Skip to main content
Top

2019 | OriginalPaper | Chapter

9. Molecular Dynamics Simulations of MXenes: Ab Initio, Reactive, and Non-reactive Empirical Force Fields

Authors : Roghayyeh Lotfi, Dundar E. Yilmaz, Lukas Vlcek, Adri van Duin

Published in: 2D Metal Carbides and Nitrides (MXenes)

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, we summarized molecular dynamics (MD) simulation methods with ab initio, reactive, and non-reactive empirical force fields. We reviewed various MXene applications such as energy storage, adsorption, intercalation, catalysis, exfoliation, and photocatalytic water splitting which have been investigated with MD simulations. Non-reactive MD simulations provide high computational efficiency in simulations of large-scale systems and slow dynamics of electrode charging. Reactive force fields can accurately describe chemistry of the MXene systems to provide insights to the ion intercalation and water diffusion in MXene sheets as well as measuring the friction coefficient of these structures. Ab initio MD method is often used to predict the final structure and various properties of the system and confirm the stability of the structure. We briefly presented essential work in the literature to provide an insight on how MD simulations are incorporated in efforts to investigate MXenes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Anasori, B., Lukatskaya, M. R., & Gogotsi, Y. (2017). 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2(2), 16098.CrossRef Anasori, B., Lukatskaya, M. R., & Gogotsi, Y. (2017). 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2(2), 16098.CrossRef
2.
go back to reference Binder, K., et al. (2004). Molecular dynamics simulations. Journal of Physics-Condensed Matter, 16(5), S429–S453.CrossRef Binder, K., et al. (2004). Molecular dynamics simulations. Journal of Physics-Condensed Matter, 16(5), S429–S453.CrossRef
3.
go back to reference Nose, S. (1984). A molecular-dynamics method for simulations in the canonical ensemble. Molecular Physics, 52(2), 255–268.CrossRef Nose, S. (1984). A molecular-dynamics method for simulations in the canonical ensemble. Molecular Physics, 52(2), 255–268.CrossRef
4.
go back to reference Hoover, W. G. (1985). Canonical dynamics – equilibrium phase-space distributions. Physical Review A, 31(3), 1695–1697.CrossRef Hoover, W. G. (1985). Canonical dynamics – equilibrium phase-space distributions. Physical Review A, 31(3), 1695–1697.CrossRef
5.
go back to reference Berendsen, H. J. C., et al. (1984). Molecular-dynamics with coupling to an external bath. Journal of Chemical Physics, 81(8), 3684–3690.CrossRef Berendsen, H. J. C., et al. (1984). Molecular-dynamics with coupling to an external bath. Journal of Chemical Physics, 81(8), 3684–3690.CrossRef
6.
go back to reference Andersen, H. C. (1980). Molecular-dynamics simulations at constant pressure and-or temperature. Journal of Chemical Physics, 72(4), 2384–2393.CrossRef Andersen, H. C. (1980). Molecular-dynamics simulations at constant pressure and-or temperature. Journal of Chemical Physics, 72(4), 2384–2393.CrossRef
7.
go back to reference Keating, P. N. (1966). Effect of invariance requirements on elastic strain energy of crystals with application to diamond structure. Physical Review, 145(2), 637.CrossRef Keating, P. N. (1966). Effect of invariance requirements on elastic strain energy of crystals with application to diamond structure. Physical Review, 145(2), 637.CrossRef
8.
go back to reference Gonzalez, M. A. (2010). Force fields and molecular dynamics simulations. Neutrons Et Simulations, Jdn, 18, 169–200. Gonzalez, M. A. (2010). Force fields and molecular dynamics simulations. Neutrons Et Simulations, Jdn, 18, 169–200.
9.
go back to reference Liang, T., et al. (2013). Reactive potentials for advanced atomistic simulations. Annual Review of Materials Research, 43, 109–129.CrossRef Liang, T., et al. (2013). Reactive potentials for advanced atomistic simulations. Annual Review of Materials Research, 43, 109–129.CrossRef
10.
go back to reference Senftle, T. P., et al. (2016). The ReaxFF reactive force-field: Development, applications and future directions. npj Computational Materials, 2, 15011.CrossRef Senftle, T. P., et al. (2016). The ReaxFF reactive force-field: Development, applications and future directions. npj Computational Materials, 2, 15011.CrossRef
11.
go back to reference van Duin, A. C. T., et al. (2001). ReaxFF: A reactive force field for hydrocarbons. Journal of Physical Chemistry A, 105(41), 9396–9409.CrossRef van Duin, A. C. T., et al. (2001). ReaxFF: A reactive force field for hydrocarbons. Journal of Physical Chemistry A, 105(41), 9396–9409.CrossRef
12.
go back to reference Mortier, W. J., Ghosh, S. K., & Shankar, S. (1986). Electronegativity equalization method for the calculation of atomic charges in molecules. Journal of the American Chemical Society, 108(15), 4315–4320.CrossRef Mortier, W. J., Ghosh, S. K., & Shankar, S. (1986). Electronegativity equalization method for the calculation of atomic charges in molecules. Journal of the American Chemical Society, 108(15), 4315–4320.CrossRef
13.
go back to reference Car, R., & Parrinello, M. (1985). Unified approach for molecular-dynamics and density-functional theory. Physical Review Letters, 55(22), 2471–2474.CrossRef Car, R., & Parrinello, M. (1985). Unified approach for molecular-dynamics and density-functional theory. Physical Review Letters, 55(22), 2471–2474.CrossRef
14.
go back to reference Blochl, P. E., & Parrinello, M. (1992). Adiabaticity in 1st-principles molecular-dynamics. Physical Review B, 45(16), 9413–9416.CrossRef Blochl, P. E., & Parrinello, M. (1992). Adiabaticity in 1st-principles molecular-dynamics. Physical Review B, 45(16), 9413–9416.CrossRef
15.
go back to reference Borysiuk, V. N., Mochalin, V. N., & Gogotsi, Y. (2015). Molecular dynamic study of the mechanical properties of two-dimensional titanium carbides Tin+1Cn (MXenes). Nanotechnology, 26(26), 265705. Borysiuk, V. N., Mochalin, V. N., & Gogotsi, Y. (2015). Molecular dynamic study of the mechanical properties of two-dimensional titanium carbides Tin+1Cn (MXenes). Nanotechnology, 26(26), 265705.
16.
go back to reference Borysiuk, V. N., Mochalin, V. N., & Gogotsi, Y. (2018). Bending rigidity of two-dimensional titanium carbide (MXene) nanoribbons: A molecular dynamics study. Computational Materials Science, 143, 418–424.CrossRef Borysiuk, V. N., Mochalin, V. N., & Gogotsi, Y. (2018). Bending rigidity of two-dimensional titanium carbide (MXene) nanoribbons: A molecular dynamics study. Computational Materials Science, 143, 418–424.CrossRef
17.
go back to reference Kurtoglu, M., et al. (2012). First principles study of two-dimensional early transition metal carbides. Mrs Communications, 2(4), 133–137.CrossRef Kurtoglu, M., et al. (2012). First principles study of two-dimensional early transition metal carbides. Mrs Communications, 2(4), 133–137.CrossRef
18.
go back to reference Xu, K., et al. (2016). Charging/discharging dynamics in two-dimensional titanium carbide (MXene) slit nanopore: Insights from molecular dynamic study. Electrochimica Acta, 196, 75–83.CrossRef Xu, K., et al. (2016). Charging/discharging dynamics in two-dimensional titanium carbide (MXene) slit nanopore: Insights from molecular dynamic study. Electrochimica Acta, 196, 75–83.CrossRef
19.
go back to reference Xu, K., et al. (2018). Tracking ionic rearrangements and interpreting dynamic volumetric changes in two-dimensional metal carbide supercapacitors: A molecular dynamics simulation study. ChemSusChem, 11, 1892–1899.CrossRef Xu, K., et al. (2018). Tracking ionic rearrangements and interpreting dynamic volumetric changes in two-dimensional metal carbide supercapacitors: A molecular dynamics simulation study. ChemSusChem, 11, 1892–1899.CrossRef
20.
go back to reference Lin, Z. F., et al. (2016). Electrochemical and in-situ X-ray diffraction studies of Ti3C2Tx MXene in ionic liquid electrolyte. Electrochemistry Communications, 72, 50–53.CrossRef Lin, Z. F., et al. (2016). Electrochemical and in-situ X-ray diffraction studies of Ti3C2Tx MXene in ionic liquid electrolyte. Electrochemistry Communications, 72, 50–53.CrossRef
21.
go back to reference Jackel, N., et al. (2016). Electrochemical in situ tracking of volumetric changes in two-dimensional metal carbides (MXenes) in ionic liquids. ACS Applied Materials & Interfaces, 8(47), 32089–32093.CrossRef Jackel, N., et al. (2016). Electrochemical in situ tracking of volumetric changes in two-dimensional metal carbides (MXenes) in ionic liquids. ACS Applied Materials & Interfaces, 8(47), 32089–32093.CrossRef
22.
go back to reference Muckley, E. S., et al. (2017). Multimodality of structural, electrical, and gravimetric responses of intercalated MXenes to water. ACS Nano, 11(11), 11118–11126.CrossRef Muckley, E. S., et al. (2017). Multimodality of structural, electrical, and gravimetric responses of intercalated MXenes to water. ACS Nano, 11(11), 11118–11126.CrossRef
23.
go back to reference Ding, L., et al. (2018). MXene molecular sieving membranes for highly efficient gas separation. Nature Communications, 9(1), 155.CrossRef Ding, L., et al. (2018). MXene molecular sieving membranes for highly efficient gas separation. Nature Communications, 9(1), 155.CrossRef
24.
go back to reference Rappe, A. K., et al. (1992). UFF, a full periodic-table force-field for molecular mechanics and molecular-dynamics simulations. Journal of the American Chemical Society, 114(25), 10024–10035.CrossRef Rappe, A. K., et al. (1992). UFF, a full periodic-table force-field for molecular mechanics and molecular-dynamics simulations. Journal of the American Chemical Society, 114(25), 10024–10035.CrossRef
25.
go back to reference Kadantsev, E. S., et al. (2013). Fast and accurate electrostatics in metal organic frameworks with a robust charge equilibration parameterization for high-throughput virtual screening of gas adsorption. The Journal of Physical Chemistry Letters, 4(18), 3056–3061.CrossRef Kadantsev, E. S., et al. (2013). Fast and accurate electrostatics in metal organic frameworks with a robust charge equilibration parameterization for high-throughput virtual screening of gas adsorption. The Journal of Physical Chemistry Letters, 4(18), 3056–3061.CrossRef
26.
go back to reference Osti, N. C., et al. (2016). Effect of metal ion intercalation on the structure of MXene and water dynamics on its internal surfaces. ACS Applied Materials & Interfaces, 8(14), 8859–8863.CrossRef Osti, N. C., et al. (2016). Effect of metal ion intercalation on the structure of MXene and water dynamics on its internal surfaces. ACS Applied Materials & Interfaces, 8(14), 8859–8863.CrossRef
27.
go back to reference Osti, N. C., et al. (2017). Influence of metal ions intercalation on the vibrational dynamics of water confined between MXene layers. Physical Review Materials, 1(6), 065406.CrossRef Osti, N. C., et al. (2017). Influence of metal ions intercalation on the vibrational dynamics of water confined between MXene layers. Physical Review Materials, 1(6), 065406.CrossRef
28.
go back to reference Berdiyorov, G. R., & Mahmoud, K. A. (2017). Effect of surface termination on ion intercalation selectivity of bilayer Ti3C2T2 (T = F, O and OH) MXene. Applied Surface Science, 416, 725–730.CrossRef Berdiyorov, G. R., & Mahmoud, K. A. (2017). Effect of surface termination on ion intercalation selectivity of bilayer Ti3C2T2 (T = F, O and OH) MXene. Applied Surface Science, 416, 725–730.CrossRef
29.
go back to reference Zhang, D. F., et al. (2017). Computational study of low interlayer friction in Tin+1Cn (n=1, 2, and 3) MXene. ACS Applied Materials & Interfaces, 9(39), 34467–34479.CrossRef Zhang, D. F., et al. (2017). Computational study of low interlayer friction in Tin+1Cn (n=1, 2, and 3) MXene. ACS Applied Materials & Interfaces, 9(39), 34467–34479.CrossRef
30.
go back to reference Hu, Q. K., et al. (2013). MXene: A new family of promising hydrogen storage medium. Journal of Physical Chemistry A, 117(51), 14253–14260.CrossRef Hu, Q. K., et al. (2013). MXene: A new family of promising hydrogen storage medium. Journal of Physical Chemistry A, 117(51), 14253–14260.CrossRef
31.
go back to reference Hu, Q. K., et al. (2014). Two-dimensional Sc2C: A reversible and high-capacity hydrogen storage material predicted by first-principles calculations. International Journal of Hydrogen Energy, 39(20), 10606–10612.CrossRef Hu, Q. K., et al. (2014). Two-dimensional Sc2C: A reversible and high-capacity hydrogen storage material predicted by first-principles calculations. International Journal of Hydrogen Energy, 39(20), 10606–10612.CrossRef
32.
go back to reference Zhang, Y. J., et al. (2016). Adsorption of uranyl species on hydroxylated titanium carbide nanosheet: A first-principles study. Journal of Hazardous Materials, 308, 402–410.CrossRef Zhang, Y. J., et al. (2016). Adsorption of uranyl species on hydroxylated titanium carbide nanosheet: A first-principles study. Journal of Hazardous Materials, 308, 402–410.CrossRef
33.
go back to reference Zhang, Y. J., et al. (2017). Theoretical insights into the uranyl adsorption behavior on vanadium carbide MXene. Applied Surface Science, 426, 572–578.CrossRef Zhang, Y. J., et al. (2017). Theoretical insights into the uranyl adsorption behavior on vanadium carbide MXene. Applied Surface Science, 426, 572–578.CrossRef
34.
go back to reference Srivastava, P., et al. (2016). Mechanistic insight into the chemical exfoliation and functionalization of Ti3C2 MXene. ACS Applied Materials & Interfaces, 8(36), 24256–24264.CrossRef Srivastava, P., et al. (2016). Mechanistic insight into the chemical exfoliation and functionalization of Ti3C2 MXene. ACS Applied Materials & Interfaces, 8(36), 24256–24264.CrossRef
35.
go back to reference Mishra, A., et al. (2016). Isolation of pristine MXene from Nb4AlC3 MAX phase: A first-principles study. Physical Chemistry Chemical Physics, 18(16), 11073–11080.CrossRef Mishra, A., et al. (2016). Isolation of pristine MXene from Nb4AlC3 MAX phase: A first-principles study. Physical Chemistry Chemical Physics, 18(16), 11073–11080.CrossRef
36.
go back to reference Naguib, M., et al. (2014). 25th anniversary article: MXenes: A new family of two-dimensional materials. Advanced Materials, 26(7), 992–1005.CrossRef Naguib, M., et al. (2014). 25th anniversary article: MXenes: A new family of two-dimensional materials. Advanced Materials, 26(7), 992–1005.CrossRef
37.
go back to reference Sun, D. D., et al. (2016). Structural transformation of MXene (V2C, Cr2C, and Ta2C) with O Groups during Lithiation: A first-principles investigation. ACS Applied Materials & Interfaces, 8(1), 74–81.CrossRef Sun, D. D., et al. (2016). Structural transformation of MXene (V2C, Cr2C, and Ta2C) with O Groups during Lithiation: A first-principles investigation. ACS Applied Materials & Interfaces, 8(1), 74–81.CrossRef
38.
go back to reference Meng, Q. Q., et al. (2017). Theoretical prediction of MXene-like structured Ti3C4 as a high capacity electrode material for Na ion batteries. Physical Chemistry Chemical Physics, 19(43), 29106–29113.CrossRef Meng, Q. Q., et al. (2017). Theoretical prediction of MXene-like structured Ti3C4 as a high capacity electrode material for Na ion batteries. Physical Chemistry Chemical Physics, 19(43), 29106–29113.CrossRef
39.
go back to reference Guo, X., et al. (2016). High adsorption capacity of heavy metals on two-dimensional MXenes: An ab initio study with molecular dynamics simulation. Physical Chemistry Chemical Physics, 18(1), 228–233.CrossRef Guo, X., et al. (2016). High adsorption capacity of heavy metals on two-dimensional MXenes: An ab initio study with molecular dynamics simulation. Physical Chemistry Chemical Physics, 18(1), 228–233.CrossRef
40.
go back to reference Wang, G. (2016). Theoretical prediction of the intrinsic half-metallicity in surface-oxygen-passivated Cr2N MXene. Journal of Physical Chemistry C, 120(33), 18850–18857.CrossRef Wang, G. (2016). Theoretical prediction of the intrinsic half-metallicity in surface-oxygen-passivated Cr2N MXene. Journal of Physical Chemistry C, 120(33), 18850–18857.CrossRef
41.
go back to reference Wang, G., & Liao, Y. (2017). Theoretical prediction of robust and intrinsic half-metallicity in Ni2N MXene with different types of surface terminations. Applied Surface Science, 426, 804–811.CrossRef Wang, G., & Liao, Y. (2017). Theoretical prediction of robust and intrinsic half-metallicity in Ni2N MXene with different types of surface terminations. Applied Surface Science, 426, 804–811.CrossRef
42.
go back to reference Aierken, Y., et al. (2018). MXenes/graphene heterostructures for Li battery applications: A first principles study. Journal of Materials Chemistry A, 6(5), 2337–2345.CrossRef Aierken, Y., et al. (2018). MXenes/graphene heterostructures for Li battery applications: A first principles study. Journal of Materials Chemistry A, 6(5), 2337–2345.CrossRef
43.
go back to reference Xie, Y., et al. (2014). Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. Journal of the American Chemical Society, 136(17), 6385–6394.CrossRef Xie, Y., et al. (2014). Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. Journal of the American Chemical Society, 136(17), 6385–6394.CrossRef
44.
go back to reference Lv, X. S., et al. (2017). Sc2C as a promising anode material with high mobility and capacity: A first-principles study. Chemphyschem, 18(12), 1627–1634.CrossRef Lv, X. S., et al. (2017). Sc2C as a promising anode material with high mobility and capacity: A first-principles study. Chemphyschem, 18(12), 1627–1634.CrossRef
45.
go back to reference Si, C., et al. (2016). Quantum spin Hall phase in Mo2M2C3O2 (M = Ti, Zr, Hf) MXenes. Journal of Materials Chemistry C, 4(48), 11524–11529.CrossRef Si, C., et al. (2016). Quantum spin Hall phase in Mo2M2C3O2 (M = Ti, Zr, Hf) MXenes. Journal of Materials Chemistry C, 4(48), 11524–11529.CrossRef
46.
go back to reference Ling, C. Y., et al. (2016). Transition metal-promoted V2CO2 (MXenes): A new and highly active catalyst for hydrogen evolution reaction. Advanced Science, 3(11), 1600180.CrossRef Ling, C. Y., et al. (2016). Transition metal-promoted V2CO2 (MXenes): A new and highly active catalyst for hydrogen evolution reaction. Advanced Science, 3(11), 1600180.CrossRef
47.
go back to reference Guo, Z. L., et al. (2016). MXene: A promising photocatalyst for water splitting. Journal of Materials Chemistry A, 4(29), 11446–11452.CrossRef Guo, Z. L., et al. (2016). MXene: A promising photocatalyst for water splitting. Journal of Materials Chemistry A, 4(29), 11446–11452.CrossRef
48.
go back to reference He, J. J., et al. (2016). High temperature spin-polarized semiconductivity with zero magnetization in two-dimensional Janus MXenes. Journal of Materials Chemistry C, 4(27), 6500.CrossRef He, J. J., et al. (2016). High temperature spin-polarized semiconductivity with zero magnetization in two-dimensional Janus MXenes. Journal of Materials Chemistry C, 4(27), 6500.CrossRef
Metadata
Title
Molecular Dynamics Simulations of MXenes: Ab Initio, Reactive, and Non-reactive Empirical Force Fields
Authors
Roghayyeh Lotfi
Dundar E. Yilmaz
Lukas Vlcek
Adri van Duin
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-19026-2_9