Skip to main content
Top

2022 | OriginalPaper | Chapter

3. Motion of Chiral and Achiral Structures at Low Re

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter is based on and contains excerpts and figures from the articles “Role of symmetry in driven propulsion at low Reynolds number” [1] and “Characterization of active matter in dense suspensions with heterodyne laser Doppler velocimetry” [2]. Contributions of coauthors are indicated.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Many textbooks, e.g. see [20], define the principal axes of either rotation, translation or coupling tensors based on eigenvectors that diagonalize the corresponding hydrodynamic resistance tensors, whereas here its is defined in terms of the hydrodynamic mobility, which is the inverse of the resistance tensors (see (2.​10)). For arbitrary shapes the two definitions yield different frames.
 
2
The entries of \(\boldsymbol{{\mathfrak C}}\) are determined by \({\mathfrak C}_{i} \equiv \mathscr {G}_{i i} /\left( \mathscr {F}_{i} \ell \right) \) on the diagonal and \({\mathfrak C}_{i j}=\frac{1}{2 \ell }\left( \mathscr {G}_{i j} / \mathscr {F}_{j}+\mathscr {G}_{j i} / \mathscr {F}_{i}\right) \) with \(i\ne j\) and no summation over repeating indices for off-diagonal elements.
 
3
For the 99.5% pure glycerol that has been used, a temperature increase from 25\(^{\circ }\)C to 29\(^{\circ }\)C corresponds to a decrease in dynamic viscosity \(\eta \) by a factor 1.4.
 
4
The index i in \(\widehat{R}_i\) indicates a rotation about \(\pi \) around the i-th principal axis of rotation \(\boldsymbol{e}_i\).
 
5
Here z indicates the optical axis of the microscope.
 
6
The resolution limit for visible light and an NA \(=\) 1 is approximately \(r_{\mathrm {res}} = \frac{\lambda }{2\mathrm {NA}} \approx 250\,\) nm.
 
7
In practice the artificial reference beam was realized by shifting the frequency of the illumination beam with an acousto-optical modulator (APE GmbH) by a desired Bragg frequency \(\omega _{\mathrm {Bragg}}\).
 
Literature
1.
go back to reference Sachs J, Morozov KI, Kenneth O, Qiu T, Segreto N, Fischer P, Leshansky AM (2018) Role of symmetry in driven propulsion at low Reynolds number. Phys Rev E 98(6) Sachs J, Morozov KI, Kenneth O, Qiu T, Segreto N, Fischer P, Leshansky AM (2018) Role of symmetry in driven propulsion at low Reynolds number. Phys Rev E 98(6)
2.
go back to reference Sachs J, Kottapalli SN, Fischer P, Botin D, Palberg T (2021) Characterization of active matter in dense suspensions with heterodyne laser doppler velocimetry. Colloid Polym Sci 299:269–280CrossRef Sachs J, Kottapalli SN, Fischer P, Botin D, Palberg T (2021) Characterization of active matter in dense suspensions with heterodyne laser doppler velocimetry. Colloid Polym Sci 299:269–280CrossRef
3.
go back to reference Nelson BJ, Kaliakatsos IK, Abbott JJ (2010) Microrobots for minimally invasive medicine. Annu Rev Biomed Eng 12:55–85CrossRef Nelson BJ, Kaliakatsos IK, Abbott JJ (2010) Microrobots for minimally invasive medicine. Annu Rev Biomed Eng 12:55–85CrossRef
4.
go back to reference Purcell EM (1977) Life at low Reynolds number. Am J Phys 45:3 Purcell EM (1977) Life at low Reynolds number. Am J Phys 45:3
5.
go back to reference Shah AS, Ben-Shahar Y, Moninger TO, Kline JN, Welsh MJ (2009) Motile cilia of human airway epithelia are chemosensory. Science 325(5944):1131–1134ADSCrossRef Shah AS, Ben-Shahar Y, Moninger TO, Kline JN, Welsh MJ (2009) Motile cilia of human airway epithelia are chemosensory. Science 325(5944):1131–1134ADSCrossRef
6.
go back to reference Lauga E, Powers TR (2009) The hydrodynamics of swimming microorganisms. Rep Prog Phys 72(9):096601 Lauga E, Powers TR (2009) The hydrodynamics of swimming microorganisms. Rep Prog Phys 72(9):096601
7.
go back to reference Guo S, Sawamoto J, Pan Q (2005) A novel type of microrobot for biomedical application. In: 2005 IEEE/RSJ international conference on intelligent robots and systems. IEEE, pp 1047–1052 Guo S, Sawamoto J, Pan Q (2005) A novel type of microrobot for biomedical application. In: 2005 IEEE/RSJ international conference on intelligent robots and systems. IEEE, pp 1047–1052
8.
go back to reference Berg HC, Anderson RA (1973) Bacteria swim by rotating their flagellar filaments. Nature 245(5425):380–382ADSCrossRef Berg HC, Anderson RA (1973) Bacteria swim by rotating their flagellar filaments. Nature 245(5425):380–382ADSCrossRef
9.
go back to reference Bell DJ, Leutenegger S, Hammar KM, Dong LX, Nelson BJ (2007) Flagella-like propulsion for microrobots using a nanocoil and a rotating electromagnetic field. In: Proceedings 2007 IEEE international conference on robotics and automation. IEEE, pp 1128–1133 Bell DJ, Leutenegger S, Hammar KM, Dong LX, Nelson BJ (2007) Flagella-like propulsion for microrobots using a nanocoil and a rotating electromagnetic field. In: Proceedings 2007 IEEE international conference on robotics and automation. IEEE, pp 1128–1133
10.
go back to reference Ghosh A, Fischer P (2009) Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett 9(6):2243–2245ADSCrossRef Ghosh A, Fischer P (2009) Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett 9(6):2243–2245ADSCrossRef
11.
go back to reference Walker D, Kubler M, Morozov KI, Fischer P, Leshansky AM (2015) Optimal length of low Reynolds number nanopropellers. Nano Lett 15(7):4412–4416ADSCrossRef Walker D, Kubler M, Morozov KI, Fischer P, Leshansky AM (2015) Optimal length of low Reynolds number nanopropellers. Nano Lett 15(7):4412–4416ADSCrossRef
12.
go back to reference Schamel D, Mark AG, Gibbs JG, Miksch C, Morozov KI, Leshansky AM, Fischer P (2014) Nanopropellers and their actuation in complex viscoelastic media. ACS Nano 8(9):8794–8801CrossRef Schamel D, Mark AG, Gibbs JG, Miksch C, Morozov KI, Leshansky AM, Fischer P (2014) Nanopropellers and their actuation in complex viscoelastic media. ACS Nano 8(9):8794–8801CrossRef
13.
go back to reference Wu Z, Troll J, Jeong H-H, Wei Q, Stang M, Ziemssen F, Wang Z, Dong M, Schnichels S, Qiu T, Fischer P (2018) A swarm of slippery micropropellers penetrates the vitreous body of the eye. Sci Adv 4(11):eaat4388 Wu Z, Troll J, Jeong H-H, Wei Q, Stang M, Ziemssen F, Wang Z, Dong M, Schnichels S, Qiu T, Fischer P (2018) A swarm of slippery micropropellers penetrates the vitreous body of the eye. Sci Adv 4(11):eaat4388
14.
go back to reference Peyer KE, Zhang L, Nelson BJ (2013) Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale 5(4):1259–1272ADSCrossRef Peyer KE, Zhang L, Nelson BJ (2013) Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale 5(4):1259–1272ADSCrossRef
15.
go back to reference Vach PJ, Brun N, Bennet M, Bertinetti L, Widdrat M, Baumgartner J, Klumpp S, Fratzl P, Faivre D (2013) Selecting for function: solution synthesis of magnetic nanopropellers. Nano Lett 13(11):5373–5378ADSCrossRef Vach PJ, Brun N, Bennet M, Bertinetti L, Widdrat M, Baumgartner J, Klumpp S, Fratzl P, Faivre D (2013) Selecting for function: solution synthesis of magnetic nanopropellers. Nano Lett 13(11):5373–5378ADSCrossRef
16.
go back to reference Vach PJ, Fratzl P, Klumpp S, Faivre D (2015) Fast magnetic micropropellers with random shapes. Nano Lett 15(10):7064–7070ADSCrossRef Vach PJ, Fratzl P, Klumpp S, Faivre D (2015) Fast magnetic micropropellers with random shapes. Nano Lett 15(10):7064–7070ADSCrossRef
17.
go back to reference Cheang UK, Meshkati F, Kim D, Kim MJ, Fu HC (2014) Minimal geometric requirements for micropropulsion via magnetic rotation. Phys Rev E 90(3):033007 Cheang UK, Meshkati F, Kim D, Kim MJ, Fu HC (2014) Minimal geometric requirements for micropropulsion via magnetic rotation. Phys Rev E 90(3):033007
18.
go back to reference Barron LD (1983) Molecular light scattering and optical activity. Cambridge University Press, Cambridge Barron LD (1983) Molecular light scattering and optical activity. Cambridge University Press, Cambridge
19.
go back to reference Morozov KI, Mirzae Y, Kenneth O, Leshansky AM (2017) Dynamics of arbitrary shaped propellers driven by a rotating magnetic field. Phys Rev Fluids 2(4):044202 Morozov KI, Mirzae Y, Kenneth O, Leshansky AM (2017) Dynamics of arbitrary shaped propellers driven by a rotating magnetic field. Phys Rev Fluids 2(4):044202
20.
go back to reference Happel J, Brenner H (1983) Low Reynolds number hydrodynamics with special applications to particulate media. Monographs and textbooks on mechanics of solids and fluids, 1st paperback edn. Martinus Nijhoff, The Hague Happel J, Brenner H (1983) Low Reynolds number hydrodynamics with special applications to particulate media. Monographs and textbooks on mechanics of solids and fluids, 1st paperback edn. Martinus Nijhoff, The Hague
21.
go back to reference Fan DL, Zhu FQ, Cammarata RC, Chien CL (2005) Controllable high-speed rotation of nanowires. Phys Rev Lett 94(24):247208 Fan DL, Zhu FQ, Cammarata RC, Chien CL (2005) Controllable high-speed rotation of nanowires. Phys Rev Lett 94(24):247208
22.
go back to reference Sánchez S, Soler L, Katuri J (2015) Chemically powered micro-and nanomotors. Angew Chem Int Ed 54(5):1414–1444CrossRef Sánchez S, Soler L, Katuri J (2015) Chemically powered micro-and nanomotors. Angew Chem Int Ed 54(5):1414–1444CrossRef
23.
go back to reference Dey KK, Wong F, Altemose A, Sen A (2016) Catalytic motors-quo vadimus? Curr Opin Colloid Interface Sci 21:4–13CrossRef Dey KK, Wong F, Altemose A, Sen A (2016) Catalytic motors-quo vadimus? Curr Opin Colloid Interface Sci 21:4–13CrossRef
24.
go back to reference Brown AT, Poon W (2014) Ionic effects in self-propelled pt-coated janus swimmers. Soft Matter 10(22):4016–4027ADSCrossRef Brown AT, Poon W (2014) Ionic effects in self-propelled pt-coated janus swimmers. Soft Matter 10(22):4016–4027ADSCrossRef
25.
go back to reference Singh DP, Choudhury U, Fischer P, Mark AG (2017) Non-equilibrium assembly of light-activated colloidal mixtures. Adv Mater 29(32):1701328CrossRef Singh DP, Choudhury U, Fischer P, Mark AG (2017) Non-equilibrium assembly of light-activated colloidal mixtures. Adv Mater 29(32):1701328CrossRef
26.
go back to reference Wheat PM, Marine NA, Moran JL, Posner JD (2010) Rapid fabrication of bimetallic spherical motors. Langmuir 26(16):13052–13055CrossRef Wheat PM, Marine NA, Moran JL, Posner JD (2010) Rapid fabrication of bimetallic spherical motors. Langmuir 26(16):13052–13055CrossRef
27.
go back to reference Lee T-C, Alarcon-Correa M, Miksch C, Hahn K, Gibbs JG, Fischer P (2014) Self-propelling nanomotors in the presence of strong brownian forces. Nano Lett 14(5):2407–2412ADSCrossRef Lee T-C, Alarcon-Correa M, Miksch C, Hahn K, Gibbs JG, Fischer P (2014) Self-propelling nanomotors in the presence of strong brownian forces. Nano Lett 14(5):2407–2412ADSCrossRef
28.
go back to reference Kline TR, Paxton WF, Mallouk TE, Sen A (2005) Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. Angew Chem Int Ed 44(5):744–746CrossRef Kline TR, Paxton WF, Mallouk TE, Sen A (2005) Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. Angew Chem Int Ed 44(5):744–746CrossRef
29.
go back to reference Walker D, Käsdorf BT, Jeong H-H, Lieleg O, Fischer P (2015) Enzymatically active biomimetic micropropellers for the penetration of mucin gels. Sci Adv 1(11):e1500501 Walker D, Käsdorf BT, Jeong H-H, Lieleg O, Fischer P (2015) Enzymatically active biomimetic micropropellers for the penetration of mucin gels. Sci Adv 1(11):e1500501
30.
go back to reference Howse JR, Jones RAL, Ryan AJ, Gough T, Vafabakhsh R, Golestanian R (2007) Self-motile colloidal particles: from directed propulsion to random walk. Phys Rev Lett 99(4):048102 Howse JR, Jones RAL, Ryan AJ, Gough T, Vafabakhsh R, Golestanian R (2007) Self-motile colloidal particles: from directed propulsion to random walk. Phys Rev Lett 99(4):048102
31.
go back to reference Ketzetzi S, de Graaf J, Doherty RP, Kraft DJ (2020) Slip length dependent propulsion speed of catalytic colloidal swimmers near walls. Phys Rev Lett 124(4):048002 Ketzetzi S, de Graaf J, Doherty RP, Kraft DJ (2020) Slip length dependent propulsion speed of catalytic colloidal swimmers near walls. Phys Rev Lett 124(4):048002
32.
33.
go back to reference Uspal WE, Popescu MN, Dietrich S, Tasinkevych M (2015) Self-propulsion of a catalytically active particle near a planar wall: from reflection to sliding and hovering. Soft Matter 11(3):434–438 Uspal WE, Popescu MN, Dietrich S, Tasinkevych M (2015) Self-propulsion of a catalytically active particle near a planar wall: from reflection to sliding and hovering. Soft Matter 11(3):434–438
34.
go back to reference Brooks AM, Tasinkevych M, Sabrina S, Velegol D, Sen A, Bishop KJM (2019) Shape-directed rotation of homogeneous micromotors via catalytic self-electrophoresis. Nat Commun 10(1):1–9CrossRef Brooks AM, Tasinkevych M, Sabrina S, Velegol D, Sen A, Bishop KJM (2019) Shape-directed rotation of homogeneous micromotors via catalytic self-electrophoresis. Nat Commun 10(1):1–9CrossRef
35.
go back to reference Brown AT, Poon WCK, Holm C, de Graaf J (2017) Ionic screening and dissociation are crucial for understanding chemical self-propulsion in polar solvents. Soft Matter 13(6):1200–1222ADSCrossRef Brown AT, Poon WCK, Holm C, de Graaf J (2017) Ionic screening and dissociation are crucial for understanding chemical self-propulsion in polar solvents. Soft Matter 13(6):1200–1222ADSCrossRef
36.
go back to reference Wei M, Zhou C, Tang J, Wang W (2018) Catalytic micromotors moving near polyelectrolyte-modified substrates: the roles of surface charges, morphology, and released ions. ACS Appl Mater Interfaces 10(3):2249–2252CrossRef Wei M, Zhou C, Tang J, Wang W (2018) Catalytic micromotors moving near polyelectrolyte-modified substrates: the roles of surface charges, morphology, and released ions. ACS Appl Mater Interfaces 10(3):2249–2252CrossRef
37.
go back to reference Palacci J, Sacanna S, Kim S-H, Yi G-R, Pine DJ, Chaikin PM (2014) Light-activated self-propelled colloids. Philos Trans R Soc A: Math, Phys Eng Sci 372(2029): 20130372 Palacci J, Sacanna S, Kim S-H, Yi G-R, Pine DJ, Chaikin PM (2014) Light-activated self-propelled colloids. Philos Trans R Soc A: Math, Phys Eng Sci 372(2029): 20130372
38.
go back to reference Leeth Holterhoff A, Li M, Gibbs JG (2018) Self-phoretic microswimmers propel at speeds dependent upon an adjacent surface’s physicochemical properties. J Phys Chem Lett 9(17):5023–5028 Leeth Holterhoff A, Li M, Gibbs JG (2018) Self-phoretic microswimmers propel at speeds dependent upon an adjacent surface’s physicochemical properties. J Phys Chem Lett 9(17):5023–5028
39.
go back to reference Dunderdale G, Ebbens S, Fairclough P, Howse J (2012) Importance of particle tracking and calculating the mean-squared displacement in distinguishing nanopropulsion from other processes. Langmuir 28(30):10997–11006CrossRef Dunderdale G, Ebbens S, Fairclough P, Howse J (2012) Importance of particle tracking and calculating the mean-squared displacement in distinguishing nanopropulsion from other processes. Langmuir 28(30):10997–11006CrossRef
40.
go back to reference Novotnỳ F, Pumera M (2019) Nanomotor tracking experiments at the edge of reproducibility. Sci Rep 9(1):1–11CrossRef Novotnỳ F, Pumera M (2019) Nanomotor tracking experiments at the edge of reproducibility. Sci Rep 9(1):1–11CrossRef
41.
go back to reference Singh DP, Uspal WE, Popescu MN, Wilson LG, Fischer P (2018) Photogravitactic microswimmers. Adv Func Mater 28(25):1706660CrossRef Singh DP, Uspal WE, Popescu MN, Wilson LG, Fischer P (2018) Photogravitactic microswimmers. Adv Func Mater 28(25):1706660CrossRef
42.
go back to reference Berne BJ, Pecora R (2000) Dynamic light scattering: with applications to chemistry, biology, and physics. Courier Corporation Berne BJ, Pecora R (2000) Dynamic light scattering: with applications to chemistry, biology, and physics. Courier Corporation
43.
go back to reference Stetefeld J, McKenna SA, Patel TR (2016) Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev 8(4):409–427CrossRef Stetefeld J, McKenna SA, Patel TR (2016) Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev 8(4):409–427CrossRef
44.
go back to reference Kurzthaler C, Leitmann S, Franosch T (2016) Intermediate scattering function of an anisotropic active brownian particle. Sci Rep 6:36702ADSCrossRef Kurzthaler C, Leitmann S, Franosch T (2016) Intermediate scattering function of an anisotropic active brownian particle. Sci Rep 6:36702ADSCrossRef
45.
go back to reference Kurzthaler C, Devailly C, Arlt J, Franosch T, Poon WCK, Martinez VA, Brown AT (2018) Probing the spatiotemporal dynamics of catalytic janus particles with single-particle tracking and differential dynamic microscopy. Phys Rev Lett 121(7):078001 Kurzthaler C, Devailly C, Arlt J, Franosch T, Poon WCK, Martinez VA, Brown AT (2018) Probing the spatiotemporal dynamics of catalytic janus particles with single-particle tracking and differential dynamic microscopy. Phys Rev Lett 121(7):078001
46.
go back to reference Cerbino R, Trappe V (2008) Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Phys Rev Lett 100(18):188102 Cerbino R, Trappe V (2008) Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Phys Rev Lett 100(18):188102
47.
go back to reference Drain LE et al (1980) The laser Doppler technique. Wiley, New York Drain LE et al (1980) The laser Doppler technique. Wiley, New York
48.
go back to reference Adrian RJ (1993) Selected papers on laser Doppler velocimetry, vol 78. Society of Photo Optical Adrian RJ (1993) Selected papers on laser Doppler velocimetry, vol 78. Society of Photo Optical
49.
go back to reference Botin D, Wenzl J, Niu R, Palberg T (2018) Colloidal electro-phoresis in the presence of symmetric and asymmetric electro-osmotic flow. Soft Matter 14(40):8191–8204ADSCrossRef Botin D, Wenzl J, Niu R, Palberg T (2018) Colloidal electro-phoresis in the presence of symmetric and asymmetric electro-osmotic flow. Soft Matter 14(40):8191–8204ADSCrossRef
Metadata
Title
Motion of Chiral and Achiral Structures at Low Re
Author
Johannes Sachs
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-88689-9_3