Skip to main content
Top

2013 | OriginalPaper | Chapter

Multilevel Sparse Kernel-Based Interpolation Using Conditionally Positive Definite Radial Basis Functions

Authors : E. H. Georgoulis, J. Levesley, F. Subhan

Published in: Numerical Mathematics and Advanced Applications 2011

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A multilevel sparse kernel-based interpolation (MLSKI) method, suitable for moderately high-dimensional function interpolation problems has been recently proposed in (Georgoulis et al. Multilevel sparse kernel-based interpolation, submitted for publication). The method uses both level-wise and direction-wise multilevel decomposition of structured or mildly unstructured interpolation data sites in conjunction with the application of kernel-based interpolants with different scaling in each direction. The multilevel interpolation algorithm is based on a hierarchical decomposition of the data sites, whereby at each level the detail is added to the interpolant by interpolating the resulting residual of the previous level. On each level, anisotropic radial basis functions (RBFs) are used for solving a number of small interpolation problems, which are subsequently linearly combined to produce the interpolant. Here, we investigate the use of conditionally positive definite RBFs within the MLSKI setting, thus extending the results from (Georgoulis et al. Multilevel sparse kernel-based interpolation, submitted for publication), where (strictly) positive definite RBFs are used only.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K. I. Babenko. Approximation by trigonometric polynomials in a certain class of periodic functions of several variables. Soviet Math. Dokl., 1:672–675, 1960.MathSciNetMATH K. I. Babenko. Approximation by trigonometric polynomials in a certain class of periodic functions of several variables. Soviet Math. Dokl., 1:672–675, 1960.MathSciNetMATH
2.
go back to reference R. Beatson, O. Davydov, and J. Levesley. Error bounds for anisotropic RBF interpolation. J. Approx. Theory, 162(3):512–527, 2010.MathSciNetMATHCrossRef R. Beatson, O. Davydov, and J. Levesley. Error bounds for anisotropic RBF interpolation. J. Approx. Theory, 162(3):512–527, 2010.MathSciNetMATHCrossRef
3.
go back to reference R. K. Beatson, J. B. Cherrie, and C. T. Mouat. Fast fitting of radial basis functions: methods based on preconditioned GMRES iteration. Adv. Comput. Math., 11(2–3):253–270, 1999. Radial basis functions and their applications. R. K. Beatson, J. B. Cherrie, and C. T. Mouat. Fast fitting of radial basis functions: methods based on preconditioned GMRES iteration. Adv. Comput. Math., 11(2–3):253–270, 1999. Radial basis functions and their applications.
4.
go back to reference H.-J. Bungartz, M. Griebel, and U. Rüde. Extrapolation, combination, and sparse grid techniques for elliptic boundary value problems. Comput. Methods Appl. Mech. Engrg., 116(1–4):243–252, 1994. ICOSAHOM’92 (Montpellier, 1992). H.-J. Bungartz, M. Griebel, and U. Rüde. Extrapolation, combination, and sparse grid techniques for elliptic boundary value problems. Comput. Methods Appl. Mech. Engrg., 116(1–4):243–252, 1994. ICOSAHOM’92 (Montpellier, 1992).
5.
go back to reference G. Casciola, D. Lazzaro, L. B. Montefusco, and S. Morigi. Shape preserving surface reconstruction using locally anisotropic radial basis function interpolants. Comput. Math. Appl., 51(8):1185–1198, 2006.MathSciNetMATHCrossRef G. Casciola, D. Lazzaro, L. B. Montefusco, and S. Morigi. Shape preserving surface reconstruction using locally anisotropic radial basis function interpolants. Comput. Math. Appl., 51(8):1185–1198, 2006.MathSciNetMATHCrossRef
6.
go back to reference G. Casciola, L. B. Montefusco, and S. Morigi. The regularizing properties of anisotropic radial basis functions. Appl. Math. Comput., 190(2):1050–1062, 2007.MathSciNetMATHCrossRef G. Casciola, L. B. Montefusco, and S. Morigi. The regularizing properties of anisotropic radial basis functions. Appl. Math. Comput., 190(2):1050–1062, 2007.MathSciNetMATHCrossRef
7.
go back to reference F.-J. Delvos. d-variate Boolean interpolation. J. Approx. Theory, 34:99–114, 1982. F.-J. Delvos. d-variate Boolean interpolation. J. Approx. Theory, 34:99–114, 1982.
8.
go back to reference G. E. Fasshauer and Mccourt M. J. Stable evaluation of Gaussian RBF interpolants. Submitted for publication, 2011. G. E. Fasshauer and Mccourt M. J. Stable evaluation of Gaussian RBF interpolants. Submitted for publication, 2011.
9.
go back to reference A. C. Faul and M. J. D. Powell. Proof of convergence of an iterative technique for thin plate spline interpolation in two dimensions. Adv. Comput. Math., 11:183–192, 1999.MathSciNetMATHCrossRef A. C. Faul and M. J. D. Powell. Proof of convergence of an iterative technique for thin plate spline interpolation in two dimensions. Adv. Comput. Math., 11:183–192, 1999.MathSciNetMATHCrossRef
10.
go back to reference M. S. Floater and A. Iske. Multistep scattered data interpolation using compactly supported radial basis functions. J. Comput. Appl. Math., 73(1–2):65–78, 1996.MathSciNetMATHCrossRef M. S. Floater and A. Iske. Multistep scattered data interpolation using compactly supported radial basis functions. J. Comput. Appl. Math., 73(1–2):65–78, 1996.MathSciNetMATHCrossRef
11.
go back to reference B. Fornberg, E. Larsson, and N. Flyer. Stable computation with Gaussian radial basis functions. SIAM J. Sci. Comput., 33(2):869–892, 2011.MathSciNetMATHCrossRef B. Fornberg, E. Larsson, and N. Flyer. Stable computation with Gaussian radial basis functions. SIAM J. Sci. Comput., 33(2):869–892, 2011.MathSciNetMATHCrossRef
12.
go back to reference B. Fornberg and C. Piret. A stable algorithm for flat radial basis functions on a sphere. SIAM J. Sci. Comput., 30(1):60–80, 2007/08. B. Fornberg and C. Piret. A stable algorithm for flat radial basis functions on a sphere. SIAM J. Sci. Comput., 30(1):60–80, 2007/08.
13.
go back to reference B. Fornberg and G. Wright. Stable computation of multiquadric interpolants for all values of the shape parameter. Comput. Math. Appl., 48(5–6):853–867, 2004.MathSciNetMATHCrossRef B. Fornberg and G. Wright. Stable computation of multiquadric interpolants for all values of the shape parameter. Comput. Math. Appl., 48(5–6):853–867, 2004.MathSciNetMATHCrossRef
14.
go back to reference J. Garcke and M. Griebel. On the parallelization of the sparse grid approach for data mining. In S. Margenov, J. Wasniewski, and P. Yalamov, editors, Large-Scale Scientific Computations, Third International Conference, LSSC 2001, Sozopol, Bulgaria, volume 2179 of Lecture Notes in Computer Science, pages 22–32. Springer, 2001. also as SFB 256 Preprint 721, Universität Bonn, 2001. J. Garcke and M. Griebel. On the parallelization of the sparse grid approach for data mining. In S. Margenov, J. Wasniewski, and P. Yalamov, editors, Large-Scale Scientific Computations, Third International Conference, LSSC 2001, Sozopol, Bulgaria, volume 2179 of Lecture Notes in Computer Science, pages 22–32. Springer, 2001. also as SFB 256 Preprint 721, Universität Bonn, 2001.
15.
go back to reference E. H. Georgoulis, J. Levesley, and F. Subhan. Multilevel sparse kernel-based interpolation. submitted for publication. E. H. Georgoulis, J. Levesley, and F. Subhan. Multilevel sparse kernel-based interpolation. submitted for publication.
16.
go back to reference M. Griebel, M. Schneider, and C. Zenger. A combination technique for the solution of sparse grid problems. In Iterative methods in linear algebra (Brussels, 1991), pages 263–281. North-Holland, Amsterdam, 1992. M. Griebel, M. Schneider, and C. Zenger. A combination technique for the solution of sparse grid problems. In Iterative methods in linear algebra (Brussels, 1991), pages 263–281. North-Holland, Amsterdam, 1992.
17.
go back to reference S. J. Hales and J. Levesley. Error estimates for multilevel approximation using polyharmonic splines. Numer. Algorithms, 30(1):1–10, 2002.MathSciNetMATHCrossRef S. J. Hales and J. Levesley. Error estimates for multilevel approximation using polyharmonic splines. Numer. Algorithms, 30(1):1–10, 2002.MathSciNetMATHCrossRef
18.
go back to reference Markus Hegland, Jochen Garcke, and Vivien Challis. The combination technique and some generalisations. Linear Algebra Appl., 420(2–3):249–275, 2007. Markus Hegland, Jochen Garcke, and Vivien Challis. The combination technique and some generalisations. Linear Algebra Appl., 420(2–3):249–275, 2007.
19.
go back to reference A. R. H. Heryudono and T. A. Driscoll, Radial basis function interpolation on irregular domain through conformal transplantation, J. Sci. Comput., 44 (2010), pp. 286–300. A. R. H. Heryudono and T. A. Driscoll, Radial basis function interpolation on irregular domain through conformal transplantation, J. Sci. Comput., 44 (2010), pp. 286–300.
20.
go back to reference A. Iske. Hierarchical scattered data filtering for multilevel interpolation schemes. In Mathematical methods for curves and surfaces (Oslo, 2000), Innov. Appl. Math., pages 211–221. Vanderbilt Univ. Press, Nashville, TN, 2001. A. Iske. Hierarchical scattered data filtering for multilevel interpolation schemes. In Mathematical methods for curves and surfaces (Oslo, 2000), Innov. Appl. Math., pages 211–221. Vanderbilt Univ. Press, Nashville, TN, 2001.
21.
go back to reference A. Iske and J. Levesley. Multilevel scattered data approximation by adaptive domain decomposition. Numer. Algorithms, 39(1–3):187–198, 2005.MathSciNetMATHCrossRef A. Iske and J. Levesley. Multilevel scattered data approximation by adaptive domain decomposition. Numer. Algorithms, 39(1–3):187–198, 2005.MathSciNetMATHCrossRef
22.
go back to reference R. Schaback. Error estimates and condition numbers for radial basis function interpolation. Adv. Comput. Math., 3(3):251–264, 1995.MathSciNetMATHCrossRef R. Schaback. Error estimates and condition numbers for radial basis function interpolation. Adv. Comput. Math., 3(3):251–264, 1995.MathSciNetMATHCrossRef
23.
go back to reference A. Schreiber. The method of Smolyak in multivariate interpolation. PhD thesis, der Mathematisch-Naturwissenschaftlichen Fakultäten, der Georg-August-Universität zu Göttingen, 2000. A. Schreiber. The method of Smolyak in multivariate interpolation. PhD thesis, der Mathematisch-Naturwissenschaftlichen Fakultäten, der Georg-August-Universität zu Göttingen, 2000.
24.
go back to reference W. Sickel and F. Sprengel. Interpolation on sparse grids and tensor products of Nikol′skij-Besov spaces. J. Comput. Anal. Appl., 1(3):263–288, 1999. Dedicated to Professor Paul L. Butzer on the occasion of his 70th birthday. W. Sickel and F. Sprengel. Interpolation on sparse grids and tensor products of Nikolskij-Besov spaces. J. Comput. Anal. Appl., 1(3):263–288, 1999. Dedicated to Professor Paul L. Butzer on the occasion of his 70th birthday.
25.
go back to reference S. A. Smolyak. Quadrature and interpolation of formulas for tensor product of certian classes of functions. Soviet Math. Dokl., 4:240–243, 1963. S. A. Smolyak. Quadrature and interpolation of formulas for tensor product of certian classes of functions. Soviet Math. Dokl., 4:240–243, 1963.
26.
go back to reference F. Subhan. Multilevel sparse kernel-based interpolation. Ph.D. Thesis, University of Leicester, 2011. F. Subhan. Multilevel sparse kernel-based interpolation. Ph.D. Thesis, University of Leicester, 2011.
27.
go back to reference V. N. Temlyakov. Approximation of functions with bounded mixed derivative. In Proc. Steklov Institute Math, 1989. AMS, 1989. V. N. Temlyakov. Approximation of functions with bounded mixed derivative. In Proc. Steklov Institute Math, 1989. AMS, 1989.
28.
go back to reference H. Wendland. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math., 4:389–396, 1995.MathSciNetMATHCrossRef H. Wendland. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math., 4:389–396, 1995.MathSciNetMATHCrossRef
29.
go back to reference H. Wendland. Scattered data approximation, volume 17 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge, 2005. H. Wendland. Scattered data approximation, volume 17 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge, 2005.
31.
go back to reference C. Zenger. Sparse grids. In Parallel algorithms for partial differential equations (Kiel, 1990), volume 31 of Notes Numer. Fluid Mech., pages 241–251. Vieweg, Braunschweig, 1991. C. Zenger. Sparse grids. In Parallel algorithms for partial differential equations (Kiel, 1990), volume 31 of Notes Numer. Fluid Mech., pages 241–251. Vieweg, Braunschweig, 1991.
Metadata
Title
Multilevel Sparse Kernel-Based Interpolation Using Conditionally Positive Definite Radial Basis Functions
Authors
E. H. Georgoulis
J. Levesley
F. Subhan
Copyright Year
2013
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-33134-3_17

Premium Partner