Skip to main content
Top

2011 | OriginalPaper | Chapter

6. Multi-objective Optimisation of a Family of Industrial Robots

Authors : Johan Ölvander, Mehdi Tarkian, Xiaolong Feng

Published in: Multi-objective Evolutionary Optimisation for Product Design and Manufacturing

Publisher: Springer London

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Product family design is a well recognised method to address the demands of mass customisation. A potential drawback of product families is that the performance of individual members are reduced because of the constraints added by the common platform, i.e., parts and components need to be shared by other family members. This chapter presents a framework where the product family design problem is stated as a multi-objective optimisation problem and where multi-objective evolutionary algorithms are applied to solve the problem. The outcome is a Pareto-optimal front that visualises the trade-off between the degree of commonality (e.g., number of shared components) and performance of individual family members. The design application is a family of industrial robots. An industrial robot is a mechatronic system that comprises a mechanical structure (i.e., a series of mechanical links), drive-train components (including motors and gears), electrical power units and control software for motion planning and control.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Fellini, R., Kokoloras, M., Papalambros, P., & Perez-Duarte, A. (2005). Platform selection under performance bounds in optimal design of product families. Journal of Mechanical Design, 127, 524–535.CrossRef Fellini, R., Kokoloras, M., Papalambros, P., & Perez-Duarte, A. (2005). Platform selection under performance bounds in optimal design of product families. Journal of Mechanical Design, 127, 524–535.CrossRef
2.
go back to reference Nelson, S., Parkinson, M., & Papalambros, P. (2001). Multicriteria optimization in product platform design. Journal of Mechanical Design, 123, 199–204.CrossRef Nelson, S., Parkinson, M., & Papalambros, P. (2001). Multicriteria optimization in product platform design. Journal of Mechanical Design, 123, 199–204.CrossRef
3.
go back to reference Jose, A., & Tollenaere, M. (2005). Modular and platform methods for product family design: literature analysis. Journal of Intelligent Manufacturing, 16, 371–390.CrossRef Jose, A., & Tollenaere, M. (2005). Modular and platform methods for product family design: literature analysis. Journal of Intelligent Manufacturing, 16, 371–390.CrossRef
4.
go back to reference Fujita, K., & Yoshida, H. (2004). Product variety optimization simultaneously designing module combination and module attributes. Concurrent Engineering: Research and Applications, 12(2), 105–118.CrossRef Fujita, K., & Yoshida, H. (2004). Product variety optimization simultaneously designing module combination and module attributes. Concurrent Engineering: Research and Applications, 12(2), 105–118.CrossRef
5.
go back to reference Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Reading, MA: Addison-Wesley. Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Reading, MA: Addison-Wesley.
6.
go back to reference Deb, K. (2001). Multi-Objective Optimization using Evolutionary algorithms. New York, NY: Wiley and Sons Ltd. Deb, K. (2001). Multi-Objective Optimization using Evolutionary algorithms. New York, NY: Wiley and Sons Ltd.
7.
go back to reference Jiao, J., Zhang, Y., & Wang, Y. (2007). A generic genetic algorithm for product family design. Journal of Intelligent Manufacturing, 18(2), 233–247.CrossRef Jiao, J., Zhang, Y., & Wang, Y. (2007). A generic genetic algorithm for product family design. Journal of Intelligent Manufacturing, 18(2), 233–247.CrossRef
8.
go back to reference Simpson, T., D’Souza, B. (2004). Assessing variable levels of platform commonality within a product family using a multiobjective genetic algorithm. Concurrent Engineering: Research and Applications, 12(2) pp 199–129. Simpson, T., D’Souza, B. (2004). Assessing variable levels of platform commonality within a product family using a multiobjective genetic algorithm. Concurrent Engineering: Research and Applications, 12(2) pp 199–129.
9.
go back to reference Andersson, J. (2000). A Survey of Multi-objective Optimization in Engineering Design, Technical Report LiTH-IKP-R-1097, Department of Mechanical Engineering. Linköping, Sweden: Linköping University. Andersson, J. (2000). A Survey of Multi-objective Optimization in Engineering Design, Technical Report LiTH-IKP-R-1097, Department of Mechanical Engineering. Linköping, Sweden: Linköping University.
10.
go back to reference Steuer, R. (2001). Multiple criteria optimization: Theory, computation and application. New York: John Wiley & Sons, Inc. Steuer, R. (2001). Multiple criteria optimization: Theory, computation and application. New York: John Wiley & Sons, Inc.
11.
go back to reference Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transaction on Evolutionary Computation, 6(2), 181–197.CrossRef Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transaction on Evolutionary Computation, 6(2), 181–197.CrossRef
12.
go back to reference Simon, H. (1969). The Sciences of the Artificial. Cambridge: MIT Press. Simon, H. (1969). The Sciences of the Artificial. Cambridge: MIT Press.
13.
go back to reference Cross, N. (2000). Engineering design methods (3rd edition). Chichester, Uk: John Wiley & sons. Cross, N. (2000). Engineering design methods (3rd edition). Chichester, Uk: John Wiley & sons.
14.
go back to reference Pahl, G., Beitz, W. (1996). Engineering Design—A Systematic Approach. London: Springer-Verlag. Pahl, G., Beitz, W. (1996). Engineering DesignA Systematic Approach. London: Springer-Verlag.
15.
go back to reference Suh, N., (2001). Axiomatic Design—Advances and Applications. New York: Oxford University Press. Suh, N., (2001). Axiomatic DesignAdvances and Applications. New York: Oxford University Press.
16.
go back to reference Ullman, D. (1992). The Mechanical Design Process. New York: McGraw-Hill Inc. Ullman, D. (1992). The Mechanical Design Process. New York: McGraw-Hill Inc.
17.
go back to reference Ullrich, K.T., Eppinger, S′.D. (2000), Product design and development (2nd Edition). New York: McGraw-Hill Inc. Ullrich, K.T., Eppinger, S′.D. (2000), Product design and development (2nd Edition). New York: McGraw-Hill Inc.
18.
go back to reference Yoshikawa, T. (1985). Manipulability of robotic mechanisms. International Journal of Robotics Research, 4(2):pp. 3–9. Yoshikawa, T. (1985). Manipulability of robotic mechanisms. International Journal of Robotics Research, 4(2):pp. 3–9.
19.
go back to reference Feng, X., Holmgren, B., Ölvander, J. (2009). Evaluation and optimization of industrial robot families using different kinematic measures. In proceedings of ASME Design Automation Conference. San Diego, August 30–September 2. Feng, X., Holmgren, B., Ölvander, J. (2009). Evaluation and optimization of industrial robot families using different kinematic measures. In proceedings of ASME Design Automation Conference. San Diego, August 30–September 2.
20.
go back to reference Sicilano, B. (2001) Modeling and Control of Robot Manipulators. London: Springer Verlag. Sicilano, B. (2001) Modeling and Control of Robot Manipulators. London: Springer Verlag.
21.
go back to reference Spong, W. Mark & Vidyasagar M. (1989), Robot Dynamics and Control. New York: John Willey & Sons Inc. Spong, W. Mark & Vidyasagar M. (1989), Robot Dynamics and Control. New York: John Willey & Sons Inc.
22.
go back to reference Tarkian, M., Ölvander, J., Feng, X., Petterson, M. (2009). Design automation of modular industrial robots. In proceedings of ASME Design Automation Conference. San Diego, August 30–September 2. Tarkian, M., Ölvander, J., Feng, X., Petterson, M. (2009). Design automation of modular industrial robots. In proceedings of ASME Design Automation Conference. San Diego, August 30–September 2.
Metadata
Title
Multi-objective Optimisation of a Family of Industrial Robots
Authors
Johan Ölvander
Mehdi Tarkian
Xiaolong Feng
Copyright Year
2011
Publisher
Springer London
DOI
https://doi.org/10.1007/978-0-85729-652-8_6

Premium Partners