017a. 100% clean and renewable wind, water, and sunlight all-sector energy roadmaps for 139 Countries of the World. Joule 1 (1): 108–121.CrossRef
go back to reference Jacobson, Mark Z., Mark A. Delucchi, Mary A. Cameron, and Bethany A. Frew. 2017b. The United States can keep the grid stable at low cost with 100% clean, renewable energy in all sectors despite inaccurate claims. Proceedings of the National Academy of Sciences 114 (26): E5021–E5023.CrossRef Jacobson, Mark Z., Mark A. Delucchi, Mary A. Cameron, and Bethany A. Frew. 2017b. The United States can keep the grid stable at low cost with 100% clean, renewable energy in all sectors despite inaccurate claims. Proceedings of the National Academy of Sciences 114 (26): E5021–E5023.CrossRef
go back to reference Löffler, Konstantin, Karlo Hainsch, Thorsten Burandt, Pao-Yu Oei, Claudia Kemfert, and Christian von Hirschhausen. 2017a. Designing a model for the global energy system—GENeSYS-MOD: an application of the Open-Source Energy Modeling System (OSeMOSYS). Energies 10 (10): 1468.CrossRef Löffler, Konstantin, Karlo Hainsch, Thorsten Burandt, Pao-Yu Oei, Claudia Kemfert, and Christian von Hirschhausen. 2017a. Designing a model for the global energy system—GENeSYS-MOD: an application of the Open-Source Energy Modeling System (OSeMOSYS). Energies 10 (10): 1468.CrossRef
go back to reference Löffler, Konstantin, Karlo Hainsch, Thorsten Burandt, Pao-Yu Oei, and Christian von Hirschhausen. 2017b. Decarbonizing the Indian energy system until 2050: an application of the open source energy modeling system OSeMOSYS. IAEE Energy Forum (Singapore Issue 2017): 51–52. Löffler, Konstantin, Karlo Hainsch, Thorsten Burandt, Pao-Yu Oei, and Christian von Hirschhausen. 2017b. Decarbonizing the Indian energy system until 2050: an application of the open source energy modeling system OSeMOSYS. IAEE Energy Forum (Singapore Issue 2017): 51–52.
go back to reference McMichael, Anthony J., Rosalie E. Woodruff, and Simon Hales. 2006. Climate change and human health: present and future risks. The Lancet 367 (9513): 859–869.CrossRef McMichael, Anthony J., Rosalie E. Woodruff, and Simon Hales. 2006. Climate change and human health: present and future risks. The Lancet 367 (9513): 859–869.CrossRef
go back to reference Oei, Pao-Yu, Johannes Herold, and Roman Mendelevitch. 2014. Modeling a carbon capture, transport, and storage infrastructure for Europe. Environmental Modeling & Assessment 19 (6): 515–531.CrossRef Oei, Pao-Yu, Johannes Herold, and Roman Mendelevitch. 2014. Modeling a carbon capture, transport, and storage infrastructure for Europe. Environmental Modeling & Assessment 19 (6): 515–531.CrossRef
go back to reference Pfenninger, Stefan, and Iain Staffell. 2016. Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data. Energy 114 (November): 1251–1265.CrossRef Pfenninger, Stefan, and Iain Staffell. 2016. Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data. Energy 114 (November): 1251–1265.CrossRef
go back to reference Plessmann, G., and P. Blechinger. 2016. How to Meet EU GHG Emission Reduction Targets? A Model Based Decarbonization Pathway for Europe’s Electricity Supply System until 2050. Energy Strategy Reviews. Berlin, Germany: Reiner Lemoine Institute. Plessmann, G., and P. Blechinger. 2016. How to Meet EU GHG Emission Reduction Targets? A Model Based Decarbonization Pathway for Europe’s Electricity Supply System until 2050. Energy Strategy Reviews. Berlin, Germany: Reiner Lemoine Institute.
go back to reference PwC. 2011. Moving Towards 100% Renewable Electricity in Europe and North Africa by 2050. London, UK: PwC, PIK and IIASA. PwC. 2011. Moving Towards 100% Renewable Electricity in Europe and North Africa by 2050. London, UK: PwC, PIK and IIASA.
go back to reference Ram, Manish, Dmitrii Bogdanov, Arman Aghahosseini, Solomon Oyewo, Ashish Gulagi, Michael Child, and Christian Breyer. 2017. Global Energy System Based on 100% Renewable Energy – Power Sector. Lappeenranta, Finland and Berlin, Germany: Lappeenranta University of Technology (LUT) and Energy Watch Group. Ram, Manish, Dmitrii Bogdanov, Arman Aghahosseini, Solomon Oyewo, Ashish Gulagi, Michael Child, and Christian Breyer. 2017. Global Energy System Based on 100% Renewable Energy – Power Sector. Lappeenranta, Finland and Berlin, Germany: Lappeenranta University of Technology (LUT) and Energy Watch Group.
go back to reference Rasmussen, Morten Grud, Gorm Bruun Andresen, and Martin Greiner. 2012. Storage and balancing synergies in a fully or highly renewable pan-european power system. Energy Policy, Renewable Energy in China 51 (Supplement C): 642–651.CrossRef Rasmussen, Morten Grud, Gorm Bruun Andresen, and Martin Greiner. 2012. Storage and balancing synergies in a fully or highly renewable pan-european power system. Energy Policy, Renewable Energy in China 51 (Supplement C): 642–651.CrossRef
go back to reference Scholz, Ivonne. 2012. Renewable Energy Based Electricity Supply at Low Cost – Development of the REMix Model and Application for Europe. Stuttgart, Germany: Universität Stuttgart. Scholz, Ivonne. 2012. Renewable Energy Based Electricity Supply at Low Cost – Development of the REMix Model and Application for Europe. Stuttgart, Germany: Universität Stuttgart.
go back to reference The World Bank. 2017. World Bank Open Data. Free and Open Access to Global Development Data. 2017. The World Bank. 2017. World Bank Open Data. Free and Open Access to Global Development Data. 2017.
go back to reference Tröndle, Tobias Wolfgang. 2015. Development of a Global Electricity Supply Model and Investigation of Electricity Supply by Renewable Energies with a Focus on Energy Storage Requirements for Europe. Dissertation, University of Heidelberg, Heidelberg, Germany. Tröndle, Tobias Wolfgang. 2015. Development of a Global Electricity Supply Model and Investigation of Electricity Supply by Renewable Energies with a Focus on Energy Storage Requirements for Europe. Dissertation, University of Heidelberg, Heidelberg, Germany.
go back to reference UNFCC. 2017. National Inventory Submissions 2017. Bonn, Germany: United Nations Framework Convention on Climate Change. UNFCC. 2017. National Inventory Submissions 2017. Bonn, Germany: United Nations Framework Convention on Climate Change.
go back to reference WBGU. 2009. Kassensturz für den Weltklimavertrag – der Budgetansatz: Sondergutachten. Berlin: Wissenschaftlicher Beirat Globale Umweltveränderungen. WBGU. 2009. Kassensturz für den Weltklimavertrag – der Budgetansatz: Sondergutachten. Berlin: Wissenschaftlicher Beirat Globale Umweltveränderungen.
go back to reference Welsch, M., M. Howells, M. Bazilian, J.F. DeCarolis, S. Hermann, and H.H. Rogner. 2012. Modelling elements of smart grids – Enhancing the OSeMOSYS (Open Source Energy Modelling System) Code. Energy, Energy and Exergy Modelling of Advance Energy Systems 46 (1): 337–350. Welsch, M., M. Howells, M. Bazilian, J.F. DeCarolis, S. Hermann, and H.H. Rogner. 2012. Modelling elements of smart grids – Enhancing the OSeMOSYS (Open Source Energy Modelling System) Code. Energy, Energy and Exergy Modelling of Advance Energy Systems 46 (1): 337–350.
go back to reference Zerrahn, Alexander, and Wolf-Peter Schill. 2016. Long-Run Power Storage Requirements for High Shares of Renewables: Review and a New Model. Renewable and Sustainable Energy Reviews. Berlin, Germany: DIW. Zerrahn, Alexander, and Wolf-Peter Schill. 2016. Long-Run Power Storage Requirements for High Shares of Renewables: Review and a New Model. Renewable and Sustainable Energy Reviews. Berlin, Germany: DIW.
Metadata
Title
Modeling the Low-Carbon Transformation in Europe: Developing Paths for the European Energy System Until 2050
Authors
Konstantin Löffler
Thorsten Burandt
Karlo Hainsch
Claudia Kemfert
Pao-Yu Oei
Christian von Hirschhausen
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-95126-3_13