Skip to main content
Top

2021 | OriginalPaper | Chapter

Motion Control of Omnidirectional Mobile Robot Using Bond Graph and Flatness-Based Controller

Authors : Saumya Ranjan Sahoo, Shital S. Chiddarwar

Published in: Mechanism and Machine Science

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Omnidirectional mobile robots are widely used in various fields like warehouses, hospitals, military and nuclear power plants. Due to independent actuation of each wheel, it facilitates the highest order maneuverability and mobility. However, it being a complex mechatronics system, dynamic modeling and control is a challenging task. In this paper, an attempt is made to model a four-wheel omnidirectional mobile robot using highly intuitive bond graph technique. The dynamic model thus obtained is used to derive the control law for the robot. Control of the robot along desired trajectory is attained using principle of differential flatness theory. The validation of the approach is done in real time by performing simulation and experimental trials. These trials revealed effectiveness of bond graph technique for dynamic modeling of robot and flatness-based controller for smooth and accurate trajectory tracking.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ye C, Ma S, Hui L (2011) An omnidirectional mobile robot. Sci China Inf Sci 54(12):2631–2638CrossRef Ye C, Ma S, Hui L (2011) An omnidirectional mobile robot. Sci China Inf Sci 54(12):2631–2638CrossRef
2.
go back to reference Pin Fg, Killough SM (1994) A new family of omnidirectional and holonomic wheeled platforms for mobile robots. IEEE Trans Robot Autom 10(4): 480–489. (Harold A. Rothbart (2003) Cam design handbook: dynamics and accuracy, McGraw-Hill Professional) Pin Fg, Killough SM (1994) A new family of omnidirectional and holonomic wheeled platforms for mobile robots. IEEE Trans Robot Autom 10(4): 480–489. (Harold A. Rothbart (2003) Cam design handbook: dynamics and accuracy, McGraw-Hill Professional)
3.
go back to reference Tzafestas SG (2013) Introduction to mobile robot control. Elsevier Tzafestas SG (2013) Introduction to mobile robot control. Elsevier
4.
go back to reference Campion G, Bastin G, Dandrea-Novel B (1996) Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Trans Robot Autom 12(1):47–62CrossRef Campion G, Bastin G, Dandrea-Novel B (1996) Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Trans Robot Autom 12(1):47–62CrossRef
5.
go back to reference Conceicao AS, Moreira AP, Costa PJ (2009) Practical approach of modeling and parameters estimation for omnidirectional mobile robots. IEEE/ASME Trans Mechatron 14(3):377–381CrossRef Conceicao AS, Moreira AP, Costa PJ (2009) Practical approach of modeling and parameters estimation for omnidirectional mobile robots. IEEE/ASME Trans Mechatron 14(3):377–381CrossRef
6.
go back to reference Tla N, de Villiers M (2008) Kinematics and dynamics modelling of a mecanum wheeled mobile platform. In: 15th International conference on mechatronics and machine vision in practice, M2VIP 2008, pp 657–662. IEEE Tla N, de Villiers M (2008) Kinematics and dynamics modelling of a mecanum wheeled mobile platform. In: 15th International conference on mechatronics and machine vision in practice, M2VIP 2008, pp 657–662. IEEE
7.
go back to reference Troncale L (1988) The systems sciences: What are they? are they one, or many? Eur J Oper Res 37(1):8–33CrossRef Troncale L (1988) The systems sciences: What are they? are they one, or many? Eur J Oper Res 37(1):8–33CrossRef
8.
go back to reference Van Amerongen J, Breedveld P (2003) Modelling of physical systems for the design and control of mechatronic systems. Annual Reviews in Control 27(1):87–117CrossRef Van Amerongen J, Breedveld P (2003) Modelling of physical systems for the design and control of mechatronic systems. Annual Reviews in Control 27(1):87–117CrossRef
9.
go back to reference Karnopp DC, Margolis DL, Rosenberg RC. (2012) System dynamics: modeling, simulation, and control of mechatronic systems. Wiley. (Ye S, Ma, Hui L (2011) An omnidirectional mobile robot. Sci China Inf Sci 54(12): 2631–2638) Karnopp DC, Margolis DL, Rosenberg RC. (2012) System dynamics: modeling, simulation, and control of mechatronic systems. Wiley. (Ye S, Ma, Hui L (2011) An omnidirectional mobile robot. Sci China Inf Sci 54(12): 2631–2638)
10.
go back to reference Pathak PM, Kumar RP, Mukherjee A, Dasgupta A (2008) A scheme for robust trajectory control of space robots. Simul Model Pract Theory 16(9):1337–1349CrossRef Pathak PM, Kumar RP, Mukherjee A, Dasgupta A (2008) A scheme for robust trajectory control of space robots. Simul Model Pract Theory 16(9):1337–1349CrossRef
11.
go back to reference Ragusila V, Emami MR (2014) Modelling of a robotic leg using bond graphs. Simul Model Pract Theory 40:132–143CrossRef Ragusila V, Emami MR (2014) Modelling of a robotic leg using bond graphs. Simul Model Pract Theory 40:132–143CrossRef
12.
go back to reference Damic V, Cohodar M (2015) Dynamic analysis of Stewart platform by bond graphs. Procedia Eng 100:226–233CrossRef Damic V, Cohodar M (2015) Dynamic analysis of Stewart platform by bond graphs. Procedia Eng 100:226–233CrossRef
13.
go back to reference Alakshendra V, Chiddarwar SS (2017) Adaptive robust control of Mecanum-wheeled mobile robot with uncertainties. Nonlinear Dyn 87(4):2147–2169MathSciNetCrossRef Alakshendra V, Chiddarwar SS (2017) Adaptive robust control of Mecanum-wheeled mobile robot with uncertainties. Nonlinear Dyn 87(4):2147–2169MathSciNetCrossRef
14.
go back to reference Sahoo SR, Chiddarwar SS, Alakshendra V (2017) Intuitive dynamic modeling and flatness-based nonlinear control of a mobile robot. SIMULATION, p 0037549717741192 Sahoo SR, Chiddarwar SS, Alakshendra V (2017) Intuitive dynamic modeling and flatness-based nonlinear control of a mobile robot. SIMULATION, p 0037549717741192
15.
go back to reference Fliess M, Lévine J, Martin P, Rouchon P, Flatness and defect of non-linear systems: introductory theory and examples Fliess M, Lévine J, Martin P, Rouchon P, Flatness and defect of non-linear systems: introductory theory and examples
16.
go back to reference Murray RM, Rathinam M, and Sluis W (1995) Differential flatness of mechanical control systems: A catalog of prototype systems. In: ASME international mechanical engineering congress and exposition Murray RM, Rathinam M, and Sluis W (1995) Differential flatness of mechanical control systems: A catalog of prototype systems. In: ASME international mechanical engineering congress and exposition
Metadata
Title
Motion Control of Omnidirectional Mobile Robot Using Bond Graph and Flatness-Based Controller
Authors
Saumya Ranjan Sahoo
Shital S. Chiddarwar
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-4477-4_58

Premium Partners