Skip to main content
Top
Published in: Medical & Biological Engineering & Computing 1/2011

01-01-2011 | Original Article

Multi-objective optimal chemotherapy control model for cancer treatment

Authors: S. Algoul, M. S. Alam, M. A. Hossain, M. A. A. Majumder

Published in: Medical & Biological Engineering & Computing | Issue 1/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This article presents an investigation into the development of a multi-objective optimal chemotherapy control model to reduce the number of cancer cells after a number of fixed treatment cycles with minimum side effects. Mathematical models for cancer chemotherapy are designed to predict the number of tumour cells and control the tumour growth during treatment. This requires an understanding of the system in the absence of treatment and a description of the effects of the treatment. In order to achieve multi-objective optimal control model, we used the proportional, integral and derivative (PID) and I-PD (modified PID with Integrator used as series) controllers based on Martin’s model for drug concentration. To the best of our knowledge, this is the first PID/IPD-based optimal chemotherapy control model used to investigate the cancer treatment. The proposed control schemes are designed based on the optimal solution of three objective functions, which include (i) maximising tumour cell killing, for (ii) minimum toxicity, and (iii) tolerable drug concentration. Multi-objective genetic algorithm (MOGA) is used to find suitable parameters of controllers that trade-off among design objectives considered in this work. The results of the different optimal scheduling patterns of the proposed models are presented and discussed through a set of experiments. Finally, the observations are compared with the existing models in order to demonstrate the merits and capabilities of the proposed multi-objective optimisation models. It is noted that the proposed model offers best performance as compared to any models reported earlier.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abundo M, Rossi C (1989) Numerical simulation of a stochastic model for cancerous cells submitted to chemotherapy. J Math Biol 27:81–90PubMed Abundo M, Rossi C (1989) Numerical simulation of a stochastic model for cancerous cells submitted to chemotherapy. J Math Biol 27:81–90PubMed
2.
go back to reference Astrom H, Hagglund T, Hang C, Ho W (1993) Automatic tuning and adaptation for PID controller a survey. IFACJ Control Eng Prac 1(4):699–714CrossRef Astrom H, Hagglund T, Hang C, Ho W (1993) Automatic tuning and adaptation for PID controller a survey. IFACJ Control Eng Prac 1(4):699–714CrossRef
3.
go back to reference Bojkov B, Hansel R, Luus R (1993) Application of direct search optimization to optimal control problems. Hung J Ind Chem 21:177–185 Bojkov B, Hansel R, Luus R (1993) Application of direct search optimization to optimal control problems. Hung J Ind Chem 21:177–185
4.
go back to reference Booker B (1987) Improving search in genetic algorithms. Genetic algorithms and simulated annealing. Morgan Kaufmann, Los Altos Booker B (1987) Improving search in genetic algorithms. Genetic algorithms and simulated annealing. Morgan Kaufmann, Los Altos
5.
go back to reference Brandt K, Gastens A, Loscher W (2006) The multidrug transporter hypothesis of drug resistance in epilepsy: proof-of-principle in a rat model of temporal lobe epilepsy. Neurobiol Dis 24:202–211CrossRefPubMed Brandt K, Gastens A, Loscher W (2006) The multidrug transporter hypothesis of drug resistance in epilepsy: proof-of-principle in a rat model of temporal lobe epilepsy. Neurobiol Dis 24:202–211CrossRefPubMed
6.
go back to reference Carrasco E, Banga JR (1997) Dynamic optimization of batch reactors using adaptive stochastic algorithms. Ind Eng Chem Res 36:2252–2261CrossRef Carrasco E, Banga JR (1997) Dynamic optimization of batch reactors using adaptive stochastic algorithms. Ind Eng Chem Res 36:2252–2261CrossRef
7.
go back to reference Chen K, Calzone L, Nagy A, Cross F, Novak B, Tyson J (2004) Integrative analysis of cell cycle control in budding yeast molecular biology of the cell. Am Soc Cell Biol 15:3841–3862 Chen K, Calzone L, Nagy A, Cross F, Novak B, Tyson J (2004) Integrative analysis of cell cycle control in budding yeast molecular biology of the cell. Am Soc Cell Biol 15:3841–3862
8.
go back to reference Chipperfield A, Fleming P, Pohlheim H, Fonseca C (1994) Genetic algorithms toolbox user’s guide. Automatic control and systems engineering. The University of Sheffield, UK Chipperfield A, Fleming P, Pohlheim H, Fonseca C (1994) Genetic algorithms toolbox user’s guide. Automatic control and systems engineering. The University of Sheffield, UK
9.
go back to reference Costa L, Bassanezi RC (1992) Optimal chemical control of populations developing drug resistance. IMA J 9:215–226 Costa L, Bassanezi RC (1992) Optimal chemical control of populations developing drug resistance. IMA J 9:215–226
10.
go back to reference Deb K (2001) Multi-objective optimisation using evolutionary algorithms. Wiley, New York Deb K (2001) Multi-objective optimisation using evolutionary algorithms. Wiley, New York
11.
go back to reference Dua P, Dua V, Pistikopoulos N (2007) Optimal delivery of chemotherapeutic agents in cancer. Comput Chem Eng 32:99–107CrossRef Dua P, Dua V, Pistikopoulos N (2007) Optimal delivery of chemotherapeutic agents in cancer. Comput Chem Eng 32:99–107CrossRef
12.
go back to reference E. Baker, “Reducing bias and inefficiency in the selection algorithm.”, The Second International Conference on Genetic Algorithms, San Mateo, Morgan Kaufmann, Inc, 1987 E. Baker, “Reducing bias and inefficiency in the selection algorithm.”, The Second International Conference on Genetic Algorithms, San Mateo, Morgan Kaufmann, Inc, 1987
13.
go back to reference Fonseca C (1995) Multiobjective genetic algorithms with application to control engineering problems. PhD thesis, Department of Automatic Control and Systems Engineering, The University of Sheffield, UK Fonseca C (1995) Multiobjective genetic algorithms with application to control engineering problems. PhD thesis, Department of Automatic Control and Systems Engineering, The University of Sheffield, UK
14.
go back to reference Fonseca CM, Fleming PJ (1993) Genetic algorithm for multiobjective optimization, formulation, discussion and generalization. In: Forrest S (ed) Genetic algorithms: proceeding of the fifth international conference, CA, pp 416–423 Fonseca CM, Fleming PJ (1993) Genetic algorithm for multiobjective optimization, formulation, discussion and generalization. In: Forrest S (ed) Genetic algorithms: proceeding of the fifth international conference, CA, pp 416–423
15.
go back to reference Fonseca C, Fleming P (1998) Multiobjective optimization and multiple constraint handling with evolutionary algorithms-part I: a unified formulation. IEEE Trans Syst Man Cybern A 28(1): 26–37 Fonseca C, Fleming P (1998) Multiobjective optimization and multiple constraint handling with evolutionary algorithms-part I: a unified formulation. IEEE Trans Syst Man Cybern A 28(1): 26–37
16.
go back to reference Goldberg D (1989) Genetic algorithms in search, optimisation and machine learning. Addison Wesley Longman Publishing Co. Inc., New York Goldberg D (1989) Genetic algorithms in search, optimisation and machine learning. Addison Wesley Longman Publishing Co. Inc., New York
17.
go back to reference Handl J, Kell DB, Knowles J (2007) Multiobjective optimization in bioinformatics and computational biology. IEEE/ACM Trans Comput Biol Bioinf 4:279–292CrossRef Handl J, Kell DB, Knowles J (2007) Multiobjective optimization in bioinformatics and computational biology. IEEE/ACM Trans Comput Biol Bioinf 4:279–292CrossRef
18.
go back to reference Holland J (1975) Adaptation in natural and artificial system. University of Michigan Press, Ann Arbor Holland J (1975) Adaptation in natural and artificial system. University of Michigan Press, Ann Arbor
19.
go back to reference Kiran K, Jayachandran D, Lakshminarayanan S (2008) Multi-objective optimization of cancer immuno-chemotherapy. ICBME. Springer, Berlin 1337–1340 Kiran K, Jayachandran D, Lakshminarayanan S (2008) Multi-objective optimization of cancer immuno-chemotherapy. ICBME. Springer, Berlin 1337–1340
20.
go back to reference Kozusko Z (2003) Combining Gompertzian growth and cell population dynamics. Math Biosci 185:153–167CrossRefPubMed Kozusko Z (2003) Combining Gompertzian growth and cell population dynamics. Math Biosci 185:153–167CrossRefPubMed
21.
go back to reference Ledzewicz U, Schattler U, Marriott J (2009) Piecewise constant suboptimal controls for a system describing tumor growth under angiogenic treatment. In: 18th IEEE international conference on control applications, pp 77–82 Ledzewicz U, Schattler U, Marriott J (2009) Piecewise constant suboptimal controls for a system describing tumor growth under angiogenic treatment. In: 18th IEEE international conference on control applications, pp 77–82
22.
go back to reference Ledzewicz U, Schattler U, Berman A (2009) On the structure of optimal controls for a mathematical model of tumour anti-angiogenic therapy with linear pharmacokinetics. In: 18th IEEE international conference on control application, pp 71–76 Ledzewicz U, Schattler U, Berman A (2009) On the structure of optimal controls for a mathematical model of tumour anti-angiogenic therapy with linear pharmacokinetics. In: 18th IEEE international conference on control application, pp 71–76
23.
go back to reference Liang Y, Leung KS, Mok SK (2004) Evolutionary drug scheduling models for cancer chemotherapy. In: Proceedings of the international conference GECCO, pp 1126–1137 Liang Y, Leung KS, Mok SK (2004) Evolutionary drug scheduling models for cancer chemotherapy. In: Proceedings of the international conference GECCO, pp 1126–1137
24.
go back to reference Liang Y, Leung K-S, Mok TSK (2006) A novel evolutionary drug scheduling model in cancer chemotherapy. IEEE Trans Inf Technol Biomed 1:237–245CrossRef Liang Y, Leung K-S, Mok TSK (2006) A novel evolutionary drug scheduling model in cancer chemotherapy. IEEE Trans Inf Technol Biomed 1:237–245CrossRef
25.
go back to reference Liang Y, Leung K, Mok T (2008) Evolutionary drug scheduling models with different toxicity metabolism in cancer chemotherapy. Appl Soft Comput 8:140–149CrossRef Liang Y, Leung K, Mok T (2008) Evolutionary drug scheduling models with different toxicity metabolism in cancer chemotherapy. Appl Soft Comput 8:140–149CrossRef
26.
go back to reference Luus R, Hartig F, Keil F (1995) Optimal drug scheduling of cancer chemotherapy by direct search optimization. Hung J Ind Chem 23:55–58 Luus R, Hartig F, Keil F (1995) Optimal drug scheduling of cancer chemotherapy by direct search optimization. Hung J Ind Chem 23:55–58
27.
go back to reference Martin R (1992) Optimal control drug scheduling of cancer chemotherapy. Automatica 28:1113–1123CrossRef Martin R (1992) Optimal control drug scheduling of cancer chemotherapy. Automatica 28:1113–1123CrossRef
28.
go back to reference Martin R, Teo KL (1994) Optimal control of drug administration in chemotherapy tumour growth. World Scientific, Singapore, pp 1–10 Martin R, Teo KL (1994) Optimal control of drug administration in chemotherapy tumour growth. World Scientific, Singapore, pp 1–10
29.
go back to reference McCall J, Petrovski A, Shakya A (2008) Evolutionary algorithms for cancer chemotherapy optimization. In: Fogel GB, Corne DW, Pan Y (eds) Computational intelligence in bioinformatics. IEEE press series in computational intelligence. Wiley, New York, pp 265–296 McCall J, Petrovski A, Shakya A (2008) Evolutionary algorithms for cancer chemotherapy optimization. In: Fogel GB, Corne DW, Pan Y (eds) Computational intelligence in bioinformatics. IEEE press series in computational intelligence. Wiley, New York, pp 265–296
30.
go back to reference Panetta J (1999) A mathematical model of drug resistance: heterogeneous tumour. Math Biosci 147:41–61CrossRef Panetta J (1999) A mathematical model of drug resistance: heterogeneous tumour. Math Biosci 147:41–61CrossRef
31.
go back to reference Petrovski A, Sudha B, McCall J (2004) Optimising cancer chemotherapy using particle swarm optimization and genetic algorithms. In: Proceedings of the 8th international conference on parallel problem solving from nature, vol 3242. Lecture notes in computer science. Springer, Berlin, 633–641 Petrovski A, Sudha B, McCall J (2004) Optimising cancer chemotherapy using particle swarm optimization and genetic algorithms. In: Proceedings of the 8th international conference on parallel problem solving from nature, vol 3242. Lecture notes in computer science. Springer, Berlin, 633–641
32.
go back to reference Pierre C, Etienne C, Sylvie G (1998) Practical treatment guide for dose individualisation in cancer chemotherapy. Drugs 56(6):1019–1038CrossRef Pierre C, Etienne C, Sylvie G (1998) Practical treatment guide for dose individualisation in cancer chemotherapy. Drugs 56(6):1019–1038CrossRef
33.
go back to reference Ruotsalainen H, Boman E, Miettinen K, Tervo J (2009) Nonlinear interactive multiobjective optimization method for radiotherapy treatment planning with Boltzmann transport equation. Contemp Eng Sci 2(9):391–422 Ruotsalainen H, Boman E, Miettinen K, Tervo J (2009) Nonlinear interactive multiobjective optimization method for radiotherapy treatment planning with Boltzmann transport equation. Contemp Eng Sci 2(9):391–422
34.
go back to reference Souslova T, Averill-Bates DA (2004) Multidrug-resistant hela cells overexpressing MRP1 exhibit sensitivity to cell killing by hyperthermia: interactions with etoposide. Int J Radiat Oncol Biol Phys 60(5):1538–1551CrossRefPubMed Souslova T, Averill-Bates DA (2004) Multidrug-resistant hela cells overexpressing MRP1 exhibit sensitivity to cell killing by hyperthermia: interactions with etoposide. Int J Radiat Oncol Biol Phys 60(5):1538–1551CrossRefPubMed
35.
go back to reference Tan K, Khor EF, Cai J, Heng CM, Lee TH (2002) Automating the drug scheduling of cancer chemotherapy via: evolutionary computation. Artif Intell Med 1:908–913 Tan K, Khor EF, Cai J, Heng CM, Lee TH (2002) Automating the drug scheduling of cancer chemotherapy via: evolutionary computation. Artif Intell Med 1:908–913
36.
go back to reference Tes S, Liang Y, Leung K-S, Lee K, Mok TSK (2007) A memetic algorithm for multiple-drug cancer chemotherapy scheduling optimization. IEEE Trans Syst Man Cybern B 37:84–91CrossRef Tes S, Liang Y, Leung K-S, Lee K, Mok TSK (2007) A memetic algorithm for multiple-drug cancer chemotherapy scheduling optimization. IEEE Trans Syst Man Cybern B 37:84–91CrossRef
37.
go back to reference The Mathworks (2010a) MATLAB reference guide The Mathworks (2010a) MATLAB reference guide
38.
go back to reference Vahedi G, Faryabi B, Chamberland J, Datta A (2009) Optimal intervention strategies for cyclic therapeutic methods. IEEE Trans Biomed Eng 56:281–291PubMed Vahedi G, Faryabi B, Chamberland J, Datta A (2009) Optimal intervention strategies for cyclic therapeutic methods. IEEE Trans Biomed Eng 56:281–291PubMed
39.
go back to reference Westman J, Fabijonas BR, Kern DL, Hanson FB (2001) Compartmental model for cancer evolution: chemotherapy and drug resistance. Math Biosci (submitted) Westman J, Fabijonas BR, Kern DL, Hanson FB (2001) Compartmental model for cancer evolution: chemotherapy and drug resistance. Math Biosci (submitted)
40.
go back to reference Woderz N (2005) Computational biology of cancer lecture notes and mathematical modelling. World Scientific, Singapore, pp 1–10CrossRef Woderz N (2005) Computational biology of cancer lecture notes and mathematical modelling. World Scientific, Singapore, pp 1–10CrossRef
41.
go back to reference Zhao J, Zhu YM, Song P, Fang Q, Luo J (2005) Recognition of gene acceptor site based on multi-objective optimization. Acta Biochim Biophys Sin 37:435–439CrossRefPubMed Zhao J, Zhu YM, Song P, Fang Q, Luo J (2005) Recognition of gene acceptor site based on multi-objective optimization. Acta Biochim Biophys Sin 37:435–439CrossRefPubMed
Metadata
Title
Multi-objective optimal chemotherapy control model for cancer treatment
Authors
S. Algoul
M. S. Alam
M. A. Hossain
M. A. A. Majumder
Publication date
01-01-2011
Publisher
Springer-Verlag
Published in
Medical & Biological Engineering & Computing / Issue 1/2011
Print ISSN: 0140-0118
Electronic ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-010-0678-y

Other articles of this Issue 1/2011

Medical & Biological Engineering & Computing 1/2011 Go to the issue

Premium Partner