Skip to main content
Top

2011 | OriginalPaper | Chapter

5. Multi-Frequency Atomic Force Microscopy

Author : Roger Proksch

Published in: Scanning Probe Microscopy of Functional Materials

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The atomic force microscope (AFM) was invented in 1986 [1], a close relative of another instrument, the scanning tunneling microscope (STM), invented in 1981 [2]. Both fall under the umbrella of techniques and instruments referred to as scanning probe microscopes (SPMs), with the common thread being that a sharp probe is scanned in a regular pattern to map some sample characteristic. Unlike the STM, the AFM can readily image insulating surfaces. Combined with the ability to study a wide variety of samples and sample environments – ambient, liquid, and vacuum – has made AFM the technique of choice for many high resolution surface imaging applications, including imaging with atomic resolution. Since those early days, AFM techniques have become the mainstay of nanoscience and nanotechnology by providing the capability for structural imaging and manipulation on the nanometer and atomic scales. Beyond simple topographic imaging, AFMs have found an extremely broad range of applications for probing electrical, magnetic, and mechanical properties – often at the level of several tens of nanometers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference G. Binnig, C.F. Quate, and C. Gerber, “Atomic force microscope,” Physical Review Letters 56 (9), 930–933 (1986).CrossRef G. Binnig, C.F. Quate, and C. Gerber, “Atomic force microscope,” Physical Review Letters 56 (9), 930–933 (1986).CrossRef
2.
go back to reference G. Binnig and H. Rohrer, “Scanning tunneling microscopy,” Helvetica Physica Acta 55 (6), 726–735 (1982). G. Binnig and H. Rohrer, “Scanning tunneling microscopy,” Helvetica Physica Acta 55 (6), 726–735 (1982).
3.
go back to reference Y. Martin, C.C. Williams, and H.K. Wickramasinghe, “Atomic force microscope force mapping and profiling on a sub 100-a scale,” Journal of Applied Physics 61 (10), 4723–4729 (1987).CrossRef Y. Martin, C.C. Williams, and H.K. Wickramasinghe, “Atomic force microscope force mapping and profiling on a sub 100-a scale,” Journal of Applied Physics 61 (10), 4723–4729 (1987).CrossRef
4.
go back to reference R.W. Stark, T. Drobek, and W.M. Heckl, “Tapping-mode atomic force microscopy and phase-imaging in higher eigenmodes,” Applied Physics Letters 74 (22), 3296–3298 (1999).CrossRef R.W. Stark, T. Drobek, and W.M. Heckl, “Tapping-mode atomic force microscopy and phase-imaging in higher eigenmodes,” Applied Physics Letters 74 (22), 3296–3298 (1999).CrossRef
5.
go back to reference O. Sahin and A. Atalar, “Simulation of higher harmonics generation in tapping-mode atomic force microscopy,” Applied Physics Letters 79 (26), 4455–4457 (2001).CrossRef O. Sahin and A. Atalar, “Simulation of higher harmonics generation in tapping-mode atomic force microscopy,” Applied Physics Letters 79 (26), 4455–4457 (2001).CrossRef
6.
go back to reference M. Stark, R.W. Stark, W.M. Heckl et al., “Spectroscopy of the anharmonic cantilever oscillations in tapping-mode atomic-force microscopy,” Applied Physics Letters 77 (20), 3293–3295 (2000).CrossRef M. Stark, R.W. Stark, W.M. Heckl et al., “Spectroscopy of the anharmonic cantilever oscillations in tapping-mode atomic-force microscopy,” Applied Physics Letters 77 (20), 3293–3295 (2000).CrossRef
7.
go back to reference J. Melcher, C. Carrasco, X. Xu et al., “Origins of phase contrast in the atomic force microscope in liquids,” Proceedings of the National Academy of Sciences of the United States of America 106 (33), 13655–13660 (2009).CrossRef J. Melcher, C. Carrasco, X. Xu et al., “Origins of phase contrast in the atomic force microscope in liquids,” Proceedings of the National Academy of Sciences of the United States of America 106 (33), 13655–13660 (2009).CrossRef
8.
go back to reference O. Sahin, S. Magonov, C. Su et al., “An atomic force microscope tip designed to measure time-varying nanomechanical forces,” Nature Nanotechnology 2 (8), 507–514 (2007).CrossRef O. Sahin, S. Magonov, C. Su et al., “An atomic force microscope tip designed to measure time-varying nanomechanical forces,” Nature Nanotechnology 2 (8), 507–514 (2007).CrossRef
9.
go back to reference Y.G. Zheng, R.E. Geer, K. Dovidenko et al., “Quantitative nanoscale modulus measurements and elastic imaging of SnO2 nanobelts,” Journal of Applied Physics 100 (12) (2006). Y.G. Zheng, R.E. Geer, K. Dovidenko et al., “Quantitative nanoscale modulus measurements and elastic imaging of SnO2 nanobelts,” Journal of Applied Physics 100 (12) (2006).
10.
go back to reference D.C. Hurley, M. Kopycinska-Muller, and A.B. Kos, “Mapping mechanical properties on the nanoscale using atomic-force acoustic microscopy,” Journal of the minerals, Metals and Materials Society 59 (1), 23–29 (2007). D.C. Hurley, M. Kopycinska-Muller, and A.B. Kos, “Mapping mechanical properties on the nanoscale using atomic-force acoustic microscopy,” Journal of the minerals, Metals and Materials Society 59 (1), 23–29 (2007).
11.
go back to reference A.B. Kos and D.C. Hurley, “Nanomechanical mapping with resonance tracking scanned probe microscope,” Measurement Science & Technology 19 (1) (2008). A.B. Kos and D.C. Hurley, “Nanomechanical mapping with resonance tracking scanned probe microscope,” Measurement Science & Technology 19 (1) (2008).
12.
go back to reference P.A. Yuya, D.C. Hurley, and J.A. Turner, “Contact-resonance atomic force microscopy for viscoelasticity,” Journal of Applied Physics 104 (7) (2008). P.A. Yuya, D.C. Hurley, and J.A. Turner, “Contact-resonance atomic force microscopy for viscoelasticity,” Journal of Applied Physics 104 (7) (2008).
13.
go back to reference D.C. Hurley, J.S. Wiehn, J.A. Turner et al., “Quantitative elastic-property information with acoustic AFM:measurements and modeling,” Proceedings of the SPIE – The International Society for Optical Engineering 4703, 65–73 (2002). D.C. Hurley, J.S. Wiehn, J.A. Turner et al., “Quantitative elastic-property information with acoustic AFM:measurements and modeling,” Proceedings of the SPIE – The International Society for Optical Engineering 4703, 65–73 (2002).
14.
go back to reference M.P. Nikiforov, S. Jesse, A.N. Morozovska et al., “Probing the temperature dependence of the mechanical properties of polymers at the nanoscale with band excitation thermal scanning probe microscopy,” Nanotechnology 20 (39) (2009). M.P. Nikiforov, S. Jesse, A.N. Morozovska et al., “Probing the temperature dependence of the mechanical properties of polymers at the nanoscale with band excitation thermal scanning probe microscopy,” Nanotechnology 20 (39) (2009).
15.
go back to reference S. Jesse, M.P. Nikiforov, L.T. Germinario et al., “Local thermomechanical characterization of phase transitions using band excitation atomic force acoustic microscopy with heated probe,” Applied Physics Letters 93 (7) (2008). S. Jesse, M.P. Nikiforov, L.T. Germinario et al., “Local thermomechanical characterization of phase transitions using band excitation atomic force acoustic microscopy with heated probe,” Applied Physics Letters 93 (7) (2008).
16.
go back to reference S.R. Cohen, N. Apter, S. Jesse et al., “AFM investigation of mechanical properties of dentin,” Israel Journal of Chemistry 48 (2), 65–72 (2008).CrossRef S.R. Cohen, N. Apter, S. Jesse et al., “AFM investigation of mechanical properties of dentin,” Israel Journal of Chemistry 48 (2), 65–72 (2008).CrossRef
17.
go back to reference S. Jesse, S.V. Kalinin, R. Proksch et al., “The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale,” Nanotechnology 18 (43) (2007). S. Jesse, S.V. Kalinin, R. Proksch et al., “The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale,” Nanotechnology 18 (43) (2007).
18.
go back to reference H.J. Butt, B. Cappella, and M. Kappl, “Force measurements with the atomic force microscope:Technique, interpretation and applications,” Surface Science Reports 59 (1–6), 1–152 (2005).CrossRef H.J. Butt, B. Cappella, and M. Kappl, “Force measurements with the atomic force microscope:Technique, interpretation and applications,” Surface Science Reports 59 (1–6), 1–152 (2005).CrossRef
19.
go back to reference M. Farshchi-Tabrizi, M. Kappl, Y.J. Cheng et al., “On the adhesion between fine particles and nanocontacts:An atomic force microscope study,” Langmuir 22 (5), 2171–2184 (2006).CrossRef M. Farshchi-Tabrizi, M. Kappl, Y.J. Cheng et al., “On the adhesion between fine particles and nanocontacts:An atomic force microscope study,” Langmuir 22 (5), 2171–2184 (2006).CrossRef
20.
go back to reference S. Chanmin, L. Huang, K. Kjoller et al., “Studies of tip wear processes in tapping mode atomic force microscopy,” Ultramicroscopy 97 (1–4), 135–144 (2003). S. Chanmin, L. Huang, K. Kjoller et al., “Studies of tip wear processes in tapping mode atomic force microscopy,” Ultramicroscopy 97 (1–4), 135–144 (2003).
21.
go back to reference T.R. Rodriguez and R. Garcia, “Compositional mapping of surfaces in atomic force microscopy by excitation of the second normal mode of the microcantilever,” Applied Physics Letters 84 (3), 449–451 (2004).CrossRef T.R. Rodriguez and R. Garcia, “Compositional mapping of surfaces in atomic force microscopy by excitation of the second normal mode of the microcantilever,” Applied Physics Letters 84 (3), 449–451 (2004).CrossRef
22.
go back to reference R. Proksch, “Multifrequency, repulsive-mode amplitude-modulated atomic force microscopy,” Applied Physics Letters 89 (11), 3 (2006).CrossRef R. Proksch, “Multifrequency, repulsive-mode amplitude-modulated atomic force microscopy,” Applied Physics Letters 89 (11), 3 (2006).CrossRef
23.
go back to reference U. Rabe, K. Janser, and W. Arnold, “Vibrations of free and surface-coupled atomic force microscope cantilevers:theory and experiment,” Review of Scientific Instruments 67 (9), 3281–3293 (1996).CrossRef U. Rabe, K. Janser, and W. Arnold, “Vibrations of free and surface-coupled atomic force microscope cantilevers:theory and experiment,” Review of Scientific Instruments 67 (9), 3281–3293 (1996).CrossRef
24.
go back to reference J.P. Cleveland, B. Anczykowski, A.E. Schmid et al., “Energy dissipation in tapping-mode atomic force microscopy,” Applied Physics Letters 72 (20), 2613–2615 (1998).CrossRef J.P. Cleveland, B. Anczykowski, A.E. Schmid et al., “Energy dissipation in tapping-mode atomic force microscopy,” Applied Physics Letters 72 (20), 2613–2615 (1998).CrossRef
25.
go back to reference B.J. Rodriguez, C. Callahan, S.V. Kalinin et al., “Dual-frequency resonance-tracking atomic force microscopy,” Nanotechnology 18 (47) (2007). B.J. Rodriguez, C. Callahan, S.V. Kalinin et al., “Dual-frequency resonance-tracking atomic force microscopy,” Nanotechnology 18 (47) (2007).
26.
go back to reference D. Rupp, U. Rabe, S. Hirsekorn et al., “Nonlinear contact resonance spectroscopy in atomic force microscopy,” Journal of Physics D:Applied Physics 40 (22), 7136–7145 (2007).CrossRef D. Rupp, U. Rabe, S. Hirsekorn et al., “Nonlinear contact resonance spectroscopy in atomic force microscopy,” Journal of Physics D:Applied Physics 40 (22), 7136–7145 (2007).CrossRef
27.
go back to reference R. Garcia and R. Perez, “Dynamic atomic force microscopy methods,” Surface Science Reports 47 (6–8), 197–301 (2002).CrossRef R. Garcia and R. Perez, “Dynamic atomic force microscopy methods,” Surface Science Reports 47 (6–8), 197–301 (2002).CrossRef
28.
go back to reference U. Rabe, in Applied Scanning Probe Methods II, edited by B. Bushan and H. Fuchs (Springer, Berlin, 2006), Vol. II, p. 37.CrossRef U. Rabe, in Applied Scanning Probe Methods II, edited by B. Bushan and H. Fuchs (Springer, Berlin, 2006), Vol. II, p. 37.CrossRef
29.
go back to reference O. Kolosov and K. Yamanaka, “Nonlinear detection of ultrasonic vibrations in an atomic force microscope,” Japanese Journal of Appplied Physics Part 2 [Letters] 32 (8A), L1095–1098 (1993).CrossRef O. Kolosov and K. Yamanaka, “Nonlinear detection of ultrasonic vibrations in an atomic force microscope,” Japanese Journal of Appplied Physics Part 2 [Letters] 32 (8A), L1095–1098 (1993).CrossRef
30.
go back to reference K. Yamanaka, H. Ogiso, and O. Kolosov, “Ultrasonic force microscopy for nanometer resolution subsurface imaging,” Applied Physics Letters 64 (2), 178–180 (1994).CrossRef K. Yamanaka, H. Ogiso, and O. Kolosov, “Ultrasonic force microscopy for nanometer resolution subsurface imaging,” Applied Physics Letters 64 (2), 178–180 (1994).CrossRef
31.
go back to reference K. Yamanaka, H. Ogiso, and O. Kolosov, “Analysis of subsurface imaging and effect of contact elasticity in the ultrasonic force microscope,” Japanese Journal of Applied Physics Part 1:Regular Papers Short Notes & Review Papers 33 (5B), 3197–3203 (1994). K. Yamanaka, H. Ogiso, and O. Kolosov, “Analysis of subsurface imaging and effect of contact elasticity in the ultrasonic force microscope,” Japanese Journal of Applied Physics Part 1:Regular Papers Short Notes & Review Papers 33 (5B), 3197–3203 (1994).
32.
go back to reference K. Yamanaka, “Ultrasonic force microscopy,” MRS Bulletin 21 (10), 36–41 (1996). K. Yamanaka, “Ultrasonic force microscopy,” MRS Bulletin 21 (10), 36–41 (1996).
33.
go back to reference A. Gruverman, O. Auciello, J. Hatano et al., “Scanning force microscopy as a tool for nanoscale study of ferroelectric domains,” Ferroelectrics 184 (1–4), 11–20 (1996)CrossRef A. Gruverman, O. Auciello, J. Hatano et al., “Scanning force microscopy as a tool for nanoscale study of ferroelectric domains,” Ferroelectrics 184 (1–4), 11–20 (1996)CrossRef
34.
go back to reference A. Gruverman, O. Kolosov, J. Hatano et al., “Domain structure and polarization reversal in ferroelectrics studied by atomic force microscopy,” Journal of Vacuum Science & Technology B [Microelectronics and Nanometer Structures] 13 (3), 1095–1099 (1995).CrossRef A. Gruverman, O. Kolosov, J. Hatano et al., “Domain structure and polarization reversal in ferroelectrics studied by atomic force microscopy,” Journal of Vacuum Science & Technology B [Microelectronics and Nanometer Structures] 13 (3), 1095–1099 (1995).CrossRef
35.
go back to reference A. Hammiche, M. Reading, H.M. Pollock et al., “Localized thermal analysis using a miniaturized resistive probe,” Review of Scientific Instruments 67 (12), 4268–4274 (1996).CrossRef A. Hammiche, M. Reading, H.M. Pollock et al., “Localized thermal analysis using a miniaturized resistive probe,” Review of Scientific Instruments 67 (12), 4268–4274 (1996).CrossRef
36.
go back to reference A. Hammiche, D.J. Hourston, H.M. Pollock et al., 1996 (unpublished). A. Hammiche, D.J. Hourston, H.M. Pollock et al., 1996 (unpublished).
37.
go back to reference D. Hurley, in Applied Scanning Probe Methods, edited by B. Bushan, H. Fuchs, and H. Yamada (Springer, Berlin, 2009), Vol. XI. D. Hurley, in Applied Scanning Probe Methods, edited by B. Bushan, H. Fuchs, and H. Yamada (Springer, Berlin, 2009), Vol. XI.
38.
go back to reference J.N. Goodier S.P. Timoshenko, Theory of Elasticity. (McGraw-Hill, London, 1970). J.N. Goodier S.P. Timoshenko, Theory of Elasticity. (McGraw-Hill, London, 1970).
39.
go back to reference R. Hillenbrand, M. Stark, and R. Guckenberger, “Higher-harmonics generation in tapping-mode atomic-force microscopy:Insights into the tip–sample interaction,” Applied Physics Letters 76 (23), 3478–3480 (2000).CrossRef R. Hillenbrand, M. Stark, and R. Guckenberger, “Higher-harmonics generation in tapping-mode atomic-force microscopy:Insights into the tip–sample interaction,” Applied Physics Letters 76 (23), 3478–3480 (2000).CrossRef
40.
go back to reference R. Proksch, Patent No. 7,603,891 B2 (2009). R. Proksch, Patent No. 7,603,891 B2 (2009).
41.
go back to reference D.J.S. Hulmes, A. Miller, D.A.D. Parry et al., “Analysis of primary structure of collagen for origins of molecular packing,” Journal of Molecular Biology 79 (1), 137–148 (1973).CrossRef D.J.S. Hulmes, A. Miller, D.A.D. Parry et al., “Analysis of primary structure of collagen for origins of molecular packing,” Journal of Molecular Biology 79 (1), 137–148 (1973).CrossRef
42.
go back to reference A.V. Kajava, “Molecular packing in type-I collagen fibrils – a model with neighboring collagen molecules aligned in axial register,” Journal of Molecular Biology 218 (4), 815–823 (1991).CrossRef A.V. Kajava, “Molecular packing in type-I collagen fibrils – a model with neighboring collagen molecules aligned in axial register,” Journal of Molecular Biology 218 (4), 815–823 (1991).CrossRef
43.
go back to reference J.W. Li, J.P. Cleveland, and R. Proksch, “Bimodal magnetic force microscopy:Separation of short and long range forces,” Applied Physics Letters 94 (16) (2009). J.W. Li, J.P. Cleveland, and R. Proksch, “Bimodal magnetic force microscopy:Separation of short and long range forces,” Applied Physics Letters 94 (16) (2009).
44.
go back to reference D. Ziegler, J. Rychen, N. Naujoks et al., “Compensating electrostatic forces by single-scan Kelvin probe force microscopy,” Nanotechnology 18 (22) (2007). D. Ziegler, J. Rychen, N. Naujoks et al., “Compensating electrostatic forces by single-scan Kelvin probe force microscopy,” Nanotechnology 18 (22) (2007).
45.
go back to reference B.J. Rodriguez, S. Jesse, S. Habelitz et al., “Intermittent contact mode piezoresponse force microscopy in a liquid environment,” Nanotechnology 20 (19) (2009). B.J. Rodriguez, S. Jesse, S. Habelitz et al., “Intermittent contact mode piezoresponse force microscopy in a liquid environment,” Nanotechnology 20 (19) (2009).
46.
go back to reference D. Passeri, A. Bettucci, M. Germano et al., “Local indentation modulus characterization of diamondlike carbon films by atomic force acoustic microscopy two contact resonance frequencies imaging technique,” Applied Physics Letters 88 (12) (2006). D. Passeri, A. Bettucci, M. Germano et al., “Local indentation modulus characterization of diamondlike carbon films by atomic force acoustic microscopy two contact resonance frequencies imaging technique,” Applied Physics Letters 88 (12) (2006).
47.
go back to reference A.P. French, Vibrations and Waves. (CRC, Florida, 1971). A.P. French, Vibrations and Waves. (CRC, Florida, 1971).
48.
go back to reference J. Tamayo and R. Garcia, “Relationship between phase shift and energy dissipation in tapping-mode scanning force microscopy,” Applied Physics Letters 73 (20), 2926–2928 (1998).CrossRef J. Tamayo and R. Garcia, “Relationship between phase shift and energy dissipation in tapping-mode scanning force microscopy,” Applied Physics Letters 73 (20), 2926–2928 (1998).CrossRef
49.
go back to reference T.R. Albrecht, P. Grutter, D. Horne et al., “Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity,” Journal of Applied Physics 69 (2), 668–673 (1991).CrossRef T.R. Albrecht, P. Grutter, D. Horne et al., “Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity,” Journal of Applied Physics 69 (2), 668–673 (1991).CrossRef
50.
go back to reference F.J. Giessibl, “Atomic-force microscopy in ultrahigh-vacuum,” Japanese Journal of Applied Physics Part 1:Regular Papers Short Notes & Review Papers 33 (6B), 3726–3734 (1994). F.J. Giessibl, “Atomic-force microscopy in ultrahigh-vacuum,” Japanese Journal of Applied Physics Part 1:Regular Papers Short Notes & Review Papers 33 (6B), 3726–3734 (1994).
51.
go back to reference E. Meyer, L. Howald, R. Luthi et al., “Scanning probe microscopy on the surface of SI(111),” Journal of Vacuum Science & Technology B 12 (3), 2060–2063 (1994).CrossRef E. Meyer, L. Howald, R. Luthi et al., “Scanning probe microscopy on the surface of SI(111),” Journal of Vacuum Science & Technology B 12 (3), 2060–2063 (1994).CrossRef
52.
go back to reference H. Yamada, K. Kobayashi, T. Fukuma et al., “Molecular resolution imaging of protein molecules in liquid using frequency modulation atomic force microscopy,” Applied Physics Express 2 (9) (2009). H. Yamada, K. Kobayashi, T. Fukuma et al., “Molecular resolution imaging of protein molecules in liquid using frequency modulation atomic force microscopy,” Applied Physics Express 2 (9) (2009).
53.
go back to reference J.I. Kilpatrick, A. Gannepalli, J.P. Cleveland et al., “Frequency modulation atomic force microscopy in ambient environments utilizing robust feedback tuning,” Review of Scientific Instruments 80 (2) (2009). J.I. Kilpatrick, A. Gannepalli, J.P. Cleveland et al., “Frequency modulation atomic force microscopy in ambient environments utilizing robust feedback tuning,” Review of Scientific Instruments 80 (2) (2009).
54.
go back to reference T. Fukuma, K. Kobayashi, K. Matsushige et al., “True atomic resolution in liquid by frequency-modulation atomic force microscopy,” Applied Physics Letters 87 (3) (2005) T. Fukuma, K. Kobayashi, K. Matsushige et al., “True atomic resolution in liquid by frequency-modulation atomic force microscopy,” Applied Physics Letters 87 (3) (2005)
55.
go back to reference T. Fukuma, M. Kimura, K. Kobayashi et al., “Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy,” Review of Scientific Instruments 76 (5) (2005). T. Fukuma, M. Kimura, K. Kobayashi et al., “Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy,” Review of Scientific Instruments 76 (5) (2005).
56.
go back to reference F.J. Giessibl, “Advances in atomic force microscopy,” Reviews of Modern Physics 75 (3), 949–983 (2003).CrossRef F.J. Giessibl, “Advances in atomic force microscopy,” Reviews of Modern Physics 75 (3), 949–983 (2003).CrossRef
57.
go back to reference F.J. Giessibl, S. Hembacher, H. Bielefeldt et al., “Subatomic features on the silicon (111)-(7×7) surface observed by atomic force microscopy,” Science 289 (5478), 422–425 (2000).CrossRef F.J. Giessibl, S. Hembacher, H. Bielefeldt et al., “Subatomic features on the silicon (111)-(7×7) surface observed by atomic force microscopy,” Science 289 (5478), 422–425 (2000).CrossRef
58.
go back to reference M. Ternes, C.P. Lutz, C.F. Hirjibehedin et al., “The force needed to move an atom on a surface,” Science 319 (5866), 1066–1069 (2008).CrossRef M. Ternes, C.P. Lutz, C.F. Hirjibehedin et al., “The force needed to move an atom on a surface,” Science 319 (5866), 1066–1069 (2008).CrossRef
59.
go back to reference K. Yamanaka, Y. Maruyama, T. Tsuji et al., “Resonance frequency and Q factor mapping by ultrasonic atomic force microscopy,” Applied Physics Letters 78 (13), 1939–1941 (2001).CrossRef K. Yamanaka, Y. Maruyama, T. Tsuji et al., “Resonance frequency and Q factor mapping by ultrasonic atomic force microscopy,” Applied Physics Letters 78 (13), 1939–1941 (2001).CrossRef
60.
go back to reference K. Kobayashi, H. Yamada, and K. Matsushige, “Resonance tracking ultrasonic atomic force microscopy,” Surface and Interface Analysis 33 (2), 89–91 (2002).CrossRef K. Kobayashi, H. Yamada, and K. Matsushige, “Resonance tracking ultrasonic atomic force microscopy,” Surface and Interface Analysis 33 (2), 89–91 (2002).CrossRef
61.
go back to reference R. Proksch and S. Kalinin, “Energy dissipation measurements in frequency modulated scanning probe microscopy,” Nanotechnology, submitted (2009). R. Proksch and S. Kalinin, “Energy dissipation measurements in frequency modulated scanning probe microscopy,” Nanotechnology, submitted (2009).
62.
go back to reference S. Jesse, P. Maksymovych, and S.V. Kalinina, “Rapid multidimensional data acquisition in scanning probe microscopy applied to local polarization dynamics and voltage dependent contact mechanics,” Applied Physics Letters 93 (11) (2008). S. Jesse, P. Maksymovych, and S.V. Kalinina, “Rapid multidimensional data acquisition in scanning probe microscopy applied to local polarization dynamics and voltage dependent contact mechanics,” Applied Physics Letters 93 (11) (2008).
63.
go back to reference A. Gannepalli and R. Proksch, “Submitted,” (2009). A. Gannepalli and R. Proksch, “Submitted,” (2009).
64.
go back to reference D. Platz, E.A. Tholen, D. Pesen et al., “Intermodulation atomic force microscopy,” Applied Physics Letters 92. (15) (2008). D. Platz, E.A. Tholen, D. Pesen et al., “Intermodulation atomic force microscopy,” Applied Physics Letters 92. (15) (2008).
Metadata
Title
Multi-Frequency Atomic Force Microscopy
Author
Roger Proksch
Copyright Year
2011
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4419-7167-8_5

Premium Partners