Skip to main content
Top
Published in: Journal of Materials Science 27/2021

04-07-2021 | Energy materials

Molding preparation and research on performance of low-electrostatic-sensitivity, high-output carbon-based copper azide based on metal–organic framework/graphene oxide

Authors: Zhenzhan Yan, Li Yang, Ji-Min Han, Haojie Li, Junda Huo

Published in: Journal of Materials Science | Issue 27/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As the most promising primary explosive in micro-initiator, copper azide is eye-catching due to its outstanding detonation power, but it is limited due to its high electrostatic sensitivity and difficulty in terms of molding. In this work, we have developed a novel, green and simple strategy, based on graphene oxide modified copper-containing metal–organic framework materials, using water-soluble polyvinyl alcohol as binder to synthesize spherical copper azide/Carbon/reduced graphene oxide (CA/C/rGO) composite, in which CA nanoparticles are uniformly distributed on the porous carbon framework. Detailed characterization shows that the coordination effect of carbon framework material and graphene makes the obtained spherical CA/C/rGO have remarkable electrostatic stability and ignition ability. The obtained CA/C/rGO material has an electrostatic sensitivity of 2.0 mJ and a flame sensitivity of 45 cm, which greatly enhances its electrostatic safety and maintains good ignition performance. The CA/C/rGO is further assembled in a micro-initiator, which successfully detonates the secondary explosive hexanitrohexaazaisowurtzitane (CL-20). The manufacturing process of CA/C/rGO materials is environmentally friendly, easy to volume-produce, and can be well matched with the charging method of the micro-initiator system.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Rossi C, Zhang K, Esteve D et al (2007) Nanoenergetic materials for MEMS: A review. J Microelectromech Syst 16:919–931CrossRef Rossi C, Zhang K, Esteve D et al (2007) Nanoenergetic materials for MEMS: A review. J Microelectromech Syst 16:919–931CrossRef
2.
go back to reference Wang J, Jiang X, Zhang L et al (2015) Design and fabrication of energetic superlattice like-PTFE/Al with superior performance and application in functional micro-initiator. Nano Energy 12:597–605CrossRef Wang J, Jiang X, Zhang L et al (2015) Design and fabrication of energetic superlattice like-PTFE/Al with superior performance and application in functional micro-initiator. Nano Energy 12:597–605CrossRef
3.
go back to reference Pezous H, Rossi C, Sanchez M et al (2010) Integration of a MEMS based safe arm and fire device. Sens Actuators A 159:157–167CrossRef Pezous H, Rossi C, Sanchez M et al (2010) Integration of a MEMS based safe arm and fire device. Sens Actuators A 159:157–167CrossRef
4.
go back to reference Xu J, Tai Y, Ru C et al (2017) Tuning the ignition performance of a micro-chip initiator by integrating various Al/ MoO3 RMFs on a semiconductor bridge. ACS Appl Mater Interfaces 9:5580–5589CrossRef Xu J, Tai Y, Ru C et al (2017) Tuning the ignition performance of a micro-chip initiator by integrating various Al/ MoO3 RMFs on a semiconductor bridge. ACS Appl Mater Interfaces 9:5580–5589CrossRef
5.
go back to reference Mehta N, Oyler K, Cheng G (2014) The safety aspects of handling primary explosives. Z Anorg Allg Chem 640:1309–1313CrossRef Mehta N, Oyler K, Cheng G (2014) The safety aspects of handling primary explosives. Z Anorg Allg Chem 640:1309–1313CrossRef
6.
go back to reference Talawar MB, Agrawal AP, Anniyappan M et al (2006) Primary explosives: electrostatic discharge initiation, additive effect and its relation to thermal and explosive characteristics. J Hazard Mater 137:1074–1078CrossRef Talawar MB, Agrawal AP, Anniyappan M et al (2006) Primary explosives: electrostatic discharge initiation, additive effect and its relation to thermal and explosive characteristics. J Hazard Mater 137:1074–1078CrossRef
7.
go back to reference Deng M, Feng Y, Zhang W et al (2019) A green metal-free fused-ring initiating substance. Nat Commun 10:1339CrossRef Deng M, Feng Y, Zhang W et al (2019) A green metal-free fused-ring initiating substance. Nat Commun 10:1339CrossRef
8.
go back to reference Chen D, Yang H, Yi Z et al (2018) C8N26H4: an environmentally friendly primary explosive with high heat of formation. Angew Chem Int Ed 57:2081–2084CrossRef Chen D, Yang H, Yi Z et al (2018) C8N26H4: an environmentally friendly primary explosive with high heat of formation. Angew Chem Int Ed 57:2081–2084CrossRef
9.
go back to reference He C, Shreeve JM (2016) Potassium 4,5-bis(dinitromethyl)furoxanate: a green primary explosive with a positive oxygen balance. Angew Chem Int Ed 55:772–775CrossRef He C, Shreeve JM (2016) Potassium 4,5-bis(dinitromethyl)furoxanate: a green primary explosive with a positive oxygen balance. Angew Chem Int Ed 55:772–775CrossRef
10.
go back to reference Fischer D, Stierstorfer J (2014) Potassium 1,1′-dinitramino-5,5′-bistetrazolate: a primary explosive with fast detonation and high initiation power. Angew Chem 53:8172–8175CrossRef Fischer D, Stierstorfer J (2014) Potassium 1,1′-dinitramino-5,5′-bistetrazolate: a primary explosive with fast detonation and high initiation power. Angew Chem 53:8172–8175CrossRef
11.
go back to reference Yan Q-L, Petrutik N et al (2016) Highly thermostable and insensitive energetic hybrid coordination polymers based on graphene oxide-Cu(II) complex. Chem Mater A Publ Am Chem Soc 28:6118–6126 Yan Q-L, Petrutik N et al (2016) Highly thermostable and insensitive energetic hybrid coordination polymers based on graphene oxide-Cu(II) complex. Chem Mater A Publ Am Chem Soc 28:6118–6126
13.
go back to reference Zhang GY, Han JM, Yang L et al (2020) Theoretical study of the reduction in sensitivity of copper azide following encapsulation in carbon nanotubes. J Mol Model 26:1–8CrossRef Zhang GY, Han JM, Yang L et al (2020) Theoretical study of the reduction in sensitivity of copper azide following encapsulation in carbon nanotubes. J Mol Model 26:1–8CrossRef
14.
go back to reference Sun C, Chong Z, Chao J et al (2018) Synthesis of AgN5 and its extended 3D energetic framework. Nat Commun 9:1269–1278CrossRef Sun C, Chong Z, Chao J et al (2018) Synthesis of AgN5 and its extended 3D energetic framework. Nat Commun 9:1269–1278CrossRef
15.
go back to reference Landenberger KB, Bolton O, Matzger AJ (2015) Energetic-energetic cocrystals of diacetone diperoxide (DADP): dramatic and divergent sensitivity modifications via cocrystallization. J Am Chem Soc 137:5074–5081CrossRef Landenberger KB, Bolton O, Matzger AJ (2015) Energetic-energetic cocrystals of diacetone diperoxide (DADP): dramatic and divergent sensitivity modifications via cocrystallization. J Am Chem Soc 137:5074–5081CrossRef
16.
go back to reference Xu Y, Wang Q, Shen C et al (2017) A series of energetic metal pentazolate hydrates. Nature 549:78–81CrossRef Xu Y, Wang Q, Shen C et al (2017) A series of energetic metal pentazolate hydrates. Nature 549:78–81CrossRef
17.
go back to reference Duvallet C, Gibbons SM, Gurry T et al (2017) Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat Commun 8:1784CrossRef Duvallet C, Gibbons SM, Gurry T et al (2017) Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat Commun 8:1784CrossRef
18.
go back to reference Yi W, Liu Y, Song S et al (2018) Accelerating the discovery of insensitive high-energy-density materials by a materials genome approach. Nat Commun 9:2444CrossRef Yi W, Liu Y, Song S et al (2018) Accelerating the discovery of insensitive high-energy-density materials by a materials genome approach. Nat Commun 9:2444CrossRef
19.
go back to reference Myers TW, Bjorgaard JA, Brown KE et al (2016) Energetic chromophores low-energy laser initiation in explosive Fe (II) tetrazine complexes. J Am Chem Soc 138:4685–4692CrossRef Myers TW, Bjorgaard JA, Brown KE et al (2016) Energetic chromophores low-energy laser initiation in explosive Fe (II) tetrazine complexes. J Am Chem Soc 138:4685–4692CrossRef
20.
go back to reference Huynh M, Hiskey M, Meyer T et al (2006) Green primaries: environmentally friendly energetic complexes. Proc Natl Acad Sci USA 103:5409–5412CrossRef Huynh M, Hiskey M, Meyer T et al (2006) Green primaries: environmentally friendly energetic complexes. Proc Natl Acad Sci USA 103:5409–5412CrossRef
21.
22.
go back to reference Kuchurov IV, Zharkov MN, Fershta LL et al (2017) Prospective symbiosis of green chemistry and energetic materials. Chemsuschem 10:3914–3946CrossRef Kuchurov IV, Zharkov MN, Fershta LL et al (2017) Prospective symbiosis of green chemistry and energetic materials. Chemsuschem 10:3914–3946CrossRef
23.
go back to reference Qianyou W, Xiao, et al (2016) Metal-organic framework templated synthesis of copper azide as the primary explosive with low electrostatic sensitivity and excellent initiation ability. Adv Mater 28:5837–5843CrossRef Qianyou W, Xiao, et al (2016) Metal-organic framework templated synthesis of copper azide as the primary explosive with low electrostatic sensitivity and excellent initiation ability. Adv Mater 28:5837–5843CrossRef
24.
go back to reference Wang Q, Han J, Zhang Y et al (2019) Fabrication of copper azide film through metal-organic framework for micro-initiator applications. ACS Appl Mater Interfaces 11:8081–8088CrossRef Wang Q, Han J, Zhang Y et al (2019) Fabrication of copper azide film through metal-organic framework for micro-initiator applications. ACS Appl Mater Interfaces 11:8081–8088CrossRef
25.
go back to reference Shan W, Wang Q, Xiao F et al (2017) Explosives in the cage: metal-organic frameworks for high-energy materials sensing and desensitization. Adv Mater 29:1701898CrossRef Shan W, Wang Q, Xiao F et al (2017) Explosives in the cage: metal-organic frameworks for high-energy materials sensing and desensitization. Adv Mater 29:1701898CrossRef
26.
go back to reference Pelletier V, Bhattacharyya S, Knoke I et al (2010) Copper azide confined inside templated carbon nanotubes. Adv Func Mater 20:3168–3174CrossRef Pelletier V, Bhattacharyya S, Knoke I et al (2010) Copper azide confined inside templated carbon nanotubes. Adv Func Mater 20:3168–3174CrossRef
27.
go back to reference Xu R, Yan Z, Yang L et al (2018) Nanoscale homogeneous energetic copper azides@porous carbon hybrid with reduced sensitivity and high ignition ability. ACS Appl Mater Interfaces 10:22545–22551CrossRef Xu R, Yan Z, Yang L et al (2018) Nanoscale homogeneous energetic copper azides@porous carbon hybrid with reduced sensitivity and high ignition ability. ACS Appl Mater Interfaces 10:22545–22551CrossRef
28.
go back to reference Liu X, Hu Y, Li T et al (2020) An energetic composite formed of wrinkled rGO sheets wrapped around copper azide nanowires with higher electrostatic safety as a green primary explosive. RSC Adv 10:30700–30706CrossRef Liu X, Hu Y, Li T et al (2020) An energetic composite formed of wrinkled rGO sheets wrapped around copper azide nanowires with higher electrostatic safety as a green primary explosive. RSC Adv 10:30700–30706CrossRef
29.
go back to reference Zhang L, Yang L, Zhang F et al (2020) In situ synthesis of three-dimensional graphene skeleton copper azide with tunable sensitivity performance. Mater Lett 279(2):128466CrossRef Zhang L, Yang L, Zhang F et al (2020) In situ synthesis of three-dimensional graphene skeleton copper azide with tunable sensitivity performance. Mater Lett 279(2):128466CrossRef
30.
go back to reference Yu Q (2018) Copper azide fabricated by nanoporous copper precursor with proper density. Appl Surf Sci 442:38–44CrossRef Yu Q (2018) Copper azide fabricated by nanoporous copper precursor with proper density. Appl Surf Sci 442:38–44CrossRef
31.
go back to reference Qingxia Yu, Li M, Zeng Q et al (2018) Copper azide prepared by reaction of hollow CuO microspheres with moist HN3 gas. Mater Lett 224:18–21CrossRef Qingxia Yu, Li M, Zeng Q et al (2018) Copper azide prepared by reaction of hollow CuO microspheres with moist HN3 gas. Mater Lett 224:18–21CrossRef
32.
go back to reference Li B, Li M, Zeng Q, Wu X (2016) In situ fabrication of monolithic copper azide. J Energy Mater 34:123–128CrossRef Li B, Li M, Zeng Q, Wu X (2016) In situ fabrication of monolithic copper azide. J Energy Mater 34:123–128CrossRef
33.
go back to reference Shen Y, Xu J, Li N et al (2017) A micro-initiator realized by in-situ synthesis of three-dimensional porous copper azide and its ignition performance. Chem Eng J 326:1116–1124CrossRef Shen Y, Xu J, Li N et al (2017) A micro-initiator realized by in-situ synthesis of three-dimensional porous copper azide and its ignition performance. Chem Eng J 326:1116–1124CrossRef
34.
go back to reference Stoller MD, Park S, Zhu Y et al (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502CrossRef Stoller MD, Park S, Zhu Y et al (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502CrossRef
35.
go back to reference Balandin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef Balandin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef
36.
go back to reference MacDiarmid AG (2001) “Synthetic metals”: a novel role for organic polymers (Nobel lecture). Angew Chem Int Ed 40:2581–2590CrossRef MacDiarmid AG (2001) “Synthetic metals”: a novel role for organic polymers (Nobel lecture). Angew Chem Int Ed 40:2581–2590CrossRef
37.
go back to reference Tao SL, Desai TA (2005) Microfabrication of multilayer, asymmetric, polymeric devices for drug delivery. Adv Mater 17:1625–1630CrossRef Tao SL, Desai TA (2005) Microfabrication of multilayer, asymmetric, polymeric devices for drug delivery. Adv Mater 17:1625–1630CrossRef
38.
go back to reference Service RF (2009) Materials science. Carbon sheets an atom thick give rise to graphene dreams. Science 324:875–877CrossRef Service RF (2009) Materials science. Carbon sheets an atom thick give rise to graphene dreams. Science 324:875–877CrossRef
39.
go back to reference Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef
40.
go back to reference Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef
41.
go back to reference Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRef Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRef
42.
go back to reference Chen F, Mei QS, Li JY, Li CL (2021) Fabrication of graphene/copper nanocomposites via in-situ delamination of graphite in copper by accumulative roll-compositing. Composites Part B 216:108850CrossRef Chen F, Mei QS, Li JY, Li CL (2021) Fabrication of graphene/copper nanocomposites via in-situ delamination of graphite in copper by accumulative roll-compositing. Composites Part B 216:108850CrossRef
43.
go back to reference Chen JH, Jang C, Xiao SD et al (2008) Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol 3:206–209CrossRef Chen JH, Jang C, Xiao SD et al (2008) Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol 3:206–209CrossRef
44.
go back to reference Chae HK, Siberio-Perez DY, Kim J (2004) A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427:523–527CrossRef Chae HK, Siberio-Perez DY, Kim J (2004) A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427:523–527CrossRef
45.
go back to reference Zhimin Li Yu, Wang YZ et al (2015) CL-20 hosted in graphene foam as a high energy material with low sensitivity. R Soc Chem Adv 5:98925–98928 Zhimin Li Yu, Wang YZ et al (2015) CL-20 hosted in graphene foam as a high energy material with low sensitivity. R Soc Chem Adv 5:98925–98928
46.
go back to reference Jun-wu Z, Gui-yu Z, Fu-due N et al (2010) Decorating graphene oxide with CuO nanoparticles in a water isopropanol system. Nanoscale 2:988–994CrossRef Jun-wu Z, Gui-yu Z, Fu-due N et al (2010) Decorating graphene oxide with CuO nanoparticles in a water isopropanol system. Nanoscale 2:988–994CrossRef
47.
go back to reference Li ZM, Zhou MR, Zhang TL et al (2013) The facile synthesis of graphene nanoplatelet–lead styphnate composites and their depressed electrostatic hazards. J Mater Chem A 1:12710–12714CrossRef Li ZM, Zhou MR, Zhang TL et al (2013) The facile synthesis of graphene nanoplatelet–lead styphnate composites and their depressed electrostatic hazards. J Mater Chem A 1:12710–12714CrossRef
48.
go back to reference Cao X, Yin Z, Zhang H (2014) Three-dimensional graphene materials: preparation, structures and application in supercapacitors. Energy Environ Sci 7:1850–1865CrossRef Cao X, Yin Z, Zhang H (2014) Three-dimensional graphene materials: preparation, structures and application in supercapacitors. Energy Environ Sci 7:1850–1865CrossRef
49.
go back to reference Zhang L, Zhang F, Wang Y et al (2018) In-situ preparation of copper azide by direct ink writing. Mater Lett 238:130–133CrossRef Zhang L, Zhang F, Wang Y et al (2018) In-situ preparation of copper azide by direct ink writing. Mater Lett 238:130–133CrossRef
Metadata
Title
Molding preparation and research on performance of low-electrostatic-sensitivity, high-output carbon-based copper azide based on metal–organic framework/graphene oxide
Authors
Zhenzhan Yan
Li Yang
Ji-Min Han
Haojie Li
Junda Huo
Publication date
04-07-2021
Publisher
Springer US
Published in
Journal of Materials Science / Issue 27/2021
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-021-06267-5

Other articles of this Issue 27/2021

Journal of Materials Science 27/2021 Go to the issue

Premium Partners