Skip to main content
Top
Published in: Computational Mechanics 1/2020

22-07-2019 | Original Paper

Multi-field variational formulations and mixed finite element approximations for electrostatics and magnetostatics

Authors: Pablo Moreno-Navarro, Adnan Ibrahimbegovic, Alejandro Ospina

Published in: Computational Mechanics | Issue 1/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper we propose different multi-field variational formulations for electrostatics and magnetostatics, which can provide optimal discrete approximation of any particular vector field. The proposed formulations are constructed by appealing to mechanics point of view amenable to using general constitutive equations, which is quite different from electrostatics and magnetostatics formulations typical of physics and electrical engineering focusing on the corresponding global form suitable only for linear case. In particular, the formulations we propose can be combined with mixed discrete approximations that can ensure the continuity of tangential component of electric or magnetic field and normal component of electric displacement and magnetic flux even for low order interpolations. The choice of this kind is quite different from currently favorite choice of high order finite element interpolations used for coupling electromagnetism with mechanics. The discrete approximation is based upon Whitney’s interpolations representing the vector fields in terms of corresponding differential forms, with electric and magnetic fields as one-form and electric displacement and magnetic flux as two-form. The implementation of interpolations of this kind is made for 3D tetrahedron elements with non-standard approximation parameters defined not only at vertices (for zero-form), but at edges (for one-form) and at facets (for two-form). The results of several numerical simulations are presented to illustrate the performance of different formulations proposed herein.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Albanese R, Rubinacci G (1997) Finite element methods for the solution of 3d eddy current problems. In: Advances in imaging and electron physics, vol 102, pp 1–86. Elsevier Albanese R, Rubinacci G (1997) Finite element methods for the solution of 3d eddy current problems. In: Advances in imaging and electron physics, vol 102, pp 1–86. Elsevier
2.
go back to reference Alotto P, Freschi F, Repetto M, Rosso C (2013) The cell method for electrical engineering and multiphysics problems: an introduction, vol 230. Springer, Berlin MATH Alotto P, Freschi F, Repetto M, Rosso C (2013) The cell method for electrical engineering and multiphysics problems: an introduction, vol 230. Springer, Berlin MATH
3.
go back to reference Angoshtari A, Shojaei MF, Yavari A (2017) Compatible-strain mixed finite element methods for 2d compressible nonlinear elasticity. Comput Methods Appl Mech Eng 313:596–631MathSciNet Angoshtari A, Shojaei MF, Yavari A (2017) Compatible-strain mixed finite element methods for 2d compressible nonlinear elasticity. Comput Methods Appl Mech Eng 313:596–631MathSciNet
4.
go back to reference Arnold DN, Falk RS, Winther R (2006) Finite element exterior calculus, homological techniques, and applications. Acta Numerica 15:1–155MathSciNetMATH Arnold DN, Falk RS, Winther R (2006) Finite element exterior calculus, homological techniques, and applications. Acta Numerica 15:1–155MathSciNetMATH
5.
go back to reference Balanis CA (1999) Advanced engineering electromagnetics. Wiley, Hoboken Balanis CA (1999) Advanced engineering electromagnetics. Wiley, Hoboken
6.
go back to reference Bamberg P, Sternberg S (1991) A course in mathematics for students of physics, vol 2. Cambridge University Press, CambridgeMATH Bamberg P, Sternberg S (1991) A course in mathematics for students of physics, vol 2. Cambridge University Press, CambridgeMATH
7.
go back to reference Bochev PB, Robinson AC (2002) Matching algorithms with physics: exact sequences of finite element spaces. Collected Lectures on Preservation of Stability Under Discretization, pp 145–166 Bochev PB, Robinson AC (2002) Matching algorithms with physics: exact sequences of finite element spaces. Collected Lectures on Preservation of Stability Under Discretization, pp 145–166
8.
go back to reference Bossavit A (1988) A rationale for ‘edge-elements’ in 3-d fields computations. IEEE Trans Magn 24(1):74–79MathSciNet Bossavit A (1988) A rationale for ‘edge-elements’ in 3-d fields computations. IEEE Trans Magn 24(1):74–79MathSciNet
9.
go back to reference Bossavit A (1988) Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism. IEE Proc 135(8):493–500 Bossavit A (1988) Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism. IEE Proc 135(8):493–500
10.
go back to reference Bossavit A (2010) Discrete magneto-elasticity: a geometrical approach. IEEE Trans Magn 46(8):3485–3491 Bossavit A (2010) Discrete magneto-elasticity: a geometrical approach. IEEE Trans Magn 46(8):3485–3491
11.
go back to reference Desbrun M, Kanso E, Tong Y (2008) Discrete differential forms for computational modeling. In: Discrete differential geometry, pp 287–324. Springer Desbrun M, Kanso E, Tong Y (2008) Discrete differential forms for computational modeling. In: Discrete differential geometry, pp 287–324. Springer
12.
go back to reference Dular P, Geuzaine C (1997) Getdp: a general environment for the treatment of discrete problems Dular P, Geuzaine C (1997) Getdp: a general environment for the treatment of discrete problems
13.
go back to reference Dular P, Hody J-Y, Nicolet A, Genon A, Legros W (1994) Mixed finite elements associated with a collection of tetrahedra, hexahedra and prisms. IEEE Trans Magn 30(5):2980–2983 Dular P, Hody J-Y, Nicolet A, Genon A, Legros W (1994) Mixed finite elements associated with a collection of tetrahedra, hexahedra and prisms. IEEE Trans Magn 30(5):2980–2983
14.
go back to reference Felippa CA, Park KC, Farhat C (2001) Partitioned analysis of coupled mechanical systems. Comput Methods Appl Mech Eng 190(24–25):3247–3270MATH Felippa CA, Park KC, Farhat C (2001) Partitioned analysis of coupled mechanical systems. Comput Methods Appl Mech Eng 190(24–25):3247–3270MATH
15.
go back to reference Gil AJ, Ortigosa R (2016) A new framework for large strain electromechanics based on convex multi-variable strain energies: variational formulation and material characterisation. Comput Methods Appl Mech Eng 302:293–328MathSciNetMATH Gil AJ, Ortigosa R (2016) A new framework for large strain electromechanics based on convex multi-variable strain energies: variational formulation and material characterisation. Comput Methods Appl Mech Eng 302:293–328MathSciNetMATH
16.
go back to reference Golias NA, Tsiboukis TD, Bossavit A (1994) Constitutive inconsistency: rigorous solution of maxwell equations based on a dual approach. IEEE Trans Magn 30(5):3586–3589 Golias NA, Tsiboukis TD, Bossavit A (1994) Constitutive inconsistency: rigorous solution of maxwell equations based on a dual approach. IEEE Trans Magn 30(5):3586–3589
17.
18.
go back to reference Hale HW (1961) A logic for identifying the trees of a graph. Trans Am Inst Electr Eng Part III Power Apparatus Syst 80(3):195–197 Hale HW (1961) A logic for identifying the trees of a graph. Trans Am Inst Electr Eng Part III Power Apparatus Syst 80(3):195–197
19.
go back to reference Hammond P (2013) Electromagnetism for engineers: an introductory course. Elsevier, Amsterdam Hammond P (2013) Electromagnetism for engineers: an introductory course. Elsevier, Amsterdam
20.
go back to reference Hammond P, Penman J (1976) Calculation of inductance and capacitance by means of dual energy principles. In: Proceedings of the Institution of Electrical Engineers, vol 123, pp 554–559. IET Hammond P, Penman J (1976) Calculation of inductance and capacitance by means of dual energy principles. In: Proceedings of the Institution of Electrical Engineers, vol 123, pp 554–559. IET
21.
go back to reference Hammond P, Tsiboukis TD (1983) Dual finite-element calculations for static electric and magnetic fields. IEE Proc A (Phys Sci Measurement Instrum Manag Educ Rev) 130(3):105–111 Hammond P, Tsiboukis TD (1983) Dual finite-element calculations for static electric and magnetic fields. IEE Proc A (Phys Sci Measurement Instrum Manag Educ Rev) 130(3):105–111
22.
go back to reference Ibrahimbegovic A (2009) Nonlinear solid mechanics: theoretical formulations and finite element solution methods, vol 160. Springer, DordrechtMATH Ibrahimbegovic A (2009) Nonlinear solid mechanics: theoretical formulations and finite element solution methods, vol 160. Springer, DordrechtMATH
23.
go back to reference Jackson JD (1999) Classical electrodynamics. Wiley, New YorkMATH Jackson JD (1999) Classical electrodynamics. Wiley, New YorkMATH
24.
go back to reference Kameari A (1989) Three dimensional eddy current calculation using edge elements for magnetic vector potential. In: Applied electromagnetics in materials, pp 225–236. Elsevier Kameari A (1989) Three dimensional eddy current calculation using edge elements for magnetic vector potential. In: Applied electromagnetics in materials, pp 225–236. Elsevier
25.
go back to reference Kassiotis C, Ibrahimbegovic A, Niekamp R, Matthies HG (2011) Nonlinear fluid–structure interaction problem. Part I: implicit partitioned algorithm, nonlinear stability proof and validation examples. Comput Mech 47(3):305–323MathSciNetMATH Kassiotis C, Ibrahimbegovic A, Niekamp R, Matthies HG (2011) Nonlinear fluid–structure interaction problem. Part I: implicit partitioned algorithm, nonlinear stability proof and validation examples. Comput Mech 47(3):305–323MathSciNetMATH
26.
go back to reference Kassiotis C, Ibrahimbegovic A, Niekamp R, Matthies HG (2011) Nonlinear fluid–structure interaction problem. Part II: space discretization, implementation aspects, nested parallelization and application examples. Comput Mech 47(3):335–357MathSciNetMATH Kassiotis C, Ibrahimbegovic A, Niekamp R, Matthies HG (2011) Nonlinear fluid–structure interaction problem. Part II: space discretization, implementation aspects, nested parallelization and application examples. Comput Mech 47(3):335–357MathSciNetMATH
27.
go back to reference Keip Marc-André, Steinmann Paul, Schröder Jörg (2014) Two-scale computational homogenization of electro-elasticity at finite strains. Comput Methods Appl Mech Eng 278:62–79MathSciNetMATH Keip Marc-André, Steinmann Paul, Schröder Jörg (2014) Two-scale computational homogenization of electro-elasticity at finite strains. Comput Methods Appl Mech Eng 278:62–79MathSciNetMATH
28.
go back to reference Ladevèze P, Pelle J-P (2005) Mastering calculations in linear and nonlinear mechanics, vol 171. Springer, New YorkMATH Ladevèze P, Pelle J-P (2005) Mastering calculations in linear and nonlinear mechanics, vol 171. Springer, New YorkMATH
29.
go back to reference Macneal RH, Harder Robert L (1985) A proposed standard set of problems to test finite element accuracy. Finite Elem Anal Des 1(1):3–20 Macneal RH, Harder Robert L (1985) A proposed standard set of problems to test finite element accuracy. Finite Elem Anal Des 1(1):3–20
30.
go back to reference Manges J, Cendes Z (1996) Generation of tangential vector finite elements. Int Compumag Soc Newsl 3(1):4–10 Manges J, Cendes Z (1996) Generation of tangential vector finite elements. Int Compumag Soc Newsl 3(1):4–10
31.
go back to reference Mitchell BS (2004) An introduction to materials engineering and science for chemical and materials engineers. Wiley, Hoboken Mitchell BS (2004) An introduction to materials engineering and science for chemical and materials engineers. Wiley, Hoboken
32.
go back to reference Moreno-Navarro P, Ibrahimbegovic A, Pérez-Aparicio JL (2017) Plasticity coupled with thermo-electric fields: thermodynamics framework and finite element method computations. Comput Methods Appl Mech Eng 315:50–72MathSciNet Moreno-Navarro P, Ibrahimbegovic A, Pérez-Aparicio JL (2017) Plasticity coupled with thermo-electric fields: thermodynamics framework and finite element method computations. Comput Methods Appl Mech Eng 315:50–72MathSciNet
33.
go back to reference Moreno-Navarro P, Ibrahimbegovic A, Pérez-Aparicio JL (2018) Linear elastic mechanical system interacting with coupled thermo-electro-magnetic fields. Coupled Syst Mech 7(1):5–25 Moreno-Navarro P, Ibrahimbegovic A, Pérez-Aparicio JL (2018) Linear elastic mechanical system interacting with coupled thermo-electro-magnetic fields. Coupled Syst Mech 7(1):5–25
34.
35.
go back to reference Penman J, Fraser J (1982) Complementary and dual energy finite element principles in magnetostatics. IEEE Trans Magn 18(2):319–324 Penman J, Fraser J (1982) Complementary and dual energy finite element principles in magnetostatics. IEEE Trans Magn 18(2):319–324
36.
go back to reference Razek A (1995) Computation of 3d electrostatic local fields and forces using complementarity of dual formulations. Application for capacitance and torque calculations in micromotors Razek A (1995) Computation of 3d electrostatic local fields and forces using complementarity of dual formulations. Application for capacitance and torque calculations in micromotors
37.
go back to reference Ren Z (1995) A 3d vector potential formulation using edge element for electrostatic field computation. IEEE Trans Magn 31(3):1520–1523 Ren Z (1995) A 3d vector potential formulation using edge element for electrostatic field computation. IEEE Trans Magn 31(3):1520–1523
38.
go back to reference Ren Z (2009) On the complementarity of dual formulations on dual meshes. IEEE Trans Magn 45(3):1284–1287 Ren Z (2009) On the complementarity of dual formulations on dual meshes. IEEE Trans Magn 45(3):1284–1287
39.
go back to reference Repetto M, Trevisan F (2004) Global formulation of 3d magnetostatics using flux and gauged potentials. Int J Numer Meth Eng 60(4):755–772MathSciNetMATH Repetto M, Trevisan F (2004) Global formulation of 3d magnetostatics using flux and gauged potentials. Int J Numer Meth Eng 60(4):755–772MathSciNetMATH
40.
go back to reference Schröder J, Keip M-A (2012) Two-scale homogenization of electromechanically coupled boundary value problems. Comput Mech 50(2):229–244MathSciNetMATH Schröder J, Keip M-A (2012) Two-scale homogenization of electromechanically coupled boundary value problems. Comput Mech 50(2):229–244MathSciNetMATH
41.
go back to reference Stark S, Semenov AS, Balke H (2015) On the boundary conditions for the vector potential formulation in electrostatics. Int J Numer Meth Eng 102(11):1704–1732MathSciNetMATH Stark S, Semenov AS, Balke H (2015) On the boundary conditions for the vector potential formulation in electrostatics. Int J Numer Meth Eng 102(11):1704–1732MathSciNetMATH
42.
go back to reference Taylor RL (2012) Feap–a finite element analysis program. Version 8.4 Theory Manual Taylor RL (2012) Feap–a finite element analysis program. Version 8.4 Theory Manual
43.
go back to reference Tonti E (2013) The mathematical structure of classical and relativistic physics. Springer, New YorkMATH Tonti E (2013) The mathematical structure of classical and relativistic physics. Springer, New YorkMATH
44.
go back to reference Vogel F, Bustamante R, Steinmann P (2012) On some mixed variational principles in electro-elastostatics. Int J Nonlinear Mech 47(2):341–354 Vogel F, Bustamante R, Steinmann P (2012) On some mixed variational principles in electro-elastostatics. Int J Nonlinear Mech 47(2):341–354
45.
go back to reference Wang J-S, Ida N (1993) Curvilinear and higher order ‘edge’ finite elements in electromagnetic field computation. IEEE Trans Magn 29(2):1491–1494 Wang J-S, Ida N (1993) Curvilinear and higher order ‘edge’ finite elements in electromagnetic field computation. IEEE Trans Magn 29(2):1491–1494
46.
go back to reference Webb JP, Forgahani B (1993) Hierarchal scalar and vector tetrahedra. IEEE Trans Magn 29(2):1495–1498 Webb JP, Forgahani B (1993) Hierarchal scalar and vector tetrahedra. IEEE Trans Magn 29(2):1495–1498
47.
go back to reference Yioultsis TV, Tsiboukis TD (1996) The mystery and magic of Whitney elements—an insight in their properties and construction. ICS Newsl 3:1389–1392 Yioultsis TV, Tsiboukis TD (1996) The mystery and magic of Whitney elements—an insight in their properties and construction. ICS Newsl 3:1389–1392
48.
go back to reference Zienkiewicz OC, Taylor RL (1977) The finite element method, vol 36. McGraw-Hill, London Zienkiewicz OC, Taylor RL (1977) The finite element method, vol 36. McGraw-Hill, London
Metadata
Title
Multi-field variational formulations and mixed finite element approximations for electrostatics and magnetostatics
Authors
Pablo Moreno-Navarro
Adnan Ibrahimbegovic
Alejandro Ospina
Publication date
22-07-2019
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 1/2020
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-019-01751-x

Other articles of this Issue 1/2020

Computational Mechanics 1/2020 Go to the issue