Skip to main content
Top

2020 | OriginalPaper | Chapter

12. Multifarious Benefits of Biochar Application in Different Soil Types

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The extensive use of chemical fertilizers in agriculture have long term deleterious impact such as leading salinity, decline fertility of soil with fast growth of agricultural production and it is predicted that the fertilizer use to continue increase in the coming years. With current scenario, there has been keen interest on biochar, produced from various crop residues with multiple environmental applications such as soil amelioration, pollutants removal and carbon sequestration. Biochar has several unique properties like high alkaline pH, fixed carbon content, stability against decay, water holding capacity and cation exchange capacity, which makes it an efficient, cost-effective and environmentally-friendly material. Many study showed the effectiveness of biochar amendments in soil i.e. nutrient status improvement, increases soil porosity, soil pH, soil moisture-holding capacity and boost the growth of beneficial plant growth promoting microbial community.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abrol V, Ben-Hur M, Verheijen FG, Keizer JJ, Martins MA, Tenaw H, Tchehansky L, Graber ER (2016) Biochar effects on soil water infiltration and erosion under seal formation conditions: rainfall simulation experiment. J Soils Sediments 16:2709–2719CrossRef Abrol V, Ben-Hur M, Verheijen FG, Keizer JJ, Martins MA, Tenaw H, Tchehansky L, Graber ER (2016) Biochar effects on soil water infiltration and erosion under seal formation conditions: rainfall simulation experiment. J Soils Sediments 16:2709–2719CrossRef
go back to reference Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, OK YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33CrossRef Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, OK YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33CrossRef
go back to reference Akhtar SS, Andersen MN, Liu F (2015) Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agric Water Manag 158:61–68CrossRef Akhtar SS, Andersen MN, Liu F (2015) Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agric Water Manag 158:61–68CrossRef
go back to reference Ameloot N, De Neve S, Jegajeevagan K, Yildiz G, Buchan D, Funkuin YN, Prins W, Bouckaert L, Sleutel S (2013) Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils. Soil Biol Biochem 57:401–410CrossRef Ameloot N, De Neve S, Jegajeevagan K, Yildiz G, Buchan D, Funkuin YN, Prins W, Bouckaert L, Sleutel S (2013) Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils. Soil Biol Biochem 57:401–410CrossRef
go back to reference Beesley L, Jiménez EM, Eyles JLG (2010) Effects of biochar and green waste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158:2282–2287CrossRef Beesley L, Jiménez EM, Eyles JLG (2010) Effects of biochar and green waste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158:2282–2287CrossRef
go back to reference Bhaduri D, Saha A, Desai D, Meena HN (2016) Restoration of carbon and microbial activity in salt-induced soil by application of peanut shell biochar during short-term incubation study. Chemosphere 148:86–98CrossRef Bhaduri D, Saha A, Desai D, Meena HN (2016) Restoration of carbon and microbial activity in salt-induced soil by application of peanut shell biochar during short-term incubation study. Chemosphere 148:86–98CrossRef
go back to reference Brewer CE, Hu YY, Schmidt-Rohr K, Loynachan TE, Laird DA, Brown RC (2012) Extent of pyrolysis impacts on fast pyrolysis biochar properties. J Environ Qual 41:1115–1122CrossRef Brewer CE, Hu YY, Schmidt-Rohr K, Loynachan TE, Laird DA, Brown RC (2012) Extent of pyrolysis impacts on fast pyrolysis biochar properties. J Environ Qual 41:1115–1122CrossRef
go back to reference Bruun S, Clauson-Kaas S, Bobulska L, Thomsen IK (2014) Carbon dioxide emissions from biochar in soil: role of clay, microorganisms and carbonates. Eur J Soil Sci 65:52–59CrossRef Bruun S, Clauson-Kaas S, Bobulska L, Thomsen IK (2014) Carbon dioxide emissions from biochar in soil: role of clay, microorganisms and carbonates. Eur J Soil Sci 65:52–59CrossRef
go back to reference Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS (2012) Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol 107:419–428CrossRef Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS (2012) Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol 107:419–428CrossRef
go back to reference Chaganti VN, Crohn DM, Šimůnek J (2015) Leaching and reclamation of a biochar and compost amended saline–sodic soil with mode rate SAR reclaimed water. Agric Water Manag 158:255–265CrossRef Chaganti VN, Crohn DM, Šimůnek J (2015) Leaching and reclamation of a biochar and compost amended saline–sodic soil with mode rate SAR reclaimed water. Agric Water Manag 158:255–265CrossRef
go back to reference Chan K, Van Zwieten L, Meszaros I, Downie A, Joseph S (2008) Using poultry litter biochars as soil amendments. Aust J Soil Res 46:437–444CrossRef Chan K, Van Zwieten L, Meszaros I, Downie A, Joseph S (2008) Using poultry litter biochars as soil amendments. Aust J Soil Res 46:437–444CrossRef
go back to reference Chen JH, Liu XY, Zheng JW, Zhang B, Lu HF, Chi ZZ, Pan GX, Li LQ, Zheng JF, Zhang XH, Wang JF, Yu XY (2013) Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China. Appl Soil Ecol 71:33–44CrossRef Chen JH, Liu XY, Zheng JW, Zhang B, Lu HF, Chi ZZ, Pan GX, Li LQ, Zheng JF, Zhang XH, Wang JF, Yu XY (2013) Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China. Appl Soil Ecol 71:33–44CrossRef
go back to reference Chen T, Liu R, Scott NR (2016) Characterization of energy carriers obtained from the pyrolysis of white ash, switchgrass and corn stover biochar, syngas and bio-oil. Fuel Process Technol 142:124–134CrossRef Chen T, Liu R, Scott NR (2016) Characterization of energy carriers obtained from the pyrolysis of white ash, switchgrass and corn stover biochar, syngas and bio-oil. Fuel Process Technol 142:124–134CrossRef
go back to reference Cheng CH, Lehmann J, Engelhard MH (2008) Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochim Cosmochim Acta 72:1598–1610CrossRef Cheng CH, Lehmann J, Engelhard MH (2008) Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochim Cosmochim Acta 72:1598–1610CrossRef
go back to reference Costanza R, d’Arge R, de Groot R, Farberk S, Grasso M, Hannon B, Limburg K, Naeem S, O ’ Neill RV, Paruelo J, Raskin RG, Suttonkk P, van den Belt M (1987) The value of the world’s ecosystem services and natural capital. Nature 387:253–260CrossRef Costanza R, d’Arge R, de Groot R, Farberk S, Grasso M, Hannon B, Limburg K, Naeem S, O ’ Neill RV, Paruelo J, Raskin RG, Suttonkk P, van den Belt M (1987) The value of the world’s ecosystem services and natural capital. Nature 387:253–260CrossRef
go back to reference Crombie K, Mašek O, Sohi SP, Brownsort P, Cross A (2013) The effect of pyrolysis conditions on biochar stability as determined by three methods. GCB Bioenergy 5(2):122–131CrossRef Crombie K, Mašek O, Sohi SP, Brownsort P, Cross A (2013) The effect of pyrolysis conditions on biochar stability as determined by three methods. GCB Bioenergy 5(2):122–131CrossRef
go back to reference Di Lonardo S, Baronti S, Vaccari FP, Albanese L, Battista P, Miglietta F, Bacci L (2017) Biochar-based nursery substrates: the effect of peat substitution on reduced salinity. Urban For Urban Green 23:27–34CrossRef Di Lonardo S, Baronti S, Vaccari FP, Albanese L, Battista P, Miglietta F, Bacci L (2017) Biochar-based nursery substrates: the effect of peat substitution on reduced salinity. Urban For Urban Green 23:27–34CrossRef
go back to reference Durenkamp M, Luo Y, Brookes P (2010) Impact of black carbon addition to soil on the determination of soil microbial biomass by fumigation extraction. Soil Biol Biochem 42:2026–2029CrossRef Durenkamp M, Luo Y, Brookes P (2010) Impact of black carbon addition to soil on the determination of soil microbial biomass by fumigation extraction. Soil Biol Biochem 42:2026–2029CrossRef
go back to reference Galvez A, Sinicco T, Cayuela ML, Mingorance MD, Fornasier F, Mondini C (2012) Short term effects of bioenergy by-products on soil C and N dynamics, nutrient availability and biochemical properties. Agric Ecosyst Environ 160:3–14CrossRef Galvez A, Sinicco T, Cayuela ML, Mingorance MD, Fornasier F, Mondini C (2012) Short term effects of bioenergy by-products on soil C and N dynamics, nutrient availability and biochemical properties. Agric Ecosyst Environ 160:3–14CrossRef
go back to reference Ge Y, Zhang JB, Zhang LM, Yang M, He JZ (2008) Long-term fertilization regimes affect bacterial community structure and diversity of an agricultural soil in northern China. J Soils Sediments 8:43–50CrossRef Ge Y, Zhang JB, Zhang LM, Yang M, He JZ (2008) Long-term fertilization regimes affect bacterial community structure and diversity of an agricultural soil in northern China. J Soils Sediments 8:43–50CrossRef
go back to reference George C, Wagner M, Kucke M, Rillig MC (2012) Divergent consequences of hydrochar in the plant–soil system: arbuscular mycorrhiza, nodulation, plant growth and soil aggregation effects. Appl Soil Ecol 59:68–72CrossRef George C, Wagner M, Kucke M, Rillig MC (2012) Divergent consequences of hydrochar in the plant–soil system: arbuscular mycorrhiza, nodulation, plant growth and soil aggregation effects. Appl Soil Ecol 59:68–72CrossRef
go back to reference Glaser B (2007) Prehistorically modified soils of central Amazonia: a model for sustainable agriculture in the twenty-first century. Philos Trans R Soc B 362:187–196CrossRef Glaser B (2007) Prehistorically modified soils of central Amazonia: a model for sustainable agriculture in the twenty-first century. Philos Trans R Soc B 362:187–196CrossRef
go back to reference Graber ER, Harel YM, Kolton M, Cytryn E, Silber A, David DR, Tsechansky L, Borenshtein M, Elad Y (2010) Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 337:481–496CrossRef Graber ER, Harel YM, Kolton M, Cytryn E, Silber A, David DR, Tsechansky L, Borenshtein M, Elad Y (2010) Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 337:481–496CrossRef
go back to reference Grossman JM, O’Neill BE, Tsai SM, Liang B, Neves E, Lehmann J, Thies JE (2010) Amazonian anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodified soils of the same mineralogy. Microb Ecol 60:192–205CrossRef Grossman JM, O’Neill BE, Tsai SM, Liang B, Neves E, Lehmann J, Thies JE (2010) Amazonian anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodified soils of the same mineralogy. Microb Ecol 60:192–205CrossRef
go back to reference Inyang M, Dickenson E (2015) The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: review. Chemosphere 134:232–240CrossRef Inyang M, Dickenson E (2015) The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: review. Chemosphere 134:232–240CrossRef
go back to reference Iswaran V, Jauhri KS, Sen A (1980) Effect of charcoal, coal and peat on the yield of moong, soybean and pea. Soil Biol Biochem 12:191–192CrossRef Iswaran V, Jauhri KS, Sen A (1980) Effect of charcoal, coal and peat on the yield of moong, soybean and pea. Soil Biol Biochem 12:191–192CrossRef
go back to reference Jeffery S, Verheijena FGA, van der Velde M, Bastos AC (2011) A quantitative re-view of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ 144:175–187CrossRef Jeffery S, Verheijena FGA, van der Velde M, Bastos AC (2011) A quantitative re-view of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ 144:175–187CrossRef
go back to reference Jindo K, Sanchez-Moneder MA, Hernandez T, Garcia C, Furukawa T, Matsumoto K, Sonoki T, Bastida F (2012) Biochar influences the microbial community structure during manure composting with agricultural wastes. Sci Total Environ 416:476–481CrossRef Jindo K, Sanchez-Moneder MA, Hernandez T, Garcia C, Furukawa T, Matsumoto K, Sonoki T, Bastida F (2012) Biochar influences the microbial community structure during manure composting with agricultural wastes. Sci Total Environ 416:476–481CrossRef
go back to reference Jones DL, Rousk J, Edwards-Jones G, DeLuca TH, Murphy DV (2012) Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol Biochem 45:113–124CrossRef Jones DL, Rousk J, Edwards-Jones G, DeLuca TH, Murphy DV (2012) Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol Biochem 45:113–124CrossRef
go back to reference Joseph SD, Camps AM, Lin Y, Munroe P, Chia CH, Hook J, Zwieten LV, Kimber S, Cowie A, Singh BP, Lehmann J, Foidl N, Smernik RJ, Amonette JE (2010) An investigation into the reactions of biochar in soil. Soil Res 48:501–515CrossRef Joseph SD, Camps AM, Lin Y, Munroe P, Chia CH, Hook J, Zwieten LV, Kimber S, Cowie A, Singh BP, Lehmann J, Foidl N, Smernik RJ, Amonette JE (2010) An investigation into the reactions of biochar in soil. Soil Res 48:501–515CrossRef
go back to reference Jung C, Oh J, Yoon Y (2015) Removal of acetaminophen and naproxen by combined coagulation and adsorption using biochar: influence of combined sewer over flow components. Environ Sci Pollut Res 22(13):10058–10069CrossRef Jung C, Oh J, Yoon Y (2015) Removal of acetaminophen and naproxen by combined coagulation and adsorption using biochar: influence of combined sewer over flow components. Environ Sci Pollut Res 22(13):10058–10069CrossRef
go back to reference Kambo HS, Dutta A (2015) A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sust Energ Rev 45:359–378CrossRef Kambo HS, Dutta A (2015) A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sust Energ Rev 45:359–378CrossRef
go back to reference Karami N, Clemente R, Moreno JE, Lepp NW, Beesley L (2011) Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J Hazard Mater 191:41–48CrossRef Karami N, Clemente R, Moreno JE, Lepp NW, Beesley L (2011) Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J Hazard Mater 191:41–48CrossRef
go back to reference Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44:1247–1253CrossRef Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44:1247–1253CrossRef
go back to reference Kishimoto S, Sugiura G (1985) Charcoal as a soil conditioner. Int Achieve Future 5:12–23 Kishimoto S, Sugiura G (1985) Charcoal as a soil conditioner. Int Achieve Future 5:12–23
go back to reference Kumar A, Singh JS (2017) Cyanoremediation: a green-clean tool for decontamination of synthetic pesticides from agro-and aquatic ecosystems. In: Singh JS, Seneviratne G (eds) Agro-environmental sustainability: vol (2) managing environmental pollution. Springer, Cham, pp 59–83CrossRef Kumar A, Singh JS (2017) Cyanoremediation: a green-clean tool for decontamination of synthetic pesticides from agro-and aquatic ecosystems. In: Singh JS, Seneviratne G (eds) Agro-environmental sustainability: vol (2) managing environmental pollution. Springer, Cham, pp 59–83CrossRef
go back to reference Kumar A, Kaushal S, Saraf S, Singh JS (2017) Cyanobacterial biotechnology: an opportunity for sustainable industrial production. Clim Change Environ Sustain 5(1):97–110CrossRef Kumar A, Kaushal S, Saraf S, Singh JS (2017) Cyanobacterial biotechnology: an opportunity for sustainable industrial production. Clim Change Environ Sustain 5(1):97–110CrossRef
go back to reference Kumar A, Kaushal S, Saraf S, Singh JS (2018) Microbial bio-fuels: a solution to carbon emissions and energy crisis. Front Biosci (Landmark) 23:1789–1802CrossRef Kumar A, Kaushal S, Saraf S, Singh JS (2018) Microbial bio-fuels: a solution to carbon emissions and energy crisis. Front Biosci (Landmark) 23:1789–1802CrossRef
go back to reference Kuppusamy S, Thavamani P, Megharaj M, Venkateswarlu K, Naidu R (2016) Agronomic and remedial benefits and risks of applying biochar to soil: current knowledge and future research directions. Environ Int 87:1–12CrossRef Kuppusamy S, Thavamani P, Megharaj M, Venkateswarlu K, Naidu R (2016) Agronomic and remedial benefits and risks of applying biochar to soil: current knowledge and future research directions. Environ Int 87:1–12CrossRef
go back to reference Laird DA, Fleming P, Davis DD, Horton R, Wang B, Karlen DL (2010) Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 158:443–449CrossRef Laird DA, Fleming P, Davis DD, Horton R, Wang B, Karlen DL (2010) Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 158:443–449CrossRef
go back to reference Lashari MS, Ye Y, Ji H, Li L, Kibue GW, Lu H, Zheng J, Pan G (2015) Biochar–manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from central China: a 2-year field experiment. J Sci Food Agric 95:1321–1327CrossRef Lashari MS, Ye Y, Ji H, Li L, Kibue GW, Lu H, Zheng J, Pan G (2015) Biochar–manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from central China: a 2-year field experiment. J Sci Food Agric 95:1321–1327CrossRef
go back to reference Lehmann J, Joseph S (2009) Biochar for environmental management: science, technology and implementation. Routledge Publishing, London/New York Lehmann J, Joseph S (2009) Biochar for environmental management: science, technology and implementation. Routledge Publishing, London/New York
go back to reference Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota – a review. Soil Biol Biochem 43:1812–1836CrossRef Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota – a review. Soil Biol Biochem 43:1812–1836CrossRef
go back to reference Li L, Wang S, Li X, Li T, He X, Tao Y (2018) Effects of Pseudomonas chenduensis and biochar on cadmium availability and microbial community in the paddy soil. Sci Total Environ 640:1034–1043CrossRef Li L, Wang S, Li X, Li T, He X, Tao Y (2018) Effects of Pseudomonas chenduensis and biochar on cadmium availability and microbial community in the paddy soil. Sci Total Environ 640:1034–1043CrossRef
go back to reference Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill B, Skjemstad JO, Thies J, Luiza FJ, Petersen J, Neves EG (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70:1719–1730CrossRef Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill B, Skjemstad JO, Thies J, Luiza FJ, Petersen J, Neves EG (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70:1719–1730CrossRef
go back to reference Li-li H, Zhe-ke Z, Hui-min Y (2017) Effects on soil quality of biochar and straw amendment in conjunction with chemical fertilizers. J Integr Agric 16(3):704–712CrossRef Li-li H, Zhe-ke Z, Hui-min Y (2017) Effects on soil quality of biochar and straw amendment in conjunction with chemical fertilizers. J Integr Agric 16(3):704–712CrossRef
go back to reference Lu K, Yang X, Shen J, Robinson B, Huang H, Liu D, Wang H (2014) Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agric Ecosyst Environ 191:24–132CrossRef Lu K, Yang X, Shen J, Robinson B, Huang H, Liu D, Wang H (2014) Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agric Ecosyst Environ 191:24–132CrossRef
go back to reference Luo S, Wang S, Tian L, Li S, Lia X, Shen Y, Tian C (2017) Long-term biochar application influences soil microbial community and its potential roles in semiarid farmland. Appl Soil Ecol 117–118:10–15CrossRef Luo S, Wang S, Tian L, Li S, Lia X, Shen Y, Tian C (2017) Long-term biochar application influences soil microbial community and its potential roles in semiarid farmland. Appl Soil Ecol 117–118:10–15CrossRef
go back to reference Major J, Lehmann J, Rondon M, Goodale C (2010) Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Glob Chang Biol 16(4):1366–1379CrossRef Major J, Lehmann J, Rondon M, Goodale C (2010) Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Glob Chang Biol 16(4):1366–1379CrossRef
go back to reference Marjenah MS (1994) Effect of charcoaled rice husks on the growth of Dipterocarpaceae seedlings in East Kalimantan with special reference to ectomycorrhiza formation. J Jpn For Soc 76:462–464 Marjenah MS (1994) Effect of charcoaled rice husks on the growth of Dipterocarpaceae seedlings in East Kalimantan with special reference to ectomycorrhiza formation. J Jpn For Soc 76:462–464
go back to reference Oliveira FR, Patel AK, Jaisi DP, Adhikari S, Lu H, Khanal SK (2017) Environmental application of biochar: current status and perspectives. Bioresour Technol 246:110–122CrossRef Oliveira FR, Patel AK, Jaisi DP, Adhikari S, Lu H, Khanal SK (2017) Environmental application of biochar: current status and perspectives. Bioresour Technol 246:110–122CrossRef
go back to reference Qin SP, Hu CS, Dong WX (2010) Nitrification results in underestimation of soil urease activity as determined by ammonium production rate. Pedobiologia 53:401–404CrossRef Qin SP, Hu CS, Dong WX (2010) Nitrification results in underestimation of soil urease activity as determined by ammonium production rate. Pedobiologia 53:401–404CrossRef
go back to reference Qiu H, Lv L, Pan BC, Zhang QJ, Zhang WM, Zhang QX (2009) Critical review in adsorption kinetic models. J Zhejiang Univ Sci A 10(5):716–724CrossRef Qiu H, Lv L, Pan BC, Zhang QJ, Zhang WM, Zhang QX (2009) Critical review in adsorption kinetic models. J Zhejiang Univ Sci A 10(5):716–724CrossRef
go back to reference Rutigliano FA, Romano M, Marzaioli R, Baglivo I, Baronti S, Miglietta F, Castaldi S (2014) Effect of biochar addition on soil microbial community in a wheat crop. Eur J Soil Biol 60:9–15CrossRef Rutigliano FA, Romano M, Marzaioli R, Baglivo I, Baronti S, Miglietta F, Castaldi S (2014) Effect of biochar addition on soil microbial community in a wheat crop. Eur J Soil Biol 60:9–15CrossRef
go back to reference Saifullah, Dahlawi S, Naeem A, Rengel Z, Naidu R (2018) Biochar application for the remediation of salt-affected soils: challenges and opportunities. Sci Total Environ 625:320–335CrossRef Saifullah, Dahlawi S, Naeem A, Rengel Z, Naidu R (2018) Biochar application for the remediation of salt-affected soils: challenges and opportunities. Sci Total Environ 625:320–335CrossRef
go back to reference Schulz H, Glaser B (2012) Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. J Plant Nutr Soil Sci 175:410–422CrossRef Schulz H, Glaser B (2012) Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. J Plant Nutr Soil Sci 175:410–422CrossRef
go back to reference Singh JS (2013) Anticipated effects of climate change on methanotrophic methane oxidation. Clim Change Environ Sustain 1(1):20–24CrossRef Singh JS (2013) Anticipated effects of climate change on methanotrophic methane oxidation. Clim Change Environ Sustain 1(1):20–24CrossRef
go back to reference Singh JS (2014) Cyanobacteria: a vital bio-agent in eco-restoration of degraded lands and sustainable agriculture. Clim Change Environ Sustain 2:133–137 Singh JS (2014) Cyanobacteria: a vital bio-agent in eco-restoration of degraded lands and sustainable agriculture. Clim Change Environ Sustain 2:133–137
go back to reference Singh JS (2015) Biodiversity: current perspective. Clim Change Environ Sustain 3(1):71–72CrossRef Singh JS (2015) Biodiversity: current perspective. Clim Change Environ Sustain 3(1):71–72CrossRef
go back to reference Singh JS (2016) Microbes play major roles in ecosystem services. Clim Change Environ Sustain 3:163–167CrossRef Singh JS (2016) Microbes play major roles in ecosystem services. Clim Change Environ Sustain 3:163–167CrossRef
go back to reference Singh JS (ed) (2019) New and future developments in microbial biotechnology and bioengineering: microbes in soil, crop and environmental sustainability. Elsevier, San Diego Singh JS (ed) (2019) New and future developments in microbial biotechnology and bioengineering: microbes in soil, crop and environmental sustainability. Elsevier, San Diego
go back to reference Singh JS, Boudh S (2016) Climate change resilient crops to sustain Indian agriculture. Clim Change Environ Sustain 5:97–110 Singh JS, Boudh S (2016) Climate change resilient crops to sustain Indian agriculture. Clim Change Environ Sustain 5:97–110
go back to reference Singh JS, Singh DP (eds) (2019) New and future developments in microbial biotechnology and bioengineering: microbial biotechnology in agro-environmental sustainability. Elsevier, San Diego Singh JS, Singh DP (eds) (2019) New and future developments in microbial biotechnology and bioengineering: microbial biotechnology in agro-environmental sustainability. Elsevier, San Diego
go back to reference Singh C, Tiwari S, Boudh S, Singh JS (2017a) Biochar application in management of paddy crop production and methane mitigation. In: Singh JS, Seneviratne G (eds) Agro-environmental sustainability: vol (2) managing environmental pollution. Springer, Cham, pp 123–145CrossRef Singh C, Tiwari S, Boudh S, Singh JS (2017a) Biochar application in management of paddy crop production and methane mitigation. In: Singh JS, Seneviratne G (eds) Agro-environmental sustainability: vol (2) managing environmental pollution. Springer, Cham, pp 123–145CrossRef
go back to reference Singh JS, Koushal S, Kumar A, Vimal SR, Gupta VK (2017b) Book review: microbial inoculants in sustainable agricultural productivity- Vol. II: functional application. Front Microbiol 7:2015CrossRef Singh JS, Koushal S, Kumar A, Vimal SR, Gupta VK (2017b) Book review: microbial inoculants in sustainable agricultural productivity- Vol. II: functional application. Front Microbiol 7:2015CrossRef
go back to reference Singh JS, Kumar A, Singh M (2019a) Cyanobacteria: a sustainable and commercial bioresource in production of bio-fertilizer and bio-fuel from waste waters. Environ Sustain Indic 3-4:100008CrossRef Singh JS, Kumar A, Singh M (2019a) Cyanobacteria: a sustainable and commercial bioresource in production of bio-fertilizer and bio-fuel from waste waters. Environ Sustain Indic 3-4:100008CrossRef
go back to reference Singh MK, Rai PK, Rai A, Singh S, Singh JS (2019b) Poly-β-hydroxybutyrate production by the cyanobacterium Scytonema geitleri Bharadwaja under varying environmental conditions. Biomol Ther 9(198):1–10 Singh MK, Rai PK, Rai A, Singh S, Singh JS (2019b) Poly-β-hydroxybutyrate production by the cyanobacterium Scytonema geitleri Bharadwaja under varying environmental conditions. Biomol Ther 9(198):1–10
go back to reference Suliman W, Harsh JB, Abu-Lail NI, Fortuna AM, Dallmeyer I, Garcia-Perez M (2016) Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass Bioenergy 84:37–48CrossRef Suliman W, Harsh JB, Abu-Lail NI, Fortuna AM, Dallmeyer I, Garcia-Perez M (2016) Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass Bioenergy 84:37–48CrossRef
go back to reference Sun J, Chen L, Rene ER, Hu Q, Ma W, Shen Z (2018) Biological nitrogen removal using soil columns for the reuse of reclaimed water: performance and microbial community analysis. J Environ Manag 217:100–109CrossRef Sun J, Chen L, Rene ER, Hu Q, Ma W, Shen Z (2018) Biological nitrogen removal using soil columns for the reuse of reclaimed water: performance and microbial community analysis. J Environ Manag 217:100–109CrossRef
go back to reference Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. University of California Press, Berkeley Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. University of California Press, Berkeley
go back to reference Tan XF, Liu SB, Liu YG, Gu YL, Zeng GM, Hu XJ, Wang X, Liu SH, Jiang LH (2017) Biochar as potential sustainable precursors for activated carbon production: multiple applications in environmental protection and energy storage. Bioresour Technol 227:359–372CrossRef Tan XF, Liu SB, Liu YG, Gu YL, Zeng GM, Hu XJ, Wang X, Liu SH, Jiang LH (2017) Biochar as potential sustainable precursors for activated carbon production: multiple applications in environmental protection and energy storage. Bioresour Technol 227:359–372CrossRef
go back to reference Teixidó M, Pignatello JJ, Beltrán JL, Granados M, Peccia J (2011) Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar). Environ Sci Technol 45:10020–10027CrossRef Teixidó M, Pignatello JJ, Beltrán JL, Granados M, Peccia J (2011) Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar). Environ Sci Technol 45:10020–10027CrossRef
go back to reference Teutscherova N, Lojka B, Houška J, Masaguer A, Benito M, Vazquez E (2018) Application of holm oak biochar alters dynamics of enzymatic and microbial activity in two contrasting Mediterranean soils. Eur J Soil Biol 88:15–26CrossRef Teutscherova N, Lojka B, Houška J, Masaguer A, Benito M, Vazquez E (2018) Application of holm oak biochar alters dynamics of enzymatic and microbial activity in two contrasting Mediterranean soils. Eur J Soil Biol 88:15–26CrossRef
go back to reference Thies E, Rilling MC (2009) Characteristics of biochar: biological properties. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 85–106 Thies E, Rilling MC (2009) Characteristics of biochar: biological properties. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 85–106
go back to reference Tian J, Wang J, Dippold M, Gao Y, Blagodatskaya E, Kuzyakov Y (2016) Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil. Sci Total Environ 556:89–97CrossRef Tian J, Wang J, Dippold M, Gao Y, Blagodatskaya E, Kuzyakov Y (2016) Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil. Sci Total Environ 556:89–97CrossRef
go back to reference Tiwari AP, Singh JS (2017) Plant growth promoting rhizospheric Pseudomonas aeruginosa strain inhibits seed germination in Triticum aestivum (L) and Zea mays (L). Microbiol Res 8(7233):73–79 Tiwari AP, Singh JS (2017) Plant growth promoting rhizospheric Pseudomonas aeruginosa strain inhibits seed germination in Triticum aestivum (L) and Zea mays (L). Microbiol Res 8(7233):73–79
go back to reference Uras U, Carrier M, Hardie AG, Knoetze JH (2012) Physico-chemical characterization of biochars from vacuum pyrolysis of South African agricultural wastes for application as soil amendments. J Anal Appl Pyrolysis 98:207–213CrossRef Uras U, Carrier M, Hardie AG, Knoetze JH (2012) Physico-chemical characterization of biochars from vacuum pyrolysis of South African agricultural wastes for application as soil amendments. J Anal Appl Pyrolysis 98:207–213CrossRef
go back to reference Vimal SR, Singh JS (2019) Salt tolerant pgpr and fym application in saline soil paddy agriculture sustainability. Clim Change Environ Sustain 7(1):23–33 Vimal SR, Singh JS (2019) Salt tolerant pgpr and fym application in saline soil paddy agriculture sustainability. Clim Change Environ Sustain 7(1):23–33
go back to reference Vimal SR, Gupta J, Singh JS (2018) Effect of salt tolerant Bacillus sp. and Pseudomonas sp. on wheat (Triticum aestivum L.) growth under soil salinity: a comparative study. Microbiol Res 9(1):1–14CrossRef Vimal SR, Gupta J, Singh JS (2018) Effect of salt tolerant Bacillus sp. and Pseudomonas sp. on wheat (Triticum aestivum L.) growth under soil salinity: a comparative study. Microbiol Res 9(1):1–14CrossRef
go back to reference Wardle DA, Nilsson MC, Zackrisson O (2008) Response to comment on fire-derived charcoal causes loss of forest humus. Science 321:1295dCrossRef Wardle DA, Nilsson MC, Zackrisson O (2008) Response to comment on fire-derived charcoal causes loss of forest humus. Science 321:1295dCrossRef
go back to reference Warnock DD, Lehman J, Kuype TW, Rillig MC (2007) Mycorrhizal responses to biochar in soil–concepts and mechanisms. Plant Soil 300:9–20CrossRef Warnock DD, Lehman J, Kuype TW, Rillig MC (2007) Mycorrhizal responses to biochar in soil–concepts and mechanisms. Plant Soil 300:9–20CrossRef
go back to reference Warnock DD, Mummey DL, McBride B, Major J, Lehmann J, Rillig MC (2010) Influences of non-herbaceous biochar on Arbuscular Mycorrhizal fungal abundances in roots and soils: results from growth-chamber and field experiments. Appl Soil Ecol 46:450–456CrossRef Warnock DD, Mummey DL, McBride B, Major J, Lehmann J, Rillig MC (2010) Influences of non-herbaceous biochar on Arbuscular Mycorrhizal fungal abundances in roots and soils: results from growth-chamber and field experiments. Appl Soil Ecol 46:450–456CrossRef
go back to reference Wilson GW, Rice CW, Rillig MC, Springer A, Hartnett DC (2009) Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol Lett 12:452–461CrossRef Wilson GW, Rice CW, Rillig MC, Springer A, Hartnett DC (2009) Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol Lett 12:452–461CrossRef
go back to reference Windeatt JH, Ross AB, Williams PT, Forster PM, Nahil MA, Singh S (2014) Characteristics of biochars from crop residues: potential for carbon sequestration and soil amendment. J Environ Manag 146:189–197CrossRef Windeatt JH, Ross AB, Williams PT, Forster PM, Nahil MA, Singh S (2014) Characteristics of biochars from crop residues: potential for carbon sequestration and soil amendment. J Environ Manag 146:189–197CrossRef
go back to reference Wright DA, Killham K, Glover LA, Prosser JI (1995) Role of pore size location in determining bacterial activity during predation by protozoa in soil. Appl Environ Microbiol 61:3537–3543CrossRef Wright DA, Killham K, Glover LA, Prosser JI (1995) Role of pore size location in determining bacterial activity during predation by protozoa in soil. Appl Environ Microbiol 61:3537–3543CrossRef
go back to reference Xiao Q, Zhu LX, Zhang HP, Li XY, Shen YF, Li SQ (2016) Soil amendment with biochar increases maize yields in a semi-arid region by improving soil quality and root growth. Crop Pasture Sci 67:495–507CrossRef Xiao Q, Zhu LX, Zhang HP, Li XY, Shen YF, Li SQ (2016) Soil amendment with biochar increases maize yields in a semi-arid region by improving soil quality and root growth. Crop Pasture Sci 67:495–507CrossRef
go back to reference Xu T, Lou L, Luo L, Cao R, Duan D, Chen Y (2012) Effect of bamboo biochar on pentachlorophenol leachability and bioavailability in agricultural soil. Sci Total Environ 414:727–731CrossRef Xu T, Lou L, Luo L, Cao R, Duan D, Chen Y (2012) Effect of bamboo biochar on pentachlorophenol leachability and bioavailability in agricultural soil. Sci Total Environ 414:727–731CrossRef
go back to reference Yamato M, Okimori Y, Wibowo I, Anshiori S, Ogawa M (2006) Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Sci Plant Nutr 52:489–495CrossRef Yamato M, Okimori Y, Wibowo I, Anshiori S, Ogawa M (2006) Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Sci Plant Nutr 52:489–495CrossRef
go back to reference Yao Q, Liu J, Yu Z, Li Y, Jin J, Liu X, Wang G (2017) Changes of bacterial community compositions after three years of biochar application in a black soil of northeast China. Appl Soil Ecol 113:11–21CrossRef Yao Q, Liu J, Yu Z, Li Y, Jin J, Liu X, Wang G (2017) Changes of bacterial community compositions after three years of biochar application in a black soil of northeast China. Appl Soil Ecol 113:11–21CrossRef
go back to reference Zama EF, Zhu YG, Reid BJ, Sun GX (2017) The role of biochar properties in influencing the sorption and desorption of Pb (II), Cd (II) and As (III) in aqueous solution. J Clean Prod 148:127–136CrossRef Zama EF, Zhu YG, Reid BJ, Sun GX (2017) The role of biochar properties in influencing the sorption and desorption of Pb (II), Cd (II) and As (III) in aqueous solution. J Clean Prod 148:127–136CrossRef
go back to reference Zhang XK, Li Q, Liang WJ, Zhang M, Bao XL, Xie ZB (2013) Soil nematode response to biochar addition in a Chinese wheat field. Pedosphere 23:98–103CrossRef Zhang XK, Li Q, Liang WJ, Zhang M, Bao XL, Xie ZB (2013) Soil nematode response to biochar addition in a Chinese wheat field. Pedosphere 23:98–103CrossRef
go back to reference Zhang H, Ding W, Yu H, He X (2015) Linking organic carbon accumulation to microbial community dynamics in a sandy loam soil: result of 20 years compost and inorganic fertilizers repeated application experiment. Biol Fertil Soils 51:137–150CrossRef Zhang H, Ding W, Yu H, He X (2015) Linking organic carbon accumulation to microbial community dynamics in a sandy loam soil: result of 20 years compost and inorganic fertilizers repeated application experiment. Biol Fertil Soils 51:137–150CrossRef
go back to reference Zheng W, Guo M, Chow T, Bennett DN, Rajagopalan N (2010) Sorption properties of green waste biochar for two triazine pesticides. J Hazard Mater 181:121–126CrossRef Zheng W, Guo M, Chow T, Bennett DN, Rajagopalan N (2010) Sorption properties of green waste biochar for two triazine pesticides. J Hazard Mater 181:121–126CrossRef
go back to reference Zheng JF, Chen JH, Pan GX, Liu XY, Zhang XH, Li LQ, Bian RJ, Cheng K, Zheng JW (2016) Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from Southwest China. Sci Total Environ 571:206–217CrossRef Zheng JF, Chen JH, Pan GX, Liu XY, Zhang XH, Li LQ, Bian RJ, Cheng K, Zheng JW (2016) Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from Southwest China. Sci Total Environ 571:206–217CrossRef
go back to reference Zheng H, Wang X, Chen L, Wang Z, Xia Y, Zhang Y, Wang H, Luo X, Xing B (2017) Enhanced growth of halophyte plants in biochar-amended coastal soil: roles of nutrient availability and rhizosphere microbial modulation. Plant Cell Environ 41(3):517–532. https://doi.org/10.1111/pce.12944CrossRef Zheng H, Wang X, Chen L, Wang Z, Xia Y, Zhang Y, Wang H, Luo X, Xing B (2017) Enhanced growth of halophyte plants in biochar-amended coastal soil: roles of nutrient availability and rhizosphere microbial modulation. Plant Cell Environ 41(3):517–532. https://​doi.​org/​10.​1111/​pce.​12944CrossRef
go back to reference Zwieten LV, Kimber S, Morris S, Chan KY, Downie A, Rust J, Joseph S, Cowie A (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327:235–246CrossRef Zwieten LV, Kimber S, Morris S, Chan KY, Downie A, Rust J, Joseph S, Cowie A (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327:235–246CrossRef
Metadata
Title
Multifarious Benefits of Biochar Application in Different Soil Types
Author
Umesh Pankaj
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-40997-5_12