Skip to main content
Top

2018 | OriginalPaper | Chapter

Multi-organ Segmentation of Chest CT Images in Radiation Oncology: Comparison of Standard and Dilated UNet

Authors : Umair Javaid, Damien Dasnoy, John A. Lee

Published in: Advanced Concepts for Intelligent Vision Systems

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Automatic delineation of organs at risk (OAR) in computed tomography (CT) images is a crucial step for treatment planning in radiation oncology. However, manual delineation of organs is a challenging and time-consuming task subject to inter-observer variabilities. Automatic organ delineation has been relying on non-rigid registrations and atlases. However, lately deep learning appears as a strong competitor with specific architectures dedicated to image segmentation like UNet. In this paper, we first assessed the standard UNet to delineate multiple organs in CT images. Second, we observed the effect of dilated convolutional layers in UNet to better capture the global context from the CT images and effectively learn the anatomy, which results in increased localization of organ delineation. We evaluated the performance of a standard UNet and a dilated UNet (with dilated convolutional layers) on four chest organs (esophagus, left lung, right lung, and spinal cord) from 29 lung image acquisitions and observed that dilated UNet delineates the soft tissues notably esophagus and spinal cord with higher accuracy than the standard UNet. We quantified the segmentation accuracy of both models by computing spatial overlap measures like Dice similarity coefficient, recall & precision, and Hausdorff distance. Compared to the standard UNet, dilated UNet yields the best Dice scores for soft organs whereas for lungs, no significant difference in the Dice score was observed: \(0.84\pm 0.07\) vs \(0.71\pm 0.10\) for esophagus, \(0.99\pm {0.01}\) vs \(0.99\pm {0.01}\) for left lung, \(0.99\pm {0.01}\) vs \(0.99\pm {0.01}\) for right lung and \(0.91\pm {0.05}\) vs \(0.88\pm {0.04}\) for spinal cord.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhang, T., Chi, Y., Elisa, M., Di, Y.: Automatic delineation of on-line head-and-neck computed tomography images: toward on-line adaptive radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 68(2), 522–530 (2007)CrossRef Zhang, T., Chi, Y., Elisa, M., Di, Y.: Automatic delineation of on-line head-and-neck computed tomography images: toward on-line adaptive radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 68(2), 522–530 (2007)CrossRef
2.
go back to reference Gorthi, S., et al.: Segmentation of head and neck lymph node regions for radiotherapy planning using active contour-based atlas registration. IEEE J. Sel. Top. Signal Process. 3(1), 135–147 (2009)CrossRef Gorthi, S., et al.: Segmentation of head and neck lymph node regions for radiotherapy planning using active contour-based atlas registration. IEEE J. Sel. Top. Signal Process. 3(1), 135–147 (2009)CrossRef
3.
go back to reference Dolz, J., et al.: Interactive contour delineation of organs at risk in radiotherapy: clinical evaluation on NSCLC patients. Med. Phys. 43(5), 2569–2580 (2016)MathSciNetCrossRef Dolz, J., et al.: Interactive contour delineation of organs at risk in radiotherapy: clinical evaluation on NSCLC patients. Med. Phys. 43(5), 2569–2580 (2016)MathSciNetCrossRef
4.
go back to reference Wolz, R., Chu, C., Misawa, K., Fujiwara, M., Mori, K., Rueckert, D.: Automated abdominal multi-organ segmentation with subject-specific atlas generation. IEEE Trans. Med. Imaging 32(9), 1723–1730 (2013)CrossRef Wolz, R., Chu, C., Misawa, K., Fujiwara, M., Mori, K., Rueckert, D.: Automated abdominal multi-organ segmentation with subject-specific atlas generation. IEEE Trans. Med. Imaging 32(9), 1723–1730 (2013)CrossRef
5.
go back to reference Okada, T., Linguraru, M.G., Hori, M., Summers, R.M., Tomiyama, N., Sato, Y.: Abdominal multi-organ segmentation from CT images using conditional shape-location and unsupervised intensity priors. Med. Image Anal. 26(1), 1–18 (2015)CrossRef Okada, T., Linguraru, M.G., Hori, M., Summers, R.M., Tomiyama, N., Sato, Y.: Abdominal multi-organ segmentation from CT images using conditional shape-location and unsupervised intensity priors. Med. Image Anal. 26(1), 1–18 (2015)CrossRef
6.
go back to reference Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)CrossRef Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)CrossRef
7.
go back to reference Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015) Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
9.
go back to reference Cha, K.H., Hadjiiski, L., Samala, R.K., Chan, H.-P., Caoili, E.M., Cohan, R.H.: Urinary bladder segmentation in CT urography using deep-learning convolutional neural network and level sets. Med. Phys. 43(4), 1882–1896 (2016)CrossRef Cha, K.H., Hadjiiski, L., Samala, R.K., Chan, H.-P., Caoili, E.M., Cohan, R.H.: Urinary bladder segmentation in CT urography using deep-learning convolutional neural network and level sets. Med. Phys. 43(4), 1882–1896 (2016)CrossRef
11.
go back to reference Li, X., et al.: H-DenseUNet: hybrid densely connected UNet for liver and liver tumor segmentation from CT volumes. arXiv preprint arXiv:1709.07330 (2017) Li, X., et al.: H-DenseUNet: hybrid densely connected UNet for liver and liver tumor segmentation from CT volumes. arXiv preprint arXiv:​1709.​07330 (2017)
13.
go back to reference Gibson, E., et al.: Towards image-guided pancreas and biliary endoscopy: automatic multi-organ segmentation on abdominal CT with dense dilated networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 728–736. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_83CrossRef Gibson, E., et al.: Towards image-guided pancreas and biliary endoscopy: automatic multi-organ segmentation on abdominal CT with dense dilated networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 728–736. Springer, Cham (2017). https://​doi.​org/​10.​1007/​978-3-319-66182-7_​83CrossRef
14.
go back to reference Chen, L.-C., George, P., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)CrossRef Chen, L.-C., George, P., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)CrossRef
15.
go back to reference Di Perri, D., et al.: Evolution of [18f] fluorodeoxyglucose and [18f] fluoroazomycin arabinoside PET uptake distributions in lung tumours during radiation therapy. Acta Oncol. 56(4), 516–524 (2017)CrossRef Di Perri, D., et al.: Evolution of [18f] fluorodeoxyglucose and [18f] fluoroazomycin arabinoside PET uptake distributions in lung tumours during radiation therapy. Acta Oncol. 56(4), 516–524 (2017)CrossRef
16.
go back to reference Simard, P.Y., Steinkraus, D., Platt, J.C., et al.: Best practices for convolutional neural networks applied to visual document analysis. ICDAR 3, 958–962 (2003) Simard, P.Y., Steinkraus, D., Platt, J.C., et al.: Best practices for convolutional neural networks applied to visual document analysis. ICDAR 3, 958–962 (2003)
20.
Metadata
Title
Multi-organ Segmentation of Chest CT Images in Radiation Oncology: Comparison of Standard and Dilated UNet
Authors
Umair Javaid
Damien Dasnoy
John A. Lee
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-030-01449-0_16

Premium Partner