Skip to main content
Top

2020 | OriginalPaper | Chapter

12. Modelling and Simulation of Pyrolysis of Teak (Tectona Grandis) Sawdust

Authors : Sathyanarayanan Aswin, Selvi Pandiyan Ranjithkumar, Selvaraju Sivamani

Published in: Biofuel Production Technologies: Critical Analysis for Sustainability

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Pyrolysis is used to produce bio-char, bio-oil and syngas from industrial residues through thermochemical processing route. Pyrolysis decomposes biomass at an elevated temperature in an inert atmosphere. The aim of this study is to develop a model and evaluate activation energy for pyrolysis of teak sawdust. Teak sawdust was pyrolysed at four different temperatures from 300 to 600 °C. The mathematical model was developed for pyrolysis of teak sawdust. Kinetic constants were calculated by fitting the data from pyrolysis experiments to the model. Activation energy was determined from Arrhenius equation which related kinetic constant and temperature. The results reveal that pyrolysis of waste biomass, teak sawdust, could be the effective thermochemical route for bioenergy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Adam J, Blazso M, Meszaros E, Stöcker M, Nilsen MH, Bouzga A et al (2005) Pyrolysis of biomass in the presence of Al-MCM-41 type catalysts. Fuel 84(12–13):1494–1502 Adam J, Blazso M, Meszaros E, Stöcker M, Nilsen MH, Bouzga A et al (2005) Pyrolysis of biomass in the presence of Al-MCM-41 type catalysts. Fuel 84(12–13):1494–1502
go back to reference Aho A, Kumar N, Eränen K, Salmi T, Hupa M, Murzin DY (2008) Catalytic pyrolysis of woody biomass in a fluidized bed reactor: influence of the zeolite structure. Fuel 87(12):2493–2501CrossRef Aho A, Kumar N, Eränen K, Salmi T, Hupa M, Murzin DY (2008) Catalytic pyrolysis of woody biomass in a fluidized bed reactor: influence of the zeolite structure. Fuel 87(12):2493–2501CrossRef
go back to reference Babu BV (2008) Biomass pyrolysis: a state-of-the-art review. Biofuels Bioprod Biorefin 2(5):393–414CrossRef Babu BV (2008) Biomass pyrolysis: a state-of-the-art review. Biofuels Bioprod Biorefin 2(5):393–414CrossRef
go back to reference Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38:68–94CrossRef Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38:68–94CrossRef
go back to reference Bridgwater AV (2015) Pyrolysis of biomass. In: van Swaaij W, Kersten S, Palz W (eds) Transformations to effective use: biomass power for the world, vol 6. Pan Stanford Publishing, Boca Raton, pp 473–514 Bridgwater AV (2015) Pyrolysis of biomass. In: van Swaaij W, Kersten S, Palz W (eds) Transformations to effective use: biomass power for the world, vol 6. Pan Stanford Publishing, Boca Raton, pp 473–514
go back to reference Carlson TR, Vispute TP, Huber GW (2008) Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds. Chem Sus Chem 1(5):397–400CrossRef Carlson TR, Vispute TP, Huber GW (2008) Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds. Chem Sus Chem 1(5):397–400CrossRef
go back to reference Chen G, Andries J, Spliethoff H (2003) Catalytic pyrolysis of biomass for hydrogen rich fuel gas production. Energy Convers Manag 44(14):2289–2296CrossRef Chen G, Andries J, Spliethoff H (2003) Catalytic pyrolysis of biomass for hydrogen rich fuel gas production. Energy Convers Manag 44(14):2289–2296CrossRef
go back to reference Collard FX, Blin J (2014) A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sust Energ Rev 38:594–608CrossRef Collard FX, Blin J (2014) A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sust Energ Rev 38:594–608CrossRef
go back to reference Czernik S, Evans R, French R (2007) Hydrogen from biomass-production by steam reforming of biomass pyrolysis oil. Catal Today 129(3–4):265–268CrossRef Czernik S, Evans R, French R (2007) Hydrogen from biomass-production by steam reforming of biomass pyrolysis oil. Catal Today 129(3–4):265–268CrossRef
go back to reference Demirbaş A (2002) Gaseous products from biomass by pyrolysis and gasification: effects of catalyst on hydrogen yield. Energy Convers Manag 43(7):897–909CrossRef Demirbaş A (2002) Gaseous products from biomass by pyrolysis and gasification: effects of catalyst on hydrogen yield. Energy Convers Manag 43(7):897–909CrossRef
go back to reference Demirbas A, Arin G (2002) An overview of biomass pyrolysis. Energy Sources 24(5):471–482CrossRef Demirbas A, Arin G (2002) An overview of biomass pyrolysis. Energy Sources 24(5):471–482CrossRef
go back to reference Fahmi R, Bridgwater AV, Donnison I, Yates N, Jones JM (2008) The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel 87(7):1230–1240CrossRef Fahmi R, Bridgwater AV, Donnison I, Yates N, Jones JM (2008) The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel 87(7):1230–1240CrossRef
go back to reference Foster AJ, Jae J, Cheng YT, Huber GW, Lobo RF (2012) Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM-5. Appl Catal A Gen 423:154–161CrossRef Foster AJ, Jae J, Cheng YT, Huber GW, Lobo RF (2012) Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM-5. Appl Catal A Gen 423:154–161CrossRef
go back to reference French R, Czernik S (2010) Catalytic pyrolysis of biomass for biofuels production. Fuel Process Technol 91(1):25–32CrossRef French R, Czernik S (2010) Catalytic pyrolysis of biomass for biofuels production. Fuel Process Technol 91(1):25–32CrossRef
go back to reference Güllü D, Demirbaş A (2001) Biomass to methanol via pyrolysis process. Energy Convers Manag 42(11):1349–1356CrossRef Güllü D, Demirbaş A (2001) Biomass to methanol via pyrolysis process. Energy Convers Manag 42(11):1349–1356CrossRef
go back to reference Ismadji S, Sudaryanto Y, Hartono SB, Setiawan LEK, Ayucitra A (2005) Activated carbon from char obtained from vacuum pyrolysis of teak sawdust: pore structure development and characterization. Bioresour Technol 96(12):1364–1369CrossRef Ismadji S, Sudaryanto Y, Hartono SB, Setiawan LEK, Ayucitra A (2005) Activated carbon from char obtained from vacuum pyrolysis of teak sawdust: pore structure development and characterization. Bioresour Technol 96(12):1364–1369CrossRef
go back to reference Jalan RK, Srivastava VK (1999) Studies on pyrolysis of a single biomass cylindrical pellet—kinetic and heat transfer effects. Energy Convers Manag 40(5):467–494CrossRef Jalan RK, Srivastava VK (1999) Studies on pyrolysis of a single biomass cylindrical pellet—kinetic and heat transfer effects. Energy Convers Manag 40(5):467–494CrossRef
go back to reference Koufopanos CA, Lucchesi A, Maschio G (1989) Kinetic modelling of the pyrolysis of biomass and biomass components. Can J Chem Eng 67(1):75–84CrossRef Koufopanos CA, Lucchesi A, Maschio G (1989) Kinetic modelling of the pyrolysis of biomass and biomass components. Can J Chem Eng 67(1):75–84CrossRef
go back to reference Kumar R, Pandey KK, Chandrashekar N, Mohan S (2010) Effect of tree-age on calorific value and other fuel properties of Eucalyptus hybrid. J For Res 21(4):514–516CrossRef Kumar R, Pandey KK, Chandrashekar N, Mohan S (2010) Effect of tree-age on calorific value and other fuel properties of Eucalyptus hybrid. J For Res 21(4):514–516CrossRef
go back to reference Levenspiel O (1999) Chemical reaction engineering. Ind Eng Chem Res 38(11):4140–4143CrossRef Levenspiel O (1999) Chemical reaction engineering. Ind Eng Chem Res 38(11):4140–4143CrossRef
go back to reference Miura K, Maki T (1998) A simple method for estimating f(E) and ko(E) in the distributed activation energy model. Energy Fuel 12(5):864–869CrossRef Miura K, Maki T (1998) A simple method for estimating f(E) and ko(E) in the distributed activation energy model. Energy Fuel 12(5):864–869CrossRef
go back to reference Miura M, Kaga H, Sakurai A, Kakuchi T, Takahashi K (2004) Rapid pyrolysis of wood block by microwave heating. J Anal Appl Pyrolysis 71(1):187–199CrossRef Miura M, Kaga H, Sakurai A, Kakuchi T, Takahashi K (2004) Rapid pyrolysis of wood block by microwave heating. J Anal Appl Pyrolysis 71(1):187–199CrossRef
go back to reference Oochit D, Selvarajoo A, Arumugasamy SK (2017) Pyrolysis of biomass. In: Waste biomass management–a holistic approach. Springer, Cham, pp 215–229CrossRef Oochit D, Selvarajoo A, Arumugasamy SK (2017) Pyrolysis of biomass. In: Waste biomass management–a holistic approach. Springer, Cham, pp 215–229CrossRef
go back to reference Prakash N, Karunanithi T (2008) Kinetic modeling in biomass pyrolysis–a review. J Appl Sci Res 4(12):1627–1636 Prakash N, Karunanithi T (2008) Kinetic modeling in biomass pyrolysis–a review. J Appl Sci Res 4(12):1627–1636
go back to reference Robinson J, Dodds C, Stavrinides A, Kingman S, Katrib J, Wu Z et al (2015) Microwave pyrolysis of biomass: control of process parameters for high pyrolysis oil yields and enhanced oil quality. Energy Fuel 29(3):1701–1709CrossRef Robinson J, Dodds C, Stavrinides A, Kingman S, Katrib J, Wu Z et al (2015) Microwave pyrolysis of biomass: control of process parameters for high pyrolysis oil yields and enhanced oil quality. Energy Fuel 29(3):1701–1709CrossRef
go back to reference Shafizadeh F (1981) Basic principles of direct combustion. In: Biomass conversion processes for energy and fuels. Springer US, pp 103–124 Shafizadeh F (1981) Basic principles of direct combustion. In: Biomass conversion processes for energy and fuels. Springer US, pp 103–124
go back to reference Shen J, Wang XS, Garcia-Perez M, Mourant D, Rhodes MJ, Li CZ (2009) Effects of particle size on the fast pyrolysis of oil mallee woody biomass. Fuel 88(10):1810–1817CrossRef Shen J, Wang XS, Garcia-Perez M, Mourant D, Rhodes MJ, Li CZ (2009) Effects of particle size on the fast pyrolysis of oil mallee woody biomass. Fuel 88(10):1810–1817CrossRef
go back to reference Sonobe T, Worasuwannarak N (2008) Kinetic analyses of biomass pyrolysis using the distributed activation energy model. Fuel 87(3):414–421CrossRef Sonobe T, Worasuwannarak N (2008) Kinetic analyses of biomass pyrolysis using the distributed activation energy model. Fuel 87(3):414–421CrossRef
go back to reference Stefanidis SD, Kalogiannis KG, Iliopoulou EF, Michailof CM, Pilavachi PA, Lappas AA (2014) A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J Anal Appl Pyrolysis 105:143–150CrossRef Stefanidis SD, Kalogiannis KG, Iliopoulou EF, Michailof CM, Pilavachi PA, Lappas AA (2014) A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J Anal Appl Pyrolysis 105:143–150CrossRef
go back to reference Venderbosch RH (2015) A critical view on catalytic pyrolysis of biomass. Chem Sus Chem 8(8):1306–1316CrossRef Venderbosch RH (2015) A critical view on catalytic pyrolysis of biomass. Chem Sus Chem 8(8):1306–1316CrossRef
go back to reference Wan Y, Chen P, Zhang B, Yang C, Liu Y, Lin X, Ruan R (2009) Microwave-assisted pyrolysis of biomass: catalysts to improve product selectivity. J Anal Appl Pyrolysis 86(1):161–167CrossRef Wan Y, Chen P, Zhang B, Yang C, Liu Y, Lin X, Ruan R (2009) Microwave-assisted pyrolysis of biomass: catalysts to improve product selectivity. J Anal Appl Pyrolysis 86(1):161–167CrossRef
go back to reference Yaman S (2004) Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers Manag 45(5):651–671CrossRef Yaman S (2004) Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers Manag 45(5):651–671CrossRef
go back to reference Zhang S, Yan Y, Li T, Ren Z (2005) Upgrading of liquid fuel from the pyrolysis of biomass. Bioresour Technol 96(5):545–550CrossRef Zhang S, Yan Y, Li T, Ren Z (2005) Upgrading of liquid fuel from the pyrolysis of biomass. Bioresour Technol 96(5):545–550CrossRef
go back to reference Zhang L, Xu S, Zhao W, Liu S (2007) Co-pyrolysis of biomass and coal in a free fall reactor. Fuel 86(3):353–359CrossRef Zhang L, Xu S, Zhao W, Liu S (2007) Co-pyrolysis of biomass and coal in a free fall reactor. Fuel 86(3):353–359CrossRef
Metadata
Title
Modelling and Simulation of Pyrolysis of Teak (Tectona Grandis) Sawdust
Authors
Sathyanarayanan Aswin
Selvi Pandiyan Ranjithkumar
Selvaraju Sivamani
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-8637-4_12