Skip to main content
Top
Published in: Optical Memory and Neural Networks 2/2023

01-12-2023

Motion Control of Supersonic Passenger Aircraft Using Machine Learning Methods

Authors: A. Yu. Tiumentsev, Yu. V. Tiumentsev

Published in: Optical Memory and Neural Networks | Special Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract—

Motion control of modern and advanced aircraft has to be provided under conditions of incomplete and inaccurate knowledge of their parameters and characteristics, possible flight regimes, and environmental influences. In addition, a variety of abnormal situations may arise during flight, in particular, equipment failures and structural damage. The control system must be able to adapt to these changes by adjusting the control laws in use. The tools of the adaptive control allows us to meet this requirement. One of the effective approaches to the implementation of adaptivity concepts is the approach based on methods and tools of neural network modeling and control. In this case, a fairly common option in solving such problems is the use of recurrent neural networks, in particular, networks of NARX and NARMAX type. However, in a number of cases, in particular for control objects with complicated dynamic properties, this approach is ineffective. As a possible alternative, it is proposed to consider deep neural networks used both for modeling of dynamical systems and for their control. The capabilities of this approach are demonstrated on the example of a real applied problem, in which the control law of longitudinal angular motion of a supersonic passenger airplane is synthesized. The results obtained allow us to evaluate the effectiveness of the proposed approach, including the case of failure situations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Astolfi, A., Karagiannis, D., and Ortega R., Nonlinear and Adaptive Control with Applications, Berlin: Springer, 2008.CrossRefMATH Astolfi, A., Karagiannis, D., and Ortega R., Nonlinear and Adaptive Control with Applications, Berlin: Springer, 2008.CrossRefMATH
2.
go back to reference Ioannou, P.A. and Sun, J., Robust Adaptive Control, Prentice Hall, 1995.MATH Ioannou, P.A. and Sun, J., Robust Adaptive Control, Prentice Hall, 1995.MATH
3.
go back to reference Mosca, E., Optimal, Predictive, and Adaptive Control, Englewood Cliffs, New Jersey: Prentice Hall, 1994. Mosca, E., Optimal, Predictive, and Adaptive Control, Englewood Cliffs, New Jersey: Prentice Hall, 1994.
5.
go back to reference Spooner, J.T., Maggiore, M., Ordóñez, R., and Passino, K.M., Stable Adaptive Control and Estimation for Nonlinear Systems: Neural and Fuzzy Approximator Techniques, Wiley, 2002.CrossRef Spooner, J.T., Maggiore, M., Ordóñez, R., and Passino, K.M., Stable Adaptive Control and Estimation for Nonlinear Systems: Neural and Fuzzy Approximator Techniques, Wiley, 2002.CrossRef
6.
go back to reference Narendra, K.S. and Parthasarathy, K., Identification and control of dynamic systems using neural networks, IEEE Trans. eural Networks, 1990, vol. 1, no. 1, pp. 4–27. Narendra, K.S. and Parthasarathy, K., Identification and control of dynamic systems using neural networks, IEEE Trans. eural Networks, 1990, vol. 1, no. 1, pp. 4–27.
7.
go back to reference Napolitano, M. and Kincheloe, M., On-line learning neural-network controllers for autopilot systems, J. Guidance, Control Dyn., 1995, vol. 18, no. 5, pp. 1008–1115.CrossRef Napolitano, M. and Kincheloe, M., On-line learning neural-network controllers for autopilot systems, J. Guidance, Control Dyn., 1995, vol. 18, no. 5, pp. 1008–1115.CrossRef
8.
go back to reference Omidvar, O.M., Elliott, D.I., Eds., Neural Systems for Control, Academic, 1997. Omidvar, O.M., Elliott, D.I., Eds., Neural Systems for Control, Academic, 1997.
9.
go back to reference Haykin, S., Neural Networks: A Comprehensive Foundation, 2nd ed., Prentice Hall, 2006.MATH Haykin, S., Neural Networks: A Comprehensive Foundation, 2nd ed., Prentice Hall, 2006.MATH
10.
go back to reference Kondratiev, A.I. and Tyumentsev, Yu.V., Application of neural networks for synthesizing flight control algorithms, I. Neural network inverse dynamics method for aircraft flight control, Russ. Aeronautics (IzVUZ), 2013, vol. 56, no. 2, pp. 23–30. Kondratiev, A.I. and Tyumentsev, Yu.V., Application of neural networks for synthesizing flight control algorithms, I. Neural network inverse dynamics method for aircraft flight control, Russ. Aeronautics (IzVUZ), 2013, vol. 56, no. 2, pp. 23–30.
11.
go back to reference Kondratiev, A.I. and Tyumentsev, Yu.V., Application of neural networks for synthesizing flight control algorithms, II. Adaptive tuning of neural network control law, Russ. Aeronautics (IzVUZ), 2013, vol. 56, no. 3, pp. 34–39. Kondratiev, A.I. and Tyumentsev, Yu.V., Application of neural networks for synthesizing flight control algorithms, II. Adaptive tuning of neural network control law, Russ. Aeronautics (IzVUZ), 2013, vol. 56, no. 3, pp. 34–39.
12.
go back to reference Kolganov, P.A., Kondratiev, A.I., Tiumentsev, A.Yu., and Tiumentsev, Yu.V., Neural network nonlinear adaptive fault tolerant motion control for unmanned aerial vehicles, Opt. Mem. Neural Networks, 2022, vol. 31, no. 1, pp. 1–15.CrossRef Kolganov, P.A., Kondratiev, A.I., Tiumentsev, A.Yu., and Tiumentsev, Yu.V., Neural network nonlinear adaptive fault tolerant motion control for unmanned aerial vehicles, Opt. Mem. Neural Networks, 2022, vol. 31, no. 1, pp. 1–15.CrossRef
13.
go back to reference Egorchev, M.V. and Tiumentsev, Yu.V., Semi-empirical neural network based approach to modelling and simulation of controlled dynamical systems, Procedia Comput. Sci., 2018, vol. 123, pp. 134–139.CrossRef Egorchev, M.V. and Tiumentsev, Yu.V., Semi-empirical neural network based approach to modelling and simulation of controlled dynamical systems, Procedia Comput. Sci., 2018, vol. 123, pp. 134–139.CrossRef
14.
go back to reference Egorchev, M.V. and Tiumentsev, Yu.V., Neural network semi-empirical modeling of the longitudinal motion for maneuverable aircraft and identification of its aerodynamic characteristics, Studies in Computational Intelligence, vol. 736, Springer, 2018, pp. 65–71. Egorchev, M.V. and Tiumentsev, Yu.V., Neural network semi-empirical modeling of the longitudinal motion for maneuverable aircraft and identification of its aerodynamic characteristics, Studies in Computational Intelligence, vol. 736, Springer, 2018, pp. 65–71.
15.
go back to reference Egorchev, M.V. and Tiumentsev, Yu.V., Semi-empirical continuous-time neural network based models for controllable dynamical systems, Opt. Mem. Neural Networks, 2019, vol. 28, no. 3, pp. 192–203.CrossRef Egorchev, M.V. and Tiumentsev, Yu.V., Semi-empirical continuous-time neural network based models for controllable dynamical systems, Opt. Mem. Neural Networks, 2019, vol. 28, no. 3, pp. 192–203.CrossRef
16.
go back to reference Egorchev, M.V. and Tiumentsev, Yu.V., Semi-empirical continuous-time neural network based models for controllable dynamical systems, Opt. Mem. Neural Networks, 2019, vol. 28, no. 3, pp. 192–203.CrossRef Egorchev, M.V. and Tiumentsev, Yu.V., Semi-empirical continuous-time neural network based models for controllable dynamical systems, Opt. Mem. Neural Networks, 2019, vol. 28, no. 3, pp. 192–203.CrossRef
17.
go back to reference Ljung, L., System Identification: Theory for the User, 2nd ed., Upper Saddle River, New Jersey: Prentice-Hall, 1999.MATH Ljung, L., System Identification: Theory for the User, 2nd ed., Upper Saddle River, New Jersey: Prentice-Hall, 1999.MATH
18.
go back to reference Isermann, R. and Münchhoh, M., Identification of Dynamic Systems: An Introduction with Applications, Berlin: Springer, 2011.CrossRef Isermann, R. and Münchhoh, M., Identification of Dynamic Systems: An Introduction with Applications, Berlin: Springer, 2011.CrossRef
19.
go back to reference Billings, S.A., Nonlinear System Identification: NARMAX Methods in the Time, Frequency and Spatio-Temporal Domains, Wiley, 2013.CrossRefMATH Billings, S.A., Nonlinear System Identification: NARMAX Methods in the Time, Frequency and Spatio-Temporal Domains, Wiley, 2013.CrossRefMATH
20.
go back to reference Nelles, O., Nonlinear System Identification: From Classical Approaches to Neural Networks, Fuzzy Models, and Gaussian Processes, 2nd ed., Switzerland, Springer Nature Switzerland AG, 2020.CrossRefMATH Nelles, O., Nonlinear System Identification: From Classical Approaches to Neural Networks, Fuzzy Models, and Gaussian Processes, 2nd ed., Switzerland, Springer Nature Switzerland AG, 2020.CrossRefMATH
21.
go back to reference Hagan, M.T., Demuth, H.B., Beale, M.H., and De Jesús, O., Neural Network Design, 2nd ed., 2014. Hagan, M.T., Demuth, H.B., Beale, M.H., and De Jesús, O., Neural Network Design, 2nd ed., 2014.
22.
23.
go back to reference Dreyfus, G., Neural Networks: Methodology and Applications, Berlin: Springer, 2005.MATH Dreyfus, G., Neural Networks: Methodology and Applications, Berlin: Springer, 2005.MATH
24.
go back to reference Fua, Y. and Chaia, T., Nonlinear multivariable adaptive control using multiple models and neural networks, Automatica, 2007, vol. 43, no. 6, pp. 1101–1110.MathSciNetCrossRef Fua, Y. and Chaia, T., Nonlinear multivariable adaptive control using multiple models and neural networks, Automatica, 2007, vol. 43, no. 6, pp. 1101–1110.MathSciNetCrossRef
25.
go back to reference Akpan, V.A. and Hassapis, G.D., Nonlinear model identification and adaptive model predictive control using neural networks, ISA Trans., 2011, vol. 50, no. 2, pp. 177–194.CrossRef Akpan, V.A. and Hassapis, G.D., Nonlinear model identification and adaptive model predictive control using neural networks, ISA Trans., 2011, vol. 50, no. 2, pp. 177–194.CrossRef
26.
go back to reference Lungu, M. and Lungu, R., Landing auto-pilots for aircraft motion in longitudinal plane using adaptive control laws based on neural networks and dynamic inversion, Asian J. Control, 2017, vol. 19, no. 1, pp. 1–15.MathSciNetCrossRefMATH Lungu, M. and Lungu, R., Landing auto-pilots for aircraft motion in longitudinal plane using adaptive control laws based on neural networks and dynamic inversion, Asian J. Control, 2017, vol. 19, no. 1, pp. 1–15.MathSciNetCrossRefMATH
27.
go back to reference Leeghim, H., Choi, Y., and Bang, H., Adaptive attitude control of spacecraft using neural networks, Acta Astronaut., 2009, vol. 64, no. 7, pp. 778–786.CrossRef Leeghim, H., Choi, Y., and Bang, H., Adaptive attitude control of spacecraft using neural networks, Acta Astronaut., 2009, vol. 64, no. 7, pp. 778–786.CrossRef
29.
go back to reference Grishina, A.Y. and Efremov, A.V., Development of a controller law for a supersonic transport using alternative means of automation in the landing phase, in Recent Developments in High-Speed Transport, Strelets, D.Y. and Korsun, O.N., Eds., Springer, 2023, pp. 41–49. Grishina, A.Y. and Efremov, A.V., Development of a controller law for a supersonic transport using alternative means of automation in the landing phase, in Recent Developments in High-Speed Transport, Strelets, D.Y. and Korsun, O.N., Eds., Springer, 2023, pp. 41–49.
30.
go back to reference Prodanik, V.A. and Efremov, A.V., Synthesis of a controller based on the principle of inverse dynamics and the online identification of a lateral motion model in a next-generation supersonic transport, in Recent Developments in High-Speed Transport, Strelets, D.Y. and Korsun, O.N., Eds., Springer, 2023, pp. 41–49. Prodanik, V.A. and Efremov, A.V., Synthesis of a controller based on the principle of inverse dynamics and the online identification of a lateral motion model in a next-generation supersonic transport, in Recent Developments in High-Speed Transport, Strelets, D.Y. and Korsun, O.N., Eds., Springer, 2023, pp. 41–49.
31.
go back to reference Stevens, B.L., Lewis, F.L., and Johnson, E.N., Aircraft Control and Simulation: Dynamics, Controls Design and Autonomous Systems, 3rd ed., Wiley, 2016. Stevens, B.L., Lewis, F.L., and Johnson, E.N., Aircraft Control and Simulation: Dynamics, Controls Design and Autonomous Systems, 3rd ed., Wiley, 2016.
32.
go back to reference Cook, M.V., Flight Dynamics Principles, 2nd ed., Elsevier, 2007. Cook, M.V., Flight Dynamics Principles, 2nd ed., Elsevier, 2007.
Metadata
Title
Motion Control of Supersonic Passenger Aircraft Using Machine Learning Methods
Authors
A. Yu. Tiumentsev
Yu. V. Tiumentsev
Publication date
01-12-2023
Publisher
Pleiades Publishing
Published in
Optical Memory and Neural Networks / Issue Special Issue 2/2023
Print ISSN: 1060-992X
Electronic ISSN: 1934-7898
DOI
https://doi.org/10.3103/S1060992X23060127

Other articles of this Special Issue 2/2023

Optical Memory and Neural Networks 2/2023 Go to the issue

Premium Partner