Skip to main content
Top

2013 | OriginalPaper | Chapter

Modelling the Influence of Cell Signaling on the Dynamics of Gene Regulatory Networks

Author : Chiara Damiani

Published in: Biomechanics of Cells and Tissues

Publisher: Springer Netherlands

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Boolean models have proven to be effective in capturing some features of the dynamical behavior of the gene regulatory network of isolated cells. Cells are however constantly exposed to several signals that affect the regulation of their genes and are therefore not isolated. Moreover, cells in multi-cellular organisms and, to some extent, also in colonies of unicellular ones modify their gene expression profiles in a coordinated fashion. Many of these processes are controlled by cell–cell communication mechanisms. It appears therefore important to understand how the interplay among gene regulatory networks, by means of the signaling network, may alter their dynamical properties. In order to explore the issue, a model based on interconnected identical Boolean networks has been proposed, which has allowed to investigate the influence that cell-signaling may have on the expression patterns of individual cells, with particular regard on their variety and homeostasis. The main results described in this chapter show that both the diversity of emergent behaviors and the diffusion of perturbations may not depend linearly on the fraction of genes involved in the signaling network. On the contrary, when cells exchange a moderate quantity of signals with neighbors, the variety of their activation patterns is maximized, together with the number of genes that can be damaged as a consequence of a minor alteration of the system.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Although different threshold levels for different genes would be plausible from the biological point of view, in our study a fixed \(\tau \) has been used in order to isolate the effect of the choice of a given \(\tau \) on the dynamics of the system.
 
2
Due to the inseparability and reciprocity of receptor/signaling-molecule pairs, they are considered as a unit while counting the number \(n\) of nodes in the graph: \(n=g+r\).
 
3
It should be noted that the signaling-molecule does not influence the cell where it is produced.
 
4
This number depends on the average connectivity of genes and molecules. It is assumed that the two entities have the same typical connectivity \(K\).
 
5
For every realization of a MRBN made of \(5\times 5\) cells with 100 nodes each, 150 experiments have been performed. In each experiment the system has been simulated for the 10 values of the coupling strength. For each coupling level the system is allowed to evolve from a given initial condition until an attractor is found. The 150 experiments differ therefore from one another in the initial activation of the nodes and in the selection of the genes to be turned into shared-nodes/receptors. Unless otherwise stated, the average value of the measures described in the next sections are obtained over 100 MRBNs and over these 150 experiments. Only MRBNs that reach an attractor within the computational limit of 2500 steps, in all the experiments and for all the level of \(\chi \) under study, are included in the sample. The fraction of MRBNs that are removed from the sample can vary for different updating schemes. The highest case observed is about \(0.30\).
 
6
For each MRBN 150 experiments are performed differing from each other for the initial activation of the nodes, for the selection of the genes to be turned into shared-nodes/receptors at each considered coupling strength and for the choice of the node to be perturbed. Unless otherwise stated, the average values \(\langle A_{nodes}(T) \rangle \) and \(\langle A_{cells}(T) \rangle \) are obtained over 100 MRBNs and over such 150 experiments. The study here presented is once again limited to the analysis of \(5 \times 5\) MRBNs (i.e. \(m=25\)). Cells are made of 100 nodes.
 
7
It is however reminded that the MRBN level may be regarded either as an organ or an entire organism, or a bacteria colony and so on.
 
Literature
1.
go back to reference Aldana M, Coppersmith S, Kadanoff LP (2003) Boolean dynamics with random couplings. In: Marsden JE, Sreenivasan KR, Kaplan E (eds) Perspectives and problems in nonlinear science. Springer Applied Mathematical Sciences Series, Springer, New York, pp 23–90CrossRef Aldana M, Coppersmith S, Kadanoff LP (2003) Boolean dynamics with random couplings. In: Marsden JE, Sreenivasan KR, Kaplan E (eds) Perspectives and problems in nonlinear science. Springer Applied Mathematical Sciences Series, Springer, New York, pp 23–90CrossRef
2.
go back to reference Berks M, Traynor D, Carrin I, Insall RH, Kay RK (1991) Diffusible signal molecules controlling cell differentiation and patterning in dictyostelium. Development 113(Supplement 1):131–139 Berks M, Traynor D, Carrin I, Insall RH, Kay RK (1991) Diffusible signal molecules controlling cell differentiation and patterning in dictyostelium. Development 113(Supplement 1):131–139
3.
go back to reference Bull L, Alonso-Sanz R (2008) On coupling random boolean networks. In: Adamatzky A, Alonso-Sanz R, Lawniczak A, Juarez Martinez G, Morita K, Worsch T (eds) Automata-2008: theory and applications of cellular Automata. Luniver Press, Frome, pp 292–305. Bull L, Alonso-Sanz R (2008) On coupling random boolean networks. In: Adamatzky A, Alonso-Sanz R, Lawniczak A, Juarez Martinez G, Morita K, Worsch T (eds) Automata-2008: theory and applications of cellular Automata. Luniver Press, Frome, pp 292–305.
4.
go back to reference Damiani C, Kauffman SA, Serra R, Villani M, Colacci A (2010) Information transfer among coupled random boolean networks. In: Bandini S, Umeo H, Manzoni S, Vizzari G (eds) Cellular automata, 9th international conference on cellular automata for research and industry, (ACRI 2010, Ascoli Piceno, Italy, September 21–24). Lecture Notes in Computer Science. vol 6350/2010. Springer, Berlin, pp 1–11. Damiani C, Kauffman SA, Serra R, Villani M, Colacci A (2010) Information transfer among coupled random boolean networks. In: Bandini S, Umeo H, Manzoni S, Vizzari G (eds) Cellular automata, 9th international conference on cellular automata for research and industry, (ACRI 2010, Ascoli Piceno, Italy, September 21–24). Lecture Notes in Computer Science. vol 6350/2010. Springer, Berlin, pp 1–11.
5.
go back to reference Damiani C, Serra R, Villani M, Kauffman SA, Colacci A (2011) Cell-cell interaction and diversity of emergent behaviours. IET systems biology 5(2):137–144CrossRef Damiani C, Serra R, Villani M, Kauffman SA, Colacci A (2011) Cell-cell interaction and diversity of emergent behaviours. IET systems biology 5(2):137–144CrossRef
6.
go back to reference Damiani C (2011) Dynamics of interacting genetic networks. Ph.d thesis within the school of graduate studies “multiscale modelling, computational simulations and characterization for material and life sciences”, Modena and Reggio Emilia University, Reggio Emilia. Damiani C (2011) Dynamics of interacting genetic networks. Ph.d thesis within the school of graduate studies “multiscale modelling, computational simulations and characterization for material and life sciences”, Modena and Reggio Emilia University, Reggio Emilia.
7.
go back to reference Derrida B, Pomeau Y (1986) Random networks of automata: a simple annealed approximation. Europhys Lett 1 1(2):45–49. Derrida B, Pomeau Y (1986) Random networks of automata: a simple annealed approximation. Europhys Lett 1 1(2):45–49.
8.
go back to reference David G, Fu H, Gu X, Richard O, Steve R, Vladislav V, Kurth MJ, Downes CS, Dubitzky W (2006) Computational methodologies for modelling, analysis and simulation of signalling networks. Briefings Bioinform 7(4):339–353CrossRef David G, Fu H, Gu X, Richard O, Steve R, Vladislav V, Kurth MJ, Downes CS, Dubitzky W (2006) Computational methodologies for modelling, analysis and simulation of signalling networks. Briefings Bioinform 7(4):339–353CrossRef
9.
go back to reference Glazier JA, Graner F (1993) Simulation of the differential adhesion driven rearrangement of biological cells. Phys Rev E 47(3):2128–2154CrossRef Glazier JA, Graner F (1993) Simulation of the differential adhesion driven rearrangement of biological cells. Phys Rev E 47(3):2128–2154CrossRef
10.
go back to reference Goodwin BC, Cohen MH (1969) A phase-shift model for the spatial and temporal organization of developing systems. J Theor Biol 25(1):49–107CrossRef Goodwin BC, Cohen MH (1969) A phase-shift model for the spatial and temporal organization of developing systems. J Theor Biol 25(1):49–107CrossRef
11.
go back to reference Goodwin BC, Kauffman SA (1990) Spatial harmonics and pattern specification in early drosophila development. Part i. bifurcation sequences and gene expression. J Theor Biol 144(3):303–319CrossRef Goodwin BC, Kauffman SA (1990) Spatial harmonics and pattern specification in early drosophila development. Part i. bifurcation sequences and gene expression. J Theor Biol 144(3):303–319CrossRef
12.
go back to reference Hogeweg P (2000) Evolving mechanisms of morphogenesis: on the interplay between differential adhesion and cell differentiation. J Theor Biol 203(4):317–333CrossRef Hogeweg P (2000) Evolving mechanisms of morphogenesis: on the interplay between differential adhesion and cell differentiation. J Theor Biol 203(4):317–333CrossRef
13.
go back to reference Jackson ER, Johnson D, Nash WG (1986) Gene networks in development. J Theor Biol 119(4):379–396CrossRef Jackson ER, Johnson D, Nash WG (1986) Gene networks in development. J Theor Biol 119(4):379–396CrossRef
14.
go back to reference Janowski S, Kormeier B, Tpel T, Hippe K, HofestŁdt R, Willassen N, Rafael F, Sebastian R, Daniela B, Peik H, Ming C (2010) Modeling of cell-to-cell communication processes with petri nets using the example of quorum sensing. Silico Biol 10(1–2):27–48 Janowski S, Kormeier B, Tpel T, Hippe K, HofestŁdt R, Willassen N, Rafael F, Sebastian R, Daniela B, Peik H, Ming C (2010) Modeling of cell-to-cell communication processes with petri nets using the example of quorum sensing. Silico Biol 10(1–2):27–48
15.
go back to reference Kaneko K, Yomo T (1997) Isologous diversification: a theory of cell differentiation. Bull Math Biol 59(1):139–196MATHCrossRef Kaneko K, Yomo T (1997) Isologous diversification: a theory of cell differentiation. Bull Math Biol 59(1):139–196MATHCrossRef
16.
go back to reference Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22(3):437–467CrossRef Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22(3):437–467CrossRef
17.
go back to reference Kauffman SA (1971) Gene regulation networks: a theory of their global structure and behaviour. Top Dev Biol 6:145–182CrossRef Kauffman SA (1971) Gene regulation networks: a theory of their global structure and behaviour. Top Dev Biol 6:145–182CrossRef
18.
go back to reference Kauffman SA (1974) The large scale structure and dynamics of gene control circuits: an ensemble approach. J Theor Biol 44(1):167–190MathSciNetCrossRef Kauffman SA (1974) The large scale structure and dynamics of gene control circuits: an ensemble approach. J Theor Biol 44(1):167–190MathSciNetCrossRef
19.
go back to reference Kauffman SA (1993) The origins of order. Oxford University Press, New York Kauffman SA (1993) The origins of order. Oxford University Press, New York
20.
go back to reference Kauffman SA (1995) At home in the universe. Oxford University Press, New York Kauffman SA (1995) At home in the universe. Oxford University Press, New York
21.
go back to reference Kauffman SA (2000) Investigations. Oxford University Press, New York Kauffman SA (2000) Investigations. Oxford University Press, New York
22.
go back to reference Kauffman SA (2004) A proposal for using the ensemble approach to understand genetic regulatory networks. J Theor Biol 230(4):581–590MathSciNetCrossRef Kauffman SA (2004) A proposal for using the ensemble approach to understand genetic regulatory networks. J Theor Biol 230(4):581–590MathSciNetCrossRef
23.
go back to reference Kauffman SA, Shymko RM, Trabert K (1978) Control of sequential compartment formation in Drosophila. Science 199(4326):259–270CrossRef Kauffman SA, Shymko RM, Trabert K (1978) Control of sequential compartment formation in Drosophila. Science 199(4326):259–270CrossRef
24.
25.
go back to reference Kauffman SA (1991) Emergent properties in random complex automata. Physica D Nonlinear Phenom 265(2):78–74MathSciNet Kauffman SA (1991) Emergent properties in random complex automata. Physica D Nonlinear Phenom 265(2):78–74MathSciNet
26.
go back to reference Kupiec JJ (1997) A darwinian theory for the origin of cellular differentiation. Mol Gen Genet 255(2):201–8CrossRef Kupiec JJ (1997) A darwinian theory for the origin of cellular differentiation. Mol Gen Genet 255(2):201–8CrossRef
27.
go back to reference Lane D (2006) Hierarchy, complexity, society. In: Courgeau D, Franck R, Pumain D (eds) Hierarchy in natural and social sciences, Methodos Series vol 3. Springer, Netherlands, pp 81–119CrossRef Lane D (2006) Hierarchy, complexity, society. In: Courgeau D, Franck R, Pumain D (eds) Hierarchy in natural and social sciences, Methodos Series vol 3. Springer, Netherlands, pp 81–119CrossRef
28.
go back to reference Langton C (1990) Computation at the edge of chaos: phase transitions and emergent computation. Phys D Nonlinear Phenom 42(1–3):12–37MathSciNetCrossRef Langton C (1990) Computation at the edge of chaos: phase transitions and emergent computation. Phys D Nonlinear Phenom 42(1–3):12–37MathSciNetCrossRef
29.
go back to reference Lodish H, Berk A, Kaiser CA, Krieger M, Scott MP, Bretscher A, Ploegh H, Matsudaira P (2008) Molecular Cell Biology (6th edn). W. H, Freeman, New York. ISBN 9781429203142 Lodish H, Berk A, Kaiser CA, Krieger M, Scott MP, Bretscher A, Ploegh H, Matsudaira P (2008) Molecular Cell Biology (6th edn). W. H, Freeman, New York. ISBN 9781429203142
30.
go back to reference Meinhardt H (1978) Space-dependent cell determination under the control of a morphogen gradient. J Theor Biol 74(2):307–321CrossRef Meinhardt H (1978) Space-dependent cell determination under the control of a morphogen gradient. J Theor Biol 74(2):307–321CrossRef
31.
go back to reference Meinhardt H (1982) Models of biological pattern formation. Academic Press, London Meinhardt H (1982) Models of biological pattern formation. Academic Press, London
32.
go back to reference von Neumann J (1966) Theory of self-reproducing automata. University of Illinois Press, USA von Neumann J (1966) Theory of self-reproducing automata. University of Illinois Press, USA
34.
go back to reference Packard NH (1988) Adaptation toward the edge of chaos. In: Kelso JAS, Mandell AJ, Shlesinger MF (eds) Dynamic patterns in complex systems. World Scientific, Singapore, pp 293–301 Packard NH (1988) Adaptation toward the edge of chaos. In: Kelso JAS, Mandell AJ, Shlesinger MF (eds) Dynamic patterns in complex systems. World Scientific, Singapore, pp 293–301
35.
go back to reference Ramo P, Kesseli J, Yli-Harja O (2006) Perturbation avalanches and criticality in gene regulatory networks. J Theor Biol 242(1):164–170MathSciNetCrossRef Ramo P, Kesseli J, Yli-Harja O (2006) Perturbation avalanches and criticality in gene regulatory networks. J Theor Biol 242(1):164–170MathSciNetCrossRef
36.
go back to reference Rohlf T, Bornholdt S (2009) Morphogenesis by coupled regulatory networks: reliable control of positional information and proportion regulation. J Theor Biol 261(2):176–193CrossRef Rohlf T, Bornholdt S (2009) Morphogenesis by coupled regulatory networks: reliable control of positional information and proportion regulation. J Theor Biol 261(2):176–193CrossRef
37.
go back to reference Salazar-Ciudad I, Garcia-Fernández J, Solé R (2000) Gene networks capable of pattern formation: from induction to reaction-diffusion. J Theor Biol 205(4):587–603CrossRef Salazar-Ciudad I, Garcia-Fernández J, Solé R (2000) Gene networks capable of pattern formation: from induction to reaction-diffusion. J Theor Biol 205(4):587–603CrossRef
38.
go back to reference Salazar-Ciudad I, Jernvall J, Newman SA (2003) Mechanisms of pattern formation in development and evolution. Development 130(10):2027–2037CrossRef Salazar-Ciudad I, Jernvall J, Newman SA (2003) Mechanisms of pattern formation in development and evolution. Development 130(10):2027–2037CrossRef
39.
go back to reference Sander K (1996) Pattern formation in insect embryogenesis: the evolution of concepts and mechanisms. Int J Insect Morphol Embryol 25(4):349–367MathSciNetCrossRef Sander K (1996) Pattern formation in insect embryogenesis: the evolution of concepts and mechanisms. Int J Insect Morphol Embryol 25(4):349–367MathSciNetCrossRef
40.
go back to reference Serra R, Villani M, Damiani C, Graudenzi A, Colacci A (2008) The diffusion of perturbations in a model of coupled random boolean networks. In: Umeo H, Morishiga S, Nishinari K, Komatsuzaki T, Banidini S (eds) Cellular Automata (proceedings of 8th international conference on cellular auotomata ACRI 2008, Yokohama, September 2008), ISBN 0302-9743, Lecture Notes in Computer Science vol 5191/2008. Springer, Berlin, pp 315-322. Serra R, Villani M, Damiani C, Graudenzi A, Colacci A (2008) The diffusion of perturbations in a model of coupled random boolean networks. In: Umeo H, Morishiga S, Nishinari K, Komatsuzaki T, Banidini S (eds) Cellular Automata (proceedings of 8th international conference on cellular auotomata ACRI 2008, Yokohama, September 2008), ISBN 0302-9743, Lecture Notes in Computer Science vol 5191/2008. Springer, Berlin, pp 315-322.
41.
go back to reference Serra R, Villani M, Graudenzi A, Kauffman SA (2007) Why a simple model of genetic regulatory networks describes the distribution of avalanches in gene expression data. J Theor Biol 246(3):449–460MathSciNetCrossRef Serra R, Villani M, Graudenzi A, Kauffman SA (2007) Why a simple model of genetic regulatory networks describes the distribution of avalanches in gene expression data. J Theor Biol 246(3):449–460MathSciNetCrossRef
42.
go back to reference Shmulevich I, Kauffman SA, Aldana M (2005) Eukaryotic cells are dynamically ordered or critical but not chaotic. PNAS 102(38):13439–13444CrossRef Shmulevich I, Kauffman SA, Aldana M (2005) Eukaryotic cells are dynamically ordered or critical but not chaotic. PNAS 102(38):13439–13444CrossRef
43.
go back to reference Turing AM (1952) The chemical basis of morphogenesis. Philos Trans Roy Soc London Ser B 237(641):3772CrossRef Turing AM (1952) The chemical basis of morphogenesis. Philos Trans Roy Soc London Ser B 237(641):3772CrossRef
44.
go back to reference von Dassow G, Meir E, Munro EM, Odell GM (2000) The segment polarity network is a robust developmental module. Nature 406(6792):188–192. 07 2000/07/13/print. von Dassow G, Meir E, Munro EM, Odell GM (2000) The segment polarity network is a robust developmental module. Nature 406(6792):188–192. 07 2000/07/13/print.
45.
go back to reference Wolpert L (1989) Positional information revisited. Development 107(Supplement):3–12 Wolpert L (1989) Positional information revisited. Development 107(Supplement):3–12
Metadata
Title
Modelling the Influence of Cell Signaling on the Dynamics of Gene Regulatory Networks
Author
Chiara Damiani
Copyright Year
2013
Publisher
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-5890-2_5