Skip to main content
Top
Published in: Wireless Personal Communications 1/2015

01-01-2015

Multi-layer Genetic Algorithm for Maximum Disjoint Reliable Set Covers Problem in Wireless Sensor Networks

Authors: Mayyadah F. Abdulhalim, Bara’a A. Attea

Published in: Wireless Personal Communications | Issue 1/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Densely deployment of sensors is generally employed in wireless sensor networks to ensure complete target coverage for a long period of time. Many sensors scheduling techniques have been recently proposed for prolonging the network lifetime. Scheduling sensors into a maximum number of disjoint sets has been modeled, in the literature, as disjoint set covers (DSC) problem which is a well-known NP-hard optimization problem. Unlike other attempts which considers only a simple disk sensing model, this paper addresses the problem of finding the maximum number of set covers while considering a more realistic sensing model to handle uncertainty into the sensors’ target-coverage reliability. The paper investigates the development of a simple multi-layer genetic algorithm (GA) whose main ingredient is to support selection of a minimum number of sensors to be assigned to maximum number of set covers. With the aid of the remaining unassigned sensors, the reliability of DSCs provided by the GA, can further be enhanced by a post-heuristic step. By identifying the upper bound of number of disjoint set covers, the GA can successively construct covers, each of which is of minimal sensor cost. Performance evaluations on solution quality in terms of both number of set covers and coverage reliability are measured and compared through extensive simulations, showing the effectiveness of the proposed GA.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability. A guide to the theory of NP-completeness. New York: Freeman.MATH Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability. A guide to the theory of NP-completeness. New York: Freeman.MATH
2.
go back to reference Slijepcevic, S., & Potkonjak, M. (2001). Power efficient organization of wireless sensor networks. In Proceedings of the IEEE international conference communications (Vol. 2, pp. 472–476). Finland. Slijepcevic, S., & Potkonjak, M. (2001). Power efficient organization of wireless sensor networks. In Proceedings of the IEEE international conference communications (Vol. 2, pp. 472–476). Finland.
3.
go back to reference Cardei, M., Thai, M., Li, Y., & Wu, W. (2005). Energy-efficient target coverage in wireless sensor networks. IEEE INFOCOM 2005, 1976–1984. Cardei, M., Thai, M., Li, Y., & Wu, W. (2005). Energy-efficient target coverage in wireless sensor networks. IEEE INFOCOM 2005, 1976–1984.
4.
go back to reference Tian, D., & Georganas, N. D. (2002). A coverage-preserving node scheduling scheme for large wireless sensor networks. In Proceedings of the 1st association computing machinery international workshop wireless sensor network applications (pp. 32–41). Tian, D., & Georganas, N. D. (2002). A coverage-preserving node scheduling scheme for large wireless sensor networks. In Proceedings of the 1st association computing machinery international workshop wireless sensor network applications (pp. 32–41).
5.
go back to reference Wang, X., Xing, G., Zhang, Y., Lu, C., Pless, R., & Gill, C. (2003). Integrated coverage and connectivity configuration in wireless sensor networks. In Proceedings of the 1st international conference embedded network sensor systems (pp. 28–39) Los Angeles, CA. Wang, X., Xing, G., Zhang, Y., Lu, C., Pless, R., & Gill, C. (2003). Integrated coverage and connectivity configuration in wireless sensor networks. In Proceedings of the 1st international conference embedded network sensor systems (pp. 28–39) Los Angeles, CA.
6.
go back to reference Liu, Y., & Liang, W. (2005). Approximate coverage in wireless sensor networks. In Proceedings of the IEEE conference local computation network 30th anniversary (pp. 68–75). Liu, Y., & Liang, W. (2005). Approximate coverage in wireless sensor networks. In Proceedings of the IEEE conference local computation network 30th anniversary (pp. 68–75).
7.
go back to reference Gupta, H., Zhou, Z., Das, S. R., & Gu, Q. (2006). Connected sensor cover: Self-organization of sensor networks for efficient query execution. IEEE/Association Computing Machinery Transactions on Networking, 14(1), 55–67. Gupta, H., Zhou, Z., Das, S. R., & Gu, Q. (2006). Connected sensor cover: Self-organization of sensor networks for efficient query execution. IEEE/Association Computing Machinery Transactions on Networking, 14(1), 55–67.
8.
go back to reference Gupta, H., Zhou, Z., Das, S. R., & Gu, Q. (2006). Connected sensor cover: Self-organization of sensor networks for efficient query execution. IEEE/Association Computing Machinery Transactions on Networking, 14(1), 55–67. Gupta, H., Zhou, Z., Das, S. R., & Gu, Q. (2006). Connected sensor cover: Self-organization of sensor networks for efficient query execution. IEEE/Association Computing Machinery Transactions on Networking, 14(1), 55–67.
9.
go back to reference Funke, S., Kesselman, A., Kuhn, F., Lotker, Z., & Segal, M. (2007). Improved approximation algorithms for connected sensor cover. Wireless Networks, 13(2), 153–164.CrossRef Funke, S., Kesselman, A., Kuhn, F., Lotker, Z., & Segal, M. (2007). Improved approximation algorithms for connected sensor cover. Wireless Networks, 13(2), 153–164.CrossRef
10.
go back to reference Zhou, Z., Das, S.R., & Gupta, H. (2009). Variable radii connected sensor cover in sensor networks. IEEE/Association Computing Machinery Transactions on Networking, 5(1), 1–36. Article 8. Zhou, Z., Das, S.R., & Gupta, H. (2009). Variable radii connected sensor cover in sensor networks. IEEE/Association Computing Machinery Transactions on Networking, 5(1), 1–36. Article 8.
11.
go back to reference Martins, F. V. C., Carrano, E. G., Wanner, E. F., Takahashi, R. H. C., & Mateus, G. R. (2009). A dynamic multiobjective hybrid approach for designing wireless sensor networks. In Proceedings of the IEEE congress on evolutionary computation (pp. 1145–1152). Martins, F. V. C., Carrano, E. G., Wanner, E. F., Takahashi, R. H. C., & Mateus, G. R. (2009). A dynamic multiobjective hybrid approach for designing wireless sensor networks. In Proceedings of the IEEE congress on evolutionary computation (pp. 1145–1152).
12.
go back to reference Cardei, M., & Du, D.-Z. (2005). Improving wireless sensor network lifetime through power aware organization. Wireless Networks, 11(3), 333–340.CrossRef Cardei, M., & Du, D.-Z. (2005). Improving wireless sensor network lifetime through power aware organization. Wireless Networks, 11(3), 333–340.CrossRef
13.
go back to reference Cardei, I., & Cardei, M. (2008). Energy-efficient connected-coverage in wireless sensor networks. International Journal of Sensor Networks, 3(3), 201–210 Cardei, I., & Cardei, M. (2008). Energy-efficient connected-coverage in wireless sensor networks. International Journal of Sensor Networks, 3(3), 201–210
14.
go back to reference He, J., Xiong, N., Xiao, Y., & Pan, Y. (2010). A reliable energy efficient algorithm for target coverage in wireless sensor networks. ICDCSW ’10 Proceedings of the 2010 IEEE 30th international conference on distributed computing systems workshops (pp. 180–188). He, J., Xiong, N., Xiao, Y., & Pan, Y. (2010). A reliable energy efficient algorithm for target coverage in wireless sensor networks. ICDCSW ’10 Proceedings of the 2010 IEEE 30th international conference on distributed computing systems workshops (pp. 180–188).
15.
go back to reference Lai, C., Ting, C., & Ko, R. (2007). An effective genetic algorithm to improve wireless sensor network lifetime for large-scale surveillance applications. In Proceedings of the 2007 congress on evolutionary computation (pp. 3531–3538). Lai, C., Ting, C., & Ko, R. (2007). An effective genetic algorithm to improve wireless sensor network lifetime for large-scale surveillance applications. In Proceedings of the 2007 congress on evolutionary computation (pp. 3531–3538).
16.
go back to reference Hu, X.-M., Zhang, J., Yu, Y., Chung, H. S.-H., Li, Y.-L., Shi, Y.-H., et al. (2010). Hybrid genetic algorithm using a forward encoding scheme for lifetime maximization of wireless sensor networks. IEEE Transactions on Evolutionary Computation, 14(5), 766–781.CrossRef Hu, X.-M., Zhang, J., Yu, Y., Chung, H. S.-H., Li, Y.-L., Shi, Y.-H., et al. (2010). Hybrid genetic algorithm using a forward encoding scheme for lifetime maximization of wireless sensor networks. IEEE Transactions on Evolutionary Computation, 14(5), 766–781.CrossRef
17.
go back to reference Gil, J.-M., & Han, Y.-H. (2011). A target coverage scheduling scheme based on genetic algorithms in directional sensor networks. Sensors, 11(2), 1888–1906. doi:10.3390/s110201888.CrossRef Gil, J.-M., & Han, Y.-H. (2011). A target coverage scheduling scheme based on genetic algorithms in directional sensor networks. Sensors, 11(2), 1888–1906. doi:10.​3390/​s110201888.CrossRef
18.
go back to reference Elfes, A. (1987). Sonar-based real-world mapping and navigation. IEEE Journal of Robotics and Automation, RA-3(3), 249–265. Elfes, A. (1987). Sonar-based real-world mapping and navigation. IEEE Journal of Robotics and Automation, RA-3(3), 249–265.
19.
go back to reference Ghosh, A., & Das, S. K. (2006). Coverage and connectivity issues in wireless sensor networks, Chap. 6. In R. Shorey, A. L. Ananda, M. C. Chan, & W. T. Ooi (Eds.), Mobile, wireless, and sensor networks: Technology, applications, and future directions. New York: Wiley. Ghosh, A., & Das, S. K. (2006). Coverage and connectivity issues in wireless sensor networks, Chap. 6. In R. Shorey, A. L. Ananda, M. C. Chan, & W. T. Ooi (Eds.), Mobile, wireless, and sensor networks: Technology, applications, and future directions. New York: Wiley.
20.
go back to reference Hossain, A., Biswas, P. K., & Chakrabarti, S. (2008). Sensing models and its impact on network coverage in wireless sensor network. IEEE Region 10 Colloquium and the Third ICIIS. Kharagpur, India, Dec. 8–10. Hossain, A., Biswas, P. K., & Chakrabarti, S. (2008). Sensing models and its impact on network coverage in wireless sensor network. IEEE Region 10 Colloquium and the Third ICIIS. Kharagpur, India, Dec. 8–10.
21.
go back to reference Huang, C.-F., & Tseng, Y.-C. (2005). The coverage problem in a wireless sensor network. Mobile Networks and Applications, 10(4), 519–528.CrossRefMathSciNet Huang, C.-F., & Tseng, Y.-C. (2005). The coverage problem in a wireless sensor network. Mobile Networks and Applications, 10(4), 519–528.CrossRefMathSciNet
22.
go back to reference Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. Chichester: Wiley.MATH Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. Chichester: Wiley.MATH
23.
go back to reference Coello Coello, C. A., Van Veldhuizen, D. A., & Lamont, G. B. (2002). Evolutionary algorithms for solving multi-objective problems. New York: Kluwer.CrossRefMATH Coello Coello, C. A., Van Veldhuizen, D. A., & Lamont, G. B. (2002). Evolutionary algorithms for solving multi-objective problems. New York: Kluwer.CrossRefMATH
24.
go back to reference Zhang, Q., & Li, H. (2007). MOEA/D: A multi-objective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, 11(6), 712–731.CrossRef Zhang, Q., & Li, H. (2007). MOEA/D: A multi-objective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, 11(6), 712–731.CrossRef
25.
go back to reference Coello Coello, C. A., Toscano-Pulido, G., & Salazar-Lechunga, M. (2004). Handling multiple objectives with particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8(3), 256–279.CrossRef Coello Coello, C. A., Toscano-Pulido, G., & Salazar-Lechunga, M. (2004). Handling multiple objectives with particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8(3), 256–279.CrossRef
Metadata
Title
Multi-layer Genetic Algorithm for Maximum Disjoint Reliable Set Covers Problem in Wireless Sensor Networks
Authors
Mayyadah F. Abdulhalim
Bara’a A. Attea
Publication date
01-01-2015
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 1/2015
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-014-2004-8

Other articles of this Issue 1/2015

Wireless Personal Communications 1/2015 Go to the issue