Skip to main content
Top
Published in:
Cover of the book

2021 | OriginalPaper | Chapter

Modelling and Simulation of Photovoltaic Thermal Cooling System Using Different Types of Nanofluids

Authors : Sanjeev Jakhar, Mukul Kant Paliwal, Atul Kumar

Published in: Advances in Air Conditioning and Refrigeration

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Solar technologies like flat plate solar collectors are being widely used for low-grade thermal energy for household purposes. These days, photovoltaic thermal (PV/T) collectors are also gaining momentum as source of combined heat and electric power. Commonly used base fluid in PV/T collector is water which have low thermal conductance, and thus, addition of nanoparticles in base fluid will lead to the enhancement in overall thermal conductance. Keeping this as main focus, a research has been carried out to evaluate the performance of PV/T system with different nanoparticles. For that, the simulation was carried out by performing grid test and then simulated on ANSYS to obtain results. For the same, nanofluids with 20 nm particle dimensions and 299 K inlet temperature were loaded with 0.5, 1 and 1.5% particle volume fraction with different Reynolds numbers varying from 250 to 1500. The simulated model was validated with the literature, and obtained results showed that the heat transfer coefficient (HTC) without any nanoparticles ranges from 245.5 to 519.8 W/m2 K for Reynolds number of 250–1500, respectively. On other hand, with nanoparticles, the HTC increases and ranges between 250.6–529.20 W/m2 K, 255.42–539.8 W/m2 K and 261.1–550.8 W/m2 K for 0.5%, 1.0% and 1.5% volume fraction, respectively, for Reynolds number of 250–1500. In the end, it is concluded that the simulation results are in good agreement with the literature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Reddy VS, Kaushik SC, Panwar NL (2013) Review on power generation scenario of India. Renew Sustain Energy Rev 18:43–48 Reddy VS, Kaushik SC, Panwar NL (2013) Review on power generation scenario of India. Renew Sustain Energy Rev 18:43–48
2.
go back to reference Jakhar S, Soni MS, Gakkhar N (2016) Historical and recent development of concentrating photovoltaic cooling technologies. Renew Sustain Energy Rev 60:41–59 Jakhar S, Soni MS, Gakkhar N (2016) Historical and recent development of concentrating photovoltaic cooling technologies. Renew Sustain Energy Rev 60:41–59
3.
go back to reference Jakhar Sanjeev, Soni Manoj S, Gakkhar Nikhil (2017) An integrated photovoltaic thermal solar (IPVTS) system with earth water heat exchanger cooling: Energy and exergy analysis. Sol Energy 157:81–93CrossRef Jakhar Sanjeev, Soni Manoj S, Gakkhar Nikhil (2017) An integrated photovoltaic thermal solar (IPVTS) system with earth water heat exchanger cooling: Energy and exergy analysis. Sol Energy 157:81–93CrossRef
4.
go back to reference Purohit N, J Sanjeev, Gullo P, Dasgupta MS (2018) Heat transfer and entropy generation analysis of alumina/water nanofluid in a flat plate PV/T collector under equal pumping power comparison criterion. Renew Energy 120:14–22CrossRef Purohit N, J Sanjeev, Gullo P, Dasgupta MS (2018) Heat transfer and entropy generation analysis of alumina/water nanofluid in a flat plate PV/T collector under equal pumping power comparison criterion. Renew Energy 120:14–22CrossRef
5.
go back to reference Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. No. ANL/MSD/CP-84938; CONF-951135–29. Argonne National Lab., IL (United States), p 199 Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. No. ANL/MSD/CP-84938; CONF-951135–29. Argonne National Lab., IL (United States), p 199
6.
go back to reference Das SK, Choi U, Yu W, Pradee T (2007) Nanofluids: science and technology. Wiley, USA Das SK, Choi U, Yu W, Pradee T (2007) Nanofluids: science and technology. Wiley, USA
7.
go back to reference Meibodi SS, Kianifar A, Niazmand H, Mahian O, Wongwises S (2015) Experimental investigation on the thermal efficiency and performance characteristics of a flat plate solar collector using SiO2/EG ewater nanofluids. Int Commun Heat Mass Tran 65:71–75CrossRef Meibodi SS, Kianifar A, Niazmand H, Mahian O, Wongwises S (2015) Experimental investigation on the thermal efficiency and performance characteristics of a flat plate solar collector using SiO2/EG ewater nanofluids. Int Commun Heat Mass Tran 65:71–75CrossRef
8.
go back to reference Colangelo G, Favale E, De Risi A, Laforgia D (2013) A new solution for reduced sedimentation flat panel solar thermal collector using nanofluids. Appl Energy 111:80–93CrossRef Colangelo G, Favale E, De Risi A, Laforgia D (2013) A new solution for reduced sedimentation flat panel solar thermal collector using nanofluids. Appl Energy 111:80–93CrossRef
9.
go back to reference Li Q, Xuan Y (2002) Convective heat transfer and flow characteristics of Cu-water nanofluid. Sci China Ser E: Technol Sci 45(4):408–416CrossRef Li Q, Xuan Y (2002) Convective heat transfer and flow characteristics of Cu-water nanofluid. Sci China Ser E: Technol Sci 45(4):408–416CrossRef
10.
go back to reference Sadeghi R, Haghshenasfard M, Etemad SG, Keshavarzi E (2016) Theoretical investigation of nanoparticles aggregation effect on Water-alumina laminar convective heat transfer. Int Commun Heat Mass Transfer 72:57–63CrossRef Sadeghi R, Haghshenasfard M, Etemad SG, Keshavarzi E (2016) Theoretical investigation of nanoparticles aggregation effect on Water-alumina laminar convective heat transfer. Int Commun Heat Mass Transfer 72:57–63CrossRef
11.
go back to reference Ali FM, Yunus WMM, Talib ZA (2013) Study of the effect of particles size and volume fraction concentration on the thermal conductivity and thermal diffusivity of Al2O3 nanofluids. Int J Phys Sci 8(28):1442–1457 Ali FM, Yunus WMM, Talib ZA (2013) Study of the effect of particles size and volume fraction concentration on the thermal conductivity and thermal diffusivity of Al2O3 nanofluids. Int J Phys Sci 8(28):1442–1457
12.
go back to reference Kamyar A, Saidur R, Hasanuzzaman M (2012) Application of computational fluid dynamics (CFD) for nanofluids. Int J Heat Mass Transf 55(15-16):4104–4115CrossRef Kamyar A, Saidur R, Hasanuzzaman M (2012) Application of computational fluid dynamics (CFD) for nanofluids. Int J Heat Mass Transf 55(15-16):4104–4115CrossRef
13.
go back to reference Ahmed M, Eslamian M (2015) Laminar forced convection of a nanofluid in a microchannel: effect of flow inertia and external forces on heat transfer and fluid flow characteristics. Appl Therm Eng 78:326–338CrossRef Ahmed M, Eslamian M (2015) Laminar forced convection of a nanofluid in a microchannel: effect of flow inertia and external forces on heat transfer and fluid flow characteristics. Appl Therm Eng 78:326–338CrossRef
14.
go back to reference Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics: the finite volume method. Pearson Education Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics: the finite volume method. Pearson Education
15.
go back to reference Helvaci HU, Khan ZA (2017) Heat transfer and entropy generation analysis of HFE 7000 based nanorefrigerants. Int J Heat and Mass Transfer 104:318–327 Helvaci HU, Khan ZA (2017) Heat transfer and entropy generation analysis of HFE 7000 based nanorefrigerants. Int J Heat and Mass Transfer 104:318–327
16.
go back to reference Utomo AT, Haghighi EB, Zavareh AI, Ghanbarpourgeravi M, Poth H, Khodabandeh R, Pacek AW et al (2014) The effect of nanoparticles on laminar heat transfer in a horizontal tube. Int J Heat Mass Transf 69:77–91 Utomo AT, Haghighi EB, Zavareh AI, Ghanbarpourgeravi M, Poth H, Khodabandeh R, Pacek AW et al (2014) The effect of nanoparticles on laminar heat transfer in a horizontal tube. Int J Heat Mass Transf 69:77–91
17.
go back to reference Shah RK, London AL (1978) Laminar flow forced convection in ducts. Suppl Adv Heat Transf Shah RK, London AL (1978) Laminar flow forced convection in ducts. Suppl Adv Heat Transf
Metadata
Title
Modelling and Simulation of Photovoltaic Thermal Cooling System Using Different Types of Nanofluids
Authors
Sanjeev Jakhar
Mukul Kant Paliwal
Atul Kumar
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-6360-7_1

Premium Partners