Skip to main content
Top
Published in: Acoustical Physics 5/2023

01-10-2023 | OCEAN ACOUSTICS. HYDROACOUSTICS

Modern Methods of Sound Propagation Modeling Based on the Expansion of Acoustic Fields over Normal Modes

Authors: A. G. Tyshchenko, S. B. Kozitskii, M. S. Kazak, P. S. Petrov

Published in: Acoustical Physics | Issue 5/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Abstract—A review of modern methods of modeling acoustic fields based on their representation as a superposition of normal modes is presented. Most of the described methods are based on an approach to calculating mode amplitudes by solving parabolic equations of various types, both narrow-angle and wide-angle. We also consider two-dimensional methods for calculating acoustic fields, to which the above-mentioned three-dimensional approaches are reduced in the absence of dependence of the field and medium parameters on one of the horizontal coordinates. The computation of both time-harmonic acoustic fields and pulsed sound signals is discussed. A number of numerical examples are considered in which such calculations are performed taking into account three-dimensional sound propagation effects. For the first time within the framework of this approach, the calculation of particle accelerations at the pulse signal reception points, as well as the calculation of the energy density flux of the vector field were performed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. Katsnelson, V. Petnikov, and J. Lynch, Fundamentals of Shallow Water Acoustics (Springer, New York, 2012), Vol. 1.CrossRefMATH B. Katsnelson, V. Petnikov, and J. Lynch, Fundamentals of Shallow Water Acoustics (Springer, New York, 2012), Vol. 1.CrossRefMATH
2.
go back to reference F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, Computational Ocean Acoustics (Springer, New York, 2011).CrossRefMATH F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, Computational Ocean Acoustics (Springer, New York, 2011).CrossRefMATH
3.
go back to reference C. L. Pekeris, in Propagation of Sound in the Ocean (Geological Society of America, 1948). C. L. Pekeris, in Propagation of Sound in the Ocean (Geological Society of America, 1948).
4.
go back to reference J. F. Miller and F. Ingenito, “Normal mode fortran programs for calculating sound propagation in the ocean,” Naval Research Lab. Report (1975). J. F. Miller and F. Ingenito, “Normal mode fortran programs for calculating sound propagation in the ocean,” Naval Research Lab. Report (1975).
6.
go back to reference Ocean Acoustics Library—OALIB/Normal Modes. https://oalib-acoustics.org/models-and-software/normal-modes/. Accessed March 30, 2023. Ocean Acoustics Library—OALIB/Normal Modes. https://​oalib-acoustics.​org/​models-and-software/​normal-modes/​.​ Accessed March 30, 2023.
8.
go back to reference E. K. Westwood, Ch. T. Tindle, and N. R. Chapman, J. Acoust. Soc. Am. 100 (6), 3631 (1996).ADSCrossRef E. K. Westwood, Ch. T. Tindle, and N. R. Chapman, J. Acoust. Soc. Am. 100 (6), 3631 (1996).ADSCrossRef
9.
12.
go back to reference A. T. Abawi, W. A. Kuperman, and M. D. Collins, J. Acoust. Soc. Am. 102 (1), 233 (1997).ADSCrossRef A. T. Abawi, W. A. Kuperman, and M. D. Collins, J. Acoust. Soc. Am. 102 (1), 233 (1997).ADSCrossRef
13.
go back to reference P. S. Petrov, M. Ehrhardt, A. G. Tyshchenko, and P. N. Petrov, J. Sound. Vib. 484, 115526 (2020).CrossRef P. S. Petrov, M. Ehrhardt, A. G. Tyshchenko, and P. N. Petrov, J. Sound. Vib. 484, 115526 (2020).CrossRef
14.
15.
go back to reference A. N. Rutenko, D. I. Borovoi, V. A. Gritsenko, P. S. Petrov, V. G. Ushchipovskii, and M. Boekholt, Acoust. Phys. 58 (3), 326 (2012).ADSCrossRef A. N. Rutenko, D. I. Borovoi, V. A. Gritsenko, P. S. Petrov, V. G. Ushchipovskii, and M. Boekholt, Acoust. Phys. 58 (3), 326 (2012).ADSCrossRef
16.
go back to reference D. Manul’chev, A. Tyshchenko, M. Fershalov, and P. Petrov, J. Mar. Sci. Eng. 10 (1), 82 (2022).CrossRef D. Manul’chev, A. Tyshchenko, M. Fershalov, and P. Petrov, J. Mar. Sci. Eng. 10 (1), 82 (2022).CrossRef
17.
go back to reference J. Bonnel, D. R. Dall’Osto, and P. H. Dahl, J. Acoust. Soc. Am. 146 (4), 2930 (2019).ADSCrossRef J. Bonnel, D. R. Dall’Osto, and P. H. Dahl, J. Acoust. Soc. Am. 146 (4), 2930 (2019).ADSCrossRef
18.
go back to reference S. A. Pereselkov, V. M. Kuzkin, G. N. Kuznetsov, D. Yu. Prosovetsky, and S. A. Tkachenko, Acoust. Phys. 66 (4), 416 (2020).ADSCrossRef S. A. Pereselkov, V. M. Kuzkin, G. N. Kuznetsov, D. Yu. Prosovetsky, and S. A. Tkachenko, Acoust. Phys. 66 (4), 416 (2020).ADSCrossRef
22.
go back to reference M. Trofimov, A. Zakharenko, S. Kozitskiy, and P. Petrov, J. Mar. Sci. Eng. 11 (4), 797 (2023).CrossRef M. Trofimov, A. Zakharenko, S. Kozitskiy, and P. Petrov, J. Mar. Sci. Eng. 11 (4), 797 (2023).CrossRef
23.
go back to reference P. S. Petrov, M. S. Kazak, and T. N. Petrova, Phys. Lett. A 450, 128383 (2022).CrossRef P. S. Petrov, M. S. Kazak, and T. N. Petrova, Phys. Lett. A 450, 128383 (2022).CrossRef
24.
25.
go back to reference M. Yu. Trofimov, A. D. Zakharenko, and S. B. Kozitskiy, Comput. Phys. Commun. 207, 179 (2016).ADSCrossRef M. Yu. Trofimov, A. D. Zakharenko, and S. B. Kozitskiy, Comput. Phys. Commun. 207, 179 (2016).ADSCrossRef
29.
go back to reference L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Elsevier, 2013), Vol. 3.MATH L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Elsevier, 2013), Vol. 3.MATH
30.
go back to reference V. P. Maslov and M. V. Fedoryuk, Quasiclassical Approximation for Quantum Mechanics Equations (Nauka, Moscow, 1976) [in Russian].MATH V. P. Maslov and M. V. Fedoryuk, Quasiclassical Approximation for Quantum Mechanics Equations (Nauka, Moscow, 1976) [in Russian].MATH
31.
go back to reference R. Burridge and H. Weinberg, in Wave Propagation and Underwater Acoustics (Springer, Berlin, Heidelberg, 2005). R. Burridge and H. Weinberg, in Wave Propagation and Underwater Acoustics (Springer, Berlin, Heidelberg, 2005).
32.
go back to reference V. E. Nazaikinskii, V. E. Shatalov, and B. Yu. Sternin, Methods of Noncommutative Analysis: Theory and Applications (de Gruyter, 1996). V. E. Nazaikinskii, V. E. Shatalov, and B. Yu. Sternin, Methods of Noncommutative Analysis: Theory and Applications (de Gruyter, 1996).
36.
go back to reference J. Tang, P. S. Petrov, Sh. Piao, and S. B. Kozitskiy, Acoust. Phys. 64 (2), 225 (2018).ADSCrossRef J. Tang, P. S. Petrov, Sh. Piao, and S. B. Kozitskiy, Acoust. Phys. 64 (2), 225 (2018).ADSCrossRef
38.
go back to reference AMPLE. Configuration Files for Experiments. https://github.com/GoldFeniks/Ample/tree/master/samples. AMPLE. Configuration Files for Experiments. https://​github.​com/​GoldFeniks/​Ample/​tree/​master/​samples.​
39.
go back to reference A. G. Tyshchenko, O. S. Zaikin, M. A. Sorokin, and P. S. Petrov, Acoust. Phys. 67 (5), 512 (2021).ADSCrossRef A. G. Tyshchenko, O. S. Zaikin, M. A. Sorokin, and P. S. Petrov, Acoust. Phys. 67 (5), 512 (2021).ADSCrossRef
41.
go back to reference V. G. Petnikov, V. A. Grigorev, A. A. Lunkov, and D. D. Sidorov, J. Acoust. Soc. Am. 151 (4), 2297 (2022).ADSCrossRef V. G. Petnikov, V. A. Grigorev, A. A. Lunkov, and D. D. Sidorov, J. Acoust. Soc. Am. 151 (4), 2297 (2022).ADSCrossRef
43.
44.
go back to reference H. O. Sertlek, M. A. Ainslie, and K. D. Heaney, IEEE J. Ocean. Eng. 44 (4), 1240 (2019).ADSCrossRef H. O. Sertlek, M. A. Ainslie, and K. D. Heaney, IEEE J. Ocean. Eng. 44 (4), 1240 (2019).ADSCrossRef
Metadata
Title
Modern Methods of Sound Propagation Modeling Based on the Expansion of Acoustic Fields over Normal Modes
Authors
A. G. Tyshchenko
S. B. Kozitskii
M. S. Kazak
P. S. Petrov
Publication date
01-10-2023
Publisher
Pleiades Publishing
Published in
Acoustical Physics / Issue 5/2023
Print ISSN: 1063-7710
Electronic ISSN: 1562-6865
DOI
https://doi.org/10.1134/S1063771023600316

Other articles of this Issue 5/2023

Acoustical Physics 5/2023 Go to the issue

ACOUSTIC SIGNAL PROCESSING AND COMPUTER MODELING

Determination of Ice Cover Parameters Using Seismoacoustic Noise

Premium Partners