Skip to main content
Top
Published in: Journal of Polymer Research 11/2023

01-11-2023 | Original Paper

Multicycle indentation based fatigue and creep study of polymers

Authors: Soumya Ranjan Guru, Mihir Sarangi

Published in: Journal of Polymer Research | Issue 11/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Polymers are the latest designed materials used in structural, fitting, joint, and other applications. Three thermoplastic polymers, named Polyether ether ketone (PEEK), Poly (methyl methacrylate) (PMMA), and Poly-tetra-fluoro-ethylene (PTFE), have been subjected to the constant load multicycle (CLMC) micro-indentation method. In this study, the fatigue and creep behaviour of the materials has been assessed using the load-displacement curve produced from the indentation method. The primary goal of this paper is to examine the polymer's cycle fatigue behaviour by taking into account the repetitive loading and the resulting hysteresis loop. A technique based on stress and energy was used to study the polymer's fatigue behaviour. In these stress- and energy-based techniques, respectively, hardness (H) and plastic energy (EP) correspond with fatigue life (N). In the fatigue life prediction of polymers, the fatigue toughness, or a total of hysteresis energy, was studied. In addition, these viscoelastic polymers experience time-dependent deformation when a force is applied. By examining the depth (h) with holding time (tH) data, multicycle micro indentation is utilised to determine the creep behaviour of polymers. This study discusses developing a simple and practical approach for calculating the creep and back creep displacement of polymers with the holding time at maximum and minimum load. The fatigue and creep properties of the polymer can be assessed simultaneously using a CLMC indentation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sawyer LC, Grubb DT, Meyers GF (2008) Specimen preparation methods. Polymer Microscopy 130–247 Sawyer LC, Grubb DT, Meyers GF (2008) Specimen preparation methods. Polymer Microscopy 130–247
3.
go back to reference Jones DP, Leach DC, Moore DR (1985) Mechanical properties of poly (ether-ether-ketone) for engineering applications. Polymer 26(9):1385–1393CrossRef Jones DP, Leach DC, Moore DR (1985) Mechanical properties of poly (ether-ether-ketone) for engineering applications. Polymer 26(9):1385–1393CrossRef
4.
go back to reference Fatemi A, Yang L (1998) Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials. Int J Fatigue 20(1):9–34CrossRef Fatemi A, Yang L (1998) Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials. Int J Fatigue 20(1):9–34CrossRef
5.
go back to reference Shrestha R, Simsiriwong J, Shamsaei N, Moser RD (2016) Cyclic deformation and fatigue behavior of polyether ether ketone (PEEK). Int J Fatigue 82:411–427CrossRef Shrestha R, Simsiriwong J, Shamsaei N, Moser RD (2016) Cyclic deformation and fatigue behavior of polyether ether ketone (PEEK). Int J Fatigue 82:411–427CrossRef
6.
go back to reference Abbasnezhad N, Khavandi A, Fitoussi J, Arabi H, Shirinbayan M, Tcharkhtchi A (2018) Influence of loading conditions on the overall mechanical behavior of polyether-ether-ketone (PEEK). Int J Fatigue 109:83–92CrossRef Abbasnezhad N, Khavandi A, Fitoussi J, Arabi H, Shirinbayan M, Tcharkhtchi A (2018) Influence of loading conditions on the overall mechanical behavior of polyether-ether-ketone (PEEK). Int J Fatigue 109:83–92CrossRef
7.
go back to reference Mortazavian S, Fatemi A, Mellott SR, Khosrovaneh A (2015) Effect of cycling frequency and self-heating on fatigue behavior of reinforced and unreinforced thermoplastic polymers. Polym Eng Sci 55(10):2355–2367CrossRef Mortazavian S, Fatemi A, Mellott SR, Khosrovaneh A (2015) Effect of cycling frequency and self-heating on fatigue behavior of reinforced and unreinforced thermoplastic polymers. Polym Eng Sci 55(10):2355–2367CrossRef
8.
go back to reference Shariati M, Hatami H, Yarahmadi H, Eipakchi HR (2012) An experimental study on the ratcheting and fatigue behavior of polyacetal under uniaxial cyclic loading. Mater Des 34:302–312CrossRef Shariati M, Hatami H, Yarahmadi H, Eipakchi HR (2012) An experimental study on the ratcheting and fatigue behavior of polyacetal under uniaxial cyclic loading. Mater Des 34:302–312CrossRef
9.
go back to reference Mellott SR, Fatemi A (2014) Fatigue behavior and modeling of thermoplastics including temperature and mean stress effects. Polym Eng Sci 54(3):725–738CrossRef Mellott SR, Fatemi A (2014) Fatigue behavior and modeling of thermoplastics including temperature and mean stress effects. Polym Eng Sci 54(3):725–738CrossRef
10.
go back to reference Simsiriwong J, Shrestha R, Shamsaei N, Lugo M, Moser RD (2015) Effects of microstructural inclusions on fatigue life of polyether ether ketone (PEEK). J Mech Behav Biomed Mater 51:388–397 Simsiriwong J, Shrestha R, Shamsaei N, Lugo M, Moser RD (2015) Effects of microstructural inclusions on fatigue life of polyether ether ketone (PEEK). J Mech Behav Biomed Mater 51:388–397
11.
go back to reference Broitman E (2017) Indentation hardness measurements at macro-, micro-, and nanoscale: a critical overview. Tribol Lett 65(1):1–18CrossRef Broitman E (2017) Indentation hardness measurements at macro-, micro-, and nanoscale: a critical overview. Tribol Lett 65(1):1–18CrossRef
12.
go back to reference Briscoe BJ, Sinha SK (1999) Hardness and normal indentation of polymers. Mechanical properties and testing of polymers. Springer, Dordrecht, pp 113–122CrossRef Briscoe BJ, Sinha SK (1999) Hardness and normal indentation of polymers. Mechanical properties and testing of polymers. Springer, Dordrecht, pp 113–122CrossRef
13.
go back to reference Milman YV, Golubenko AA, Dub SN (2011) Indentation size effect in nanohardness. Acta Mater 59(20):7480–7487CrossRef Milman YV, Golubenko AA, Dub SN (2011) Indentation size effect in nanohardness. Acta Mater 59(20):7480–7487CrossRef
14.
go back to reference McElhaney KW, Vlassak JJ, Nix WD (1998) Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J Mater Res 13(5):1300–1306CrossRef McElhaney KW, Vlassak JJ, Nix WD (1998) Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J Mater Res 13(5):1300–1306CrossRef
15.
go back to reference Oyen ML, Cook RF (2003) Load–displacement behavior during sharp indentation of viscous–elastic–plastic materials. J Mater Res 18(1):139–150CrossRef Oyen ML, Cook RF (2003) Load–displacement behavior during sharp indentation of viscous–elastic–plastic materials. J Mater Res 18(1):139–150CrossRef
16.
go back to reference Low IM, Paglia G, Shi C (1998) Indentation responses of viscoelastic materials. J Appl Polym Sci 70(12):2349–2352CrossRef Low IM, Paglia G, Shi C (1998) Indentation responses of viscoelastic materials. J Appl Polym Sci 70(12):2349–2352CrossRef
17.
go back to reference Bľanda M, Duszová A, Csanádi T, Hvizdoš P, Lofaj F, Dusza J (2015) Indentation hardness and fatigue of the constituents of WC–Co composites. Int J Refract Metal Hard Mater 49:178–183CrossRef Bľanda M, Duszová A, Csanádi T, Hvizdoš P, Lofaj F, Dusza J (2015) Indentation hardness and fatigue of the constituents of WC–Co composites. Int J Refract Metal Hard Mater 49:178–183CrossRef
18.
go back to reference Duszová A, Hvizdoš P, Lofaj F, Major Ł, Dusza J, Morgiel J (2013) Indentation fatigue of WC–Co cemented carbides. Int J Refract Metal Hard Mater 41:229–235CrossRef Duszová A, Hvizdoš P, Lofaj F, Major Ł, Dusza J, Morgiel J (2013) Indentation fatigue of WC–Co cemented carbides. Int J Refract Metal Hard Mater 41:229–235CrossRef
19.
go back to reference Bľanda M, Duszová A, Csanádi T, Hvizdoš P, Lofaj F, Dusza J (2014) Indentation fatigue of WC grains in WC–Co composite. J Eur Ceram Soc 34(14):3407–3412CrossRef Bľanda M, Duszová A, Csanádi T, Hvizdoš P, Lofaj F, Dusza J (2014) Indentation fatigue of WC grains in WC–Co composite. J Eur Ceram Soc 34(14):3407–3412CrossRef
20.
go back to reference Jia YF, Xuan FZ (2012) Anisotropic fatigue behavior of human enamel characterized by multi-cycling nano-indentation. J Mech Behav Biomed Mater 16:163–168 Jia YF, Xuan FZ (2012) Anisotropic fatigue behavior of human enamel characterized by multi-cycling nano-indentation. J Mech Behav Biomed Mater 16:163–168
21.
go back to reference Klein MW, Blinn B, Smaga M, Beck T (2020) High cycle fatigue behavior of high-Mn TWIP steel with different surface morphologies. Int J Fatigue 134:105499CrossRef Klein MW, Blinn B, Smaga M, Beck T (2020) High cycle fatigue behavior of high-Mn TWIP steel with different surface morphologies. Int J Fatigue 134:105499CrossRef
22.
go back to reference Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583CrossRef Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583CrossRef
23.
go back to reference Briscoe BJ, Fiori L, Pelillo E (1998) Nano-indentation of polymeric surfaces. J Phys D Appl Phys 31(19):2395CrossRef Briscoe BJ, Fiori L, Pelillo E (1998) Nano-indentation of polymeric surfaces. J Phys D Appl Phys 31(19):2395CrossRef
24.
go back to reference Briscoe BJ, Evans PD, Pellilo E, Sinha SK (1996) Scratching maps for polymers. Wear 200(1–2):137–147CrossRef Briscoe BJ, Evans PD, Pellilo E, Sinha SK (1996) Scratching maps for polymers. Wear 200(1–2):137–147CrossRef
25.
go back to reference Sharma G, Ramanujan RV, Kutty TRG, Prabhu N (2005) Indentation creep studies of iron aluminide intermetallic alloy. Intermetallics 13(1):47–53CrossRef Sharma G, Ramanujan RV, Kutty TRG, Prabhu N (2005) Indentation creep studies of iron aluminide intermetallic alloy. Intermetallics 13(1):47–53CrossRef
26.
go back to reference Abd El-Rehim AF, Zahran HY (2014) Effect of aging treatment on microstructure and creep behaviour of Sn–Ag and Sn–Ag–Bi solder alloys. Mater Sci Technol 30(4):434–438CrossRef Abd El-Rehim AF, Zahran HY (2014) Effect of aging treatment on microstructure and creep behaviour of Sn–Ag and Sn–Ag–Bi solder alloys. Mater Sci Technol 30(4):434–438CrossRef
27.
go back to reference Shen L, Cheong WCD, Foo YL, Chen Z (2012) Nano-indentation creep of tin and aluminium: A comparative study between constant load and constant strain rate methods. Mater Sci Eng, A 532:505–510CrossRef Shen L, Cheong WCD, Foo YL, Chen Z (2012) Nano-indentation creep of tin and aluminium: A comparative study between constant load and constant strain rate methods. Mater Sci Eng, A 532:505–510CrossRef
28.
go back to reference Ma X, Li F, Zhao C, Zhu G, Li W, Sun Z, Yuan Z (2017) Indenter load effects on creep deformation behavior for Ti-10V-2Fe-3Al alloy at room temperature. J Alloy Compd 709:322–328CrossRef Ma X, Li F, Zhao C, Zhu G, Li W, Sun Z, Yuan Z (2017) Indenter load effects on creep deformation behavior for Ti-10V-2Fe-3Al alloy at room temperature. J Alloy Compd 709:322–328CrossRef
29.
go back to reference Chudoba T, Richter F (2001) Investigation of creep behaviour under load during indentation experiments and its influence on hardness and modulus results. Surf Coat Technol 148(2–3):191–198CrossRef Chudoba T, Richter F (2001) Investigation of creep behaviour under load during indentation experiments and its influence on hardness and modulus results. Surf Coat Technol 148(2–3):191–198CrossRef
30.
go back to reference Feng G, Ngan AHW (2002) Effects of creep and thermal drift on modulus measurement using depth-sensing indentation. J Mater Res 17(3):660–668CrossRef Feng G, Ngan AHW (2002) Effects of creep and thermal drift on modulus measurement using depth-sensing indentation. J Mater Res 17(3):660–668CrossRef
31.
go back to reference Peng G, Zhang T, Feng Y, Huan Y (2012) Determination of shear creep compliance of linear viscoelastic-plastic solids by instrumented indentation. Polym Testing 31(8):1038–1044CrossRef Peng G, Zhang T, Feng Y, Huan Y (2012) Determination of shear creep compliance of linear viscoelastic-plastic solids by instrumented indentation. Polym Testing 31(8):1038–1044CrossRef
32.
go back to reference Menčík J, He LH, Swain MV (2009) Determination of viscoelastic–plastic material parameters of biomaterials by instrumented indentation. J Mech Behav Biomed Mater 2(4):318–325CrossRefPubMed Menčík J, He LH, Swain MV (2009) Determination of viscoelastic–plastic material parameters of biomaterials by instrumented indentation. J Mech Behav Biomed Mater 2(4):318–325CrossRefPubMed
33.
go back to reference Menčík J, He LH, Němeček J (2011) Characterization of viscoelastic-plastic properties of solid polymers by instrumented indentation. Polym Testing 30(1):101–109CrossRef Menčík J, He LH, Němeček J (2011) Characterization of viscoelastic-plastic properties of solid polymers by instrumented indentation. Polym Testing 30(1):101–109CrossRef
34.
go back to reference Shepherd TN, Zhang J, Ovaert TC, Roeder RK, Niebur GL (2011) Direct comparison of nano-indentation and macroscopic measurements of bone viscoelasticity. J Mech Behav Biomed Mater 4(8):2055–2062CrossRefPubMedPubMedCentral Shepherd TN, Zhang J, Ovaert TC, Roeder RK, Niebur GL (2011) Direct comparison of nano-indentation and macroscopic measurements of bone viscoelasticity. J Mech Behav Biomed Mater 4(8):2055–2062CrossRefPubMedPubMedCentral
35.
37.
go back to reference Liu X, Zhang Q, Zhao X, Yang X, Luo L (2016) Ambient-temperature nano-indentation creep in ultrafine-grained titanium processed by ECAP. Mater Sci Eng, A 676:73–79CrossRef Liu X, Zhang Q, Zhao X, Yang X, Luo L (2016) Ambient-temperature nano-indentation creep in ultrafine-grained titanium processed by ECAP. Mater Sci Eng, A 676:73–79CrossRef
38.
go back to reference Lucas BN, Oliver WC (1999) Indentation power-law creep of high-purity indium. Metall and Mater Trans A 30(3):601–610CrossRef Lucas BN, Oliver WC (1999) Indentation power-law creep of high-purity indium. Metall and Mater Trans A 30(3):601–610CrossRef
39.
go back to reference Hu J, Sun G, Zhang X, Wang G, Jiang Z, Han S, Lian J (2015) Effects of loading strain rate and stacking fault energy on nano-indentation creep behaviors of nanocrystalline Cu, Ni-20 wt.% Fe and Ni. J Alloys Compd 647:670–680 Hu J, Sun G, Zhang X, Wang G, Jiang Z, Han S, Lian J (2015) Effects of loading strain rate and stacking fault energy on nano-indentation creep behaviors of nanocrystalline Cu, Ni-20 wt.% Fe and Ni. J Alloys Compd 647:670–680
40.
go back to reference Lee EH, Radok JRM (1960) The contact problem for viscoelastic bodies Lee EH, Radok JRM (1960) The contact problem for viscoelastic bodies
41.
go back to reference Tao G, Xia Z (2007) Mean stress/strain effect on fatigue behavior of an epoxy resin. Int J Fatigue 29(12):2180–2190CrossRef Tao G, Xia Z (2007) Mean stress/strain effect on fatigue behavior of an epoxy resin. Int J Fatigue 29(12):2180–2190CrossRef
42.
go back to reference Lorenzo V, Perena JM, Fatou JG (1989) Vickers microhardness related to mechanical properties of polypropylene. J Mater Sci Lett 8(12):1455–1457CrossRef Lorenzo V, Perena JM, Fatou JG (1989) Vickers microhardness related to mechanical properties of polypropylene. J Mater Sci Lett 8(12):1455–1457CrossRef
43.
go back to reference Sarkar PP, De PS, Dhua SK, Chakraborti PC (2017) Strain energy based low cycle fatigue damage analysis in a plain C-Mn rail steel. Mater Sci Eng, A 707:125–135CrossRef Sarkar PP, De PS, Dhua SK, Chakraborti PC (2017) Strain energy based low cycle fatigue damage analysis in a plain C-Mn rail steel. Mater Sci Eng, A 707:125–135CrossRef
44.
go back to reference Luo YR, Huang CX, Yi GUO, Wang QY (2012) Energy-based prediction of low cycle fatigue life of high-strength structural steel. J Iron Steel Res Int 19(10) Luo YR, Huang CX, Yi GUO, Wang QY (2012) Energy-based prediction of low cycle fatigue life of high-strength structural steel. J Iron Steel Res Int 19(10)
45.
go back to reference Mortazavian S, Fatemi A (2015) Fatigue behavior and modeling of short fiber reinforced polymer composites: A literature review. Int J Fatigue 70:297–321CrossRef Mortazavian S, Fatemi A (2015) Fatigue behavior and modeling of short fiber reinforced polymer composites: A literature review. Int J Fatigue 70:297–321CrossRef
46.
go back to reference Bernasconi A, Kulin RM (2009) Effect of frequency upon fatigue strength of a short glass fiber reinforced polyamide 6: a superposition method based on cyclic creep parameters. Polym Compos 30(2):154–161CrossRef Bernasconi A, Kulin RM (2009) Effect of frequency upon fatigue strength of a short glass fiber reinforced polyamide 6: a superposition method based on cyclic creep parameters. Polym Compos 30(2):154–161CrossRef
Metadata
Title
Multicycle indentation based fatigue and creep study of polymers
Authors
Soumya Ranjan Guru
Mihir Sarangi
Publication date
01-11-2023
Publisher
Springer Netherlands
Published in
Journal of Polymer Research / Issue 11/2023
Print ISSN: 1022-9760
Electronic ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-023-03774-8

Other articles of this Issue 11/2023

Journal of Polymer Research 11/2023 Go to the issue

Premium Partners