Skip to main content
Top
Published in: Flow, Turbulence and Combustion 2/2019

30-03-2019

Modelling Sub-Grid Passive Scalar Statistics in Moderately Dense Evaporating Sprays

Authors: B. Wang, A. Kronenburg, O. T. Stein

Published in: Flow, Turbulence and Combustion | Issue 2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Spray evaporation in spatially decaying turbulence is simulated using carrier-phase direct numerical simulations (CP-DNS). The CP-DNS cover a much wider parameter range than earlier fully resolved DNS of regular droplet arrays that were used to calibrate scaling laws for sub-grid closures of the distribution of mixture fraction and its conditionally averaged scalar dissipation. The scaling laws include the effects of sub-grid interactions between droplet evaporation and turbulence, and here they are assessed by direct comparison with the statistics from the CP-DNS. Two issues can be observed: Firstly, care must be taken when interpreting the CP-DNS statistics as the lack of resolution of the point particle surface could impact on the values in DNS cells that are located within the (unresolved) quasi-laminar wake. Secondly, the scaling laws present similar agreement with CP-DNS data as had been observed before for the fully resolved DNS. The scaling law for the scalar dissipation approximates the DNS statistics well, independent of the droplet number density, Stokes number and turbulence intensity. The estimated mixture fraction distribution (the PDF) is good for the mixture fraction values larger than a suitable average value but deteriorates for smaller mixture fractions due to inherent model limitations. The data corroborate that the scaling laws for turbulent micro-mixing can potentially serve as sub-grid closures for mixture fraction based combustion models such as flamelet and conditional moment closure approaches in large eddy simulations and may provide better approximations than existing expressions derived from single-phase non-premixed combustion.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Menon, S., Patel, N.: Subgrid modeling for simulation of spray combustion in large-scale combustors. AIAA J. 44(4), 709–723 (2006)CrossRef Menon, S., Patel, N.: Subgrid modeling for simulation of spray combustion in large-scale combustors. AIAA J. 44(4), 709–723 (2006)CrossRef
2.
go back to reference Lackmann, T., Kerstein, A.R., Oevermann, M.: A representative linear eddy model for simulating spray combustion in engines (RILEM). Combust. Flame 193, 1–15 (2018)CrossRef Lackmann, T., Kerstein, A.R., Oevermann, M.: A representative linear eddy model for simulating spray combustion in engines (RILEM). Combust. Flame 193, 1–15 (2018)CrossRef
3.
go back to reference Boileau, M., Pascaud, S., Riber, E., Cuenot, B., Gicquel, L.Y.M., Poinsot, T.J., Cazalens, M.: Investigation of two-fluid methods for large eddy simulation of spray combustion in gas turbines. Flow Turbul. Combust. 80(3), 291–321 (2008)CrossRefMATH Boileau, M., Pascaud, S., Riber, E., Cuenot, B., Gicquel, L.Y.M., Poinsot, T.J., Cazalens, M.: Investigation of two-fluid methods for large eddy simulation of spray combustion in gas turbines. Flow Turbul. Combust. 80(3), 291–321 (2008)CrossRefMATH
4.
go back to reference Ma, L., Roekaerts, D.: Modeling of spray jet flame under MILD condition with non-adiabatic FGM and a new conditional droplet injection model. Combust. Flame 165, 402–423 (2016)CrossRef Ma, L., Roekaerts, D.: Modeling of spray jet flame under MILD condition with non-adiabatic FGM and a new conditional droplet injection model. Combust. Flame 165, 402–423 (2016)CrossRef
5.
go back to reference Bojko, B.T., DesJardin, P.E.: On the development and application of a droplet flamelet-generated manifold for use in two-phase turbulent combustion simulations. Combust. Flame 183, 50–65 (2017)CrossRef Bojko, B.T., DesJardin, P.E.: On the development and application of a droplet flamelet-generated manifold for use in two-phase turbulent combustion simulations. Combust. Flame 183, 50–65 (2017)CrossRef
6.
go back to reference Ukai, S., Kronenburg, A., Stein, O.T.: Simulation of dilute acetone spray flames with LES-CMC using two conditional moments. Flow Turbul. Combust. 93(3), 405–423 (2014)CrossRef Ukai, S., Kronenburg, A., Stein, O.T.: Simulation of dilute acetone spray flames with LES-CMC using two conditional moments. Flow Turbul. Combust. 93(3), 405–423 (2014)CrossRef
7.
go back to reference Ukai, S., Kronenburg, A., Stein, O.T.: Large eddy simulation of dilute acetone spray flames using CMC coupled with tabulated chemistry. Proc. Combust. Inst. 35 (2), 1667–1674 (2015)CrossRef Ukai, S., Kronenburg, A., Stein, O.T.: Large eddy simulation of dilute acetone spray flames using CMC coupled with tabulated chemistry. Proc. Combust. Inst. 35 (2), 1667–1674 (2015)CrossRef
8.
go back to reference Giusti, A., Mastorakos, E.: Detailed chemistry LES/CMC simulation of a swirling ethanol spray flame approaching blow-off. Proc. Combust. Inst. 36(2), 2625–2632 (2017)CrossRef Giusti, A., Mastorakos, E.: Detailed chemistry LES/CMC simulation of a swirling ethanol spray flame approaching blow-off. Proc. Combust. Inst. 36(2), 2625–2632 (2017)CrossRef
9.
go back to reference Hasse, C., Peters, N.: A two mixture fraction flamelet model applied to split injections in a DI Diesel engine. Proc. Combust. Inst. 30(2), 2755–2762 (2005)CrossRef Hasse, C., Peters, N.: A two mixture fraction flamelet model applied to split injections in a DI Diesel engine. Proc. Combust. Inst. 30(2), 2755–2762 (2005)CrossRef
10.
go back to reference Navarro-Martinez, S., Kronenburg, A., Di Mare, F.: Conditional moment closure for large eddy simulations. Flow Turbul. Combust. 75(1-4), 245–274 (2005)CrossRefMATH Navarro-Martinez, S., Kronenburg, A., Di Mare, F.: Conditional moment closure for large eddy simulations. Flow Turbul. Combust. 75(1-4), 245–274 (2005)CrossRefMATH
11.
go back to reference Bilger, R.W.: Turbulent flows with nonpremixed reactants. In: Turbulent reacting flows, pp 65–113. Springer, Berlin (1980) Bilger, R.W.: Turbulent flows with nonpremixed reactants. In: Turbulent reacting flows, pp 65–113. Springer, Berlin (1980)
12.
go back to reference O’Brien, E.E., Jiang, T.L.: The conditional dissipation rate of an initially binary scalar in homogeneous turbulence. Phys. Fluids A 3(12), 3121–3123 (1991)CrossRefMATH O’Brien, E.E., Jiang, T.L.: The conditional dissipation rate of an initially binary scalar in homogeneous turbulence. Phys. Fluids A 3(12), 3121–3123 (1991)CrossRefMATH
13.
go back to reference Réveillon, J., Vervisch, L.: Spray vaporization in nonpremixed turbulent combustion modeling: a single droplet model. Combustion and flame 121(1-2), 75–90 (2000)CrossRef Réveillon, J., Vervisch, L.: Spray vaporization in nonpremixed turbulent combustion modeling: a single droplet model. Combustion and flame 121(1-2), 75–90 (2000)CrossRef
14.
go back to reference Schroll, P., Wandel, A.P., Cant, R.S., Mastorakos, E.: Direct numerical simulations of autoignition in turbulent two-phase flows. Proc. Combust. Inst. 32(2), 2275–2282 (2009)CrossRef Schroll, P., Wandel, A.P., Cant, R.S., Mastorakos, E.: Direct numerical simulations of autoignition in turbulent two-phase flows. Proc. Combust. Inst. 32(2), 2275–2282 (2009)CrossRef
15.
go back to reference Wacks, D.H., Chakraborty, N., Mastorakos, E.: Statistical analysis of turbulent flame-droplet interaction: a direct numerical simulation study. Flow Turbul. Combust. 96(2), 573–607 (2016)CrossRef Wacks, D.H., Chakraborty, N., Mastorakos, E.: Statistical analysis of turbulent flame-droplet interaction: a direct numerical simulation study. Flow Turbul. Combust. 96(2), 573–607 (2016)CrossRef
16.
go back to reference Sreedhara, S., Huh, K.Y.: Conditional statistics of nonreacting and reacting sprays in turbulent flows by direct numerical simulation. Proc. Combust. Inst. 31(2), 2335–2342 (2007)CrossRef Sreedhara, S., Huh, K.Y.: Conditional statistics of nonreacting and reacting sprays in turbulent flows by direct numerical simulation. Proc. Combust. Inst. 31(2), 2335–2342 (2007)CrossRef
17.
go back to reference Wang, H., Luo, K., Fan, J.: Direct numerical simulation and CMC (conditional moment closure) sub-model validation of spray combustion. Energy 46(1), 606–617 (2012)CrossRef Wang, H., Luo, K., Fan, J.: Direct numerical simulation and CMC (conditional moment closure) sub-model validation of spray combustion. Energy 46(1), 606–617 (2012)CrossRef
18.
go back to reference Seo, J., Huh, K.Y.: Analysis of combustion regimes and conditional statistics of autoigniting turbulent n-heptane sprays. Proc. Combust. Inst. 33(2), 2127–2134 (2011)CrossRef Seo, J., Huh, K.Y.: Analysis of combustion regimes and conditional statistics of autoigniting turbulent n-heptane sprays. Proc. Combust. Inst. 33(2), 2127–2134 (2011)CrossRef
19.
go back to reference Ukai, S., Kronenburg, A., Stein, O.T.: LES-CMC Of a dilute acetone spray flame. Proc. Combust. Inst. 34(1), 1643–1650 (2013)CrossRef Ukai, S., Kronenburg, A., Stein, O.T.: LES-CMC Of a dilute acetone spray flame. Proc. Combust. Inst. 34(1), 1643–1650 (2013)CrossRef
20.
go back to reference Bilger, R.W.: A mixture fraction framework for the theory and modeling of droplets and sprays. Combust. Flame 158(2), 191–202 (2011)CrossRef Bilger, R.W.: A mixture fraction framework for the theory and modeling of droplets and sprays. Combust. Flame 158(2), 191–202 (2011)CrossRef
21.
go back to reference Klimenko, A.Y., Bilger, R.W.: Conditional moment closure for turbulent combustion. Prog. Energy Combust. Sci. 25(6), 595–687 (1999)CrossRef Klimenko, A.Y., Bilger, R.W.: Conditional moment closure for turbulent combustion. Prog. Energy Combust. Sci. 25(6), 595–687 (1999)CrossRef
22.
go back to reference Zoby, M.R.G., Navarro-Martinez, S., Kronenburg, A., Marquis, A.J.: Turbulent mixing in three-dimensional droplet arrays. Int. J. Heat Fluid Flow 32(3), 499–509 (2011)CrossRef Zoby, M.R.G., Navarro-Martinez, S., Kronenburg, A., Marquis, A.J.: Turbulent mixing in three-dimensional droplet arrays. Int. J. Heat Fluid Flow 32(3), 499–509 (2011)CrossRef
23.
go back to reference Wang, B., Kronenburg, A., Dietzel, D., Stein, O.T.: Assessment of scaling laws for mixing fields in inter-droplet space. Proc. Combust. Inst. 36(2), 2451–2458 (2017)CrossRef Wang, B., Kronenburg, A., Dietzel, D., Stein, O.T.: Assessment of scaling laws for mixing fields in inter-droplet space. Proc. Combust. Inst. 36(2), 2451–2458 (2017)CrossRef
24.
go back to reference Wang, B., Kronenburg, A., Tufano, G.L., Stein, O.T.: Fully resolved DNS of droplet array combustion in turbulent convective flows and modelling for mixing fields in inter-droplet space. Combust. Flame 189, 347–366 (2018)CrossRef Wang, B., Kronenburg, A., Tufano, G.L., Stein, O.T.: Fully resolved DNS of droplet array combustion in turbulent convective flows and modelling for mixing fields in inter-droplet space. Combust. Flame 189, 347–366 (2018)CrossRef
25.
go back to reference Kolmogorov, A.N.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30(4), 299–303 (1941)MathSciNet Kolmogorov, A.N.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30(4), 299–303 (1941)MathSciNet
26.
27.
go back to reference Tufano, G.L., Stein, O.T., Wang, B., Kronenburg, A., Rieth, M., Kempf, A.M.: Coal particle volatile combustion and flame interaction. Part II: effects of particle Reynolds number and turbulence. Fuel 234, 723–731 (2018)CrossRef Tufano, G.L., Stein, O.T., Wang, B., Kronenburg, A., Rieth, M., Kempf, A.M.: Coal particle volatile combustion and flame interaction. Part II: effects of particle Reynolds number and turbulence. Fuel 234, 723–731 (2018)CrossRef
28.
go back to reference Kronenburg, A., Bilger, R.W.: Modelling of differential diffusion effects in nonpremixed nonreacting turbulent flow. Phys. Fluids 9.5, 1435–1447 (1997)CrossRef Kronenburg, A., Bilger, R.W.: Modelling of differential diffusion effects in nonpremixed nonreacting turbulent flow. Phys. Fluids 9.5, 1435–1447 (1997)CrossRef
29.
go back to reference Kronenburg, A., Bilger, R.W.: Modelling differential diffusion in nonpremixed reacting turbulent flow: model development. Combust. Sci. Technol. 166(1), 195–227 (2001)CrossRef Kronenburg, A., Bilger, R.W.: Modelling differential diffusion in nonpremixed reacting turbulent flow: model development. Combust. Sci. Technol. 166(1), 195–227 (2001)CrossRef
30.
go back to reference Xu, H., Hunger, F., Vascellari, M., Hasse, C.: A consistent flamelet formulation for a reacting char particle considering curvature effects. Combust. Flame 160(11), 2540–2558 (2013)CrossRef Xu, H., Hunger, F., Vascellari, M., Hasse, C.: A consistent flamelet formulation for a reacting char particle considering curvature effects. Combust. Flame 160(11), 2540–2558 (2013)CrossRef
31.
go back to reference Hunger, F., Dietzsch, F., Gauding, M., Hasse, C.: A priori analysis of differential diffusion for model development for scale-resolving simulations. Phys. Rev. Fluids 3(1), 014601 (2018)CrossRef Hunger, F., Dietzsch, F., Gauding, M., Hasse, C.: A priori analysis of differential diffusion for model development for scale-resolving simulations. Phys. Rev. Fluids 3(1), 014601 (2018)CrossRef
32.
go back to reference Batchelor, G.K.: Small-scale variation of convected quantities like temperature in turbulent fluid Part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5(1), 113–133 (1959)MathSciNetCrossRefMATH Batchelor, G.K.: Small-scale variation of convected quantities like temperature in turbulent fluid Part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5(1), 113–133 (1959)MathSciNetCrossRefMATH
33.
go back to reference Elghobashi, S.: On predicting particle-laden turbulent flows. Appl. Sci. Res. 52 (4), 309–329 (1994)CrossRef Elghobashi, S.: On predicting particle-laden turbulent flows. Appl. Sci. Res. 52 (4), 309–329 (1994)CrossRef
34.
go back to reference Miller, R.S., Bellan, J.: Direct numerical simulation of a confined three-dimensional gas mixing layer with one evaporating hydrocarbon-droplet-laden stream. J. Fluid Mech. 384, 293–338 (1999)CrossRefMATH Miller, R.S., Bellan, J.: Direct numerical simulation of a confined three-dimensional gas mixing layer with one evaporating hydrocarbon-droplet-laden stream. J. Fluid Mech. 384, 293–338 (1999)CrossRefMATH
35.
go back to reference White, F.M.: Viscous Fluid Flow. McGraw-Hill, New York (1974)MATH White, F.M.: Viscous Fluid Flow. McGraw-Hill, New York (1974)MATH
36.
go back to reference Turns, S.R.: An introduction to combustion. McGraw-Hill, New York (1996) Turns, S.R.: An introduction to combustion. McGraw-Hill, New York (1996)
37.
go back to reference Faeth, G.M.: Current status of droplet and liquid combustion. Prog. Energy Combust. Sci. 3(4), 191–224 (1977)CrossRef Faeth, G.M.: Current status of droplet and liquid combustion. Prog. Energy Combust. Sci. 3(4), 191–224 (1977)CrossRef
38.
go back to reference Green, D.W., Perry, R.H.: Perry’s chemical engineers’ handbook. McGraw-Hill, New York (2008) Green, D.W., Perry, R.H.: Perry’s chemical engineers’ handbook. McGraw-Hill, New York (2008)
39.
go back to reference Billson, M., Eriksson, L.E., Davidson, L.: Jet noise prediction using stochastic turbulence modeling. In: 9th AIAA/CEAS aeroacoustics conference and exhibit, p 3282 (2003) Billson, M., Eriksson, L.E., Davidson, L.: Jet noise prediction using stochastic turbulence modeling. In: 9th AIAA/CEAS aeroacoustics conference and exhibit, p 3282 (2003)
40.
go back to reference Sulabh, K.D., Jacob, E.T., Driscoll, J.F.: Unsteady aspects of lean premixed-prevaporized (LPP) gas turbine combustors: flame-flame interactions. AIAA g010-1148 (2010) Sulabh, K.D., Jacob, E.T., Driscoll, J.F.: Unsteady aspects of lean premixed-prevaporized (LPP) gas turbine combustors: flame-flame interactions. AIAA g010-1148 (2010)
41.
go back to reference Williams, F.A.: Combustion theory, 2nd edn. Perseus Books, Reading, Massachussetts (1985) Williams, F.A.: Combustion theory, 2nd edn. Perseus Books, Reading, Massachussetts (1985)
42.
go back to reference Sirignano, W.A.: Fluid dynamics and transport of droplets and sprays. Cambridge University Press, Cambridge (1999)CrossRef Sirignano, W.A.: Fluid dynamics and transport of droplets and sprays. Cambridge University Press, Cambridge (1999)CrossRef
43.
go back to reference Vo, S., Kronenburg, A., Stein, O.T., Hawkes, E.R.: Direct numerical simulation of non-premixed syngas combustion using OpenFOAM. In: High Performance Computing in Science and Engineering ’16, pp 245–257. Springer (2017) Vo, S., Kronenburg, A., Stein, O.T., Hawkes, E.R.: Direct numerical simulation of non-premixed syngas combustion using OpenFOAM. In: High Performance Computing in Science and Engineering ’16, pp 245–257. Springer (2017)
44.
go back to reference Yeung, P.K., Pope, S.B.: Lagrangian statistics from direct numerical simulations of isotropic turbulence. J. Fluid Mech. 207, 531–586 (1989)MathSciNetCrossRef Yeung, P.K., Pope, S.B.: Lagrangian statistics from direct numerical simulations of isotropic turbulence. J. Fluid Mech. 207, 531–586 (1989)MathSciNetCrossRef
45.
go back to reference Shekar, S.: Direct numerical simulation of isotropic, decaying turbulence. ITV report, University of Stuttgart (2011) Shekar, S.: Direct numerical simulation of isotropic, decaying turbulence. ITV report, University of Stuttgart (2011)
Metadata
Title
Modelling Sub-Grid Passive Scalar Statistics in Moderately Dense Evaporating Sprays
Authors
B. Wang
A. Kronenburg
O. T. Stein
Publication date
30-03-2019
Publisher
Springer Netherlands
Published in
Flow, Turbulence and Combustion / Issue 2/2019
Print ISSN: 1386-6184
Electronic ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-019-00024-0

Other articles of this Issue 2/2019

Flow, Turbulence and Combustion 2/2019 Go to the issue

Premium Partners