Skip to main content
Top
Published in: Computational Mechanics 6/2018

05-04-2018 | Original Paper

Multiphase-field model of small strain elasto-plasticity according to the mechanical jump conditions

Authors: Christoph Herrmann, Ephraim Schoof, Daniel Schneider, Felix Schwab, Andreas Reiter, Michael Selzer, Britta Nestler

Published in: Computational Mechanics | Issue 6/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We introduce a small strain elasto-plastic multiphase-field model according to the mechanical jump conditions. A rate-independent \(J_2\)-plasticity model with linear isotropic hardening and without kinematic hardening is applied exemplary. Generally, any physically nonlinear mechanical model is compatible with the subsequently presented procedure. In contrast to models with interpolated material parameters, the proposed model is able to apply different nonlinear mechanical constitutive equations for each phase separately. The Hadamard compatibility condition and the static force balance are employed as homogenization approaches to calculate the phase-inherent stresses and strains. Several verification cases are discussed. The applicability of the proposed model is demonstrated by simulations of the martensitic transformation and quantitative parameters.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Boettinger WJ, Warren JA, Beckermann C, Karma A (2002) Phase field simulation of solidification. Annu Rev Mater Res 32:63–94CrossRef Boettinger WJ, Warren JA, Beckermann C, Karma A (2002) Phase field simulation of solidification. Annu Rev Mater Res 32:63–94CrossRef
2.
go back to reference Chen L-Q (2002) Phase-field models for microstructure evolution. Annu Rev Mater Res 32:113–140CrossRef Chen L-Q (2002) Phase-field models for microstructure evolution. Annu Rev Mater Res 32:113–140CrossRef
3.
go back to reference Moelans N, Blanpain B, Wollants P (2008) An introduction to phase-field modeling of microstructure evolution. Calphad Comput Coupl Phase Diag Thermochem 32(2):268–294CrossRef Moelans N, Blanpain B, Wollants P (2008) An introduction to phase-field modeling of microstructure evolution. Calphad Comput Coupl Phase Diag Thermochem 32(2):268–294CrossRef
4.
go back to reference Steinbach I (2013) Phase-field model for microstructure evolution at the mesoscopic scale. Annu Rev Mater Res 43:89–107CrossRef Steinbach I (2013) Phase-field model for microstructure evolution at the mesoscopic scale. Annu Rev Mater Res 43:89–107CrossRef
5.
go back to reference Mamivand M, Zaeem MA, El Kadiri H (2013) A review on phase field modeling of martensitic phase transformation. Comput Mater Sci 77:304–311CrossRef Mamivand M, Zaeem MA, El Kadiri H (2013) A review on phase field modeling of martensitic phase transformation. Comput Mater Sci 77:304–311CrossRef
6.
7.
go back to reference Schneider D, Schoof E, Huang Y, Selzer M, Nestler B (2016) Phase-field modeling of crack propagation in multiphase systems. Comput Methods Appl Mech Eng 312:186–195MathSciNetCrossRef Schneider D, Schoof E, Huang Y, Selzer M, Nestler B (2016) Phase-field modeling of crack propagation in multiphase systems. Comput Methods Appl Mech Eng 312:186–195MathSciNetCrossRef
8.
go back to reference Chen L-Q, Khachaturyan AG (1991) Computer simulation of structural transformations during precipitation of an ordered intermetallic phase. Acta Metall Mater 39:2533–2551CrossRef Chen L-Q, Khachaturyan AG (1991) Computer simulation of structural transformations during precipitation of an ordered intermetallic phase. Acta Metall Mater 39:2533–2551CrossRef
9.
go back to reference Uehara T, Tsujino T, Ohno N (2007) Elasto-plastic simulation of stress evolution during grain growth using a phase field model. J Cryst Growth 300:530–537CrossRef Uehara T, Tsujino T, Ohno N (2007) Elasto-plastic simulation of stress evolution during grain growth using a phase field model. J Cryst Growth 300:530–537CrossRef
10.
go back to reference Schmitt R, Müller R, Skorupski R, Smaga M, Eifler D (2013) A phase field approach for martensitic transformations in elastoplastic materials. PAMM 13:213–214CrossRef Schmitt R, Müller R, Skorupski R, Smaga M, Eifler D (2013) A phase field approach for martensitic transformations in elastoplastic materials. PAMM 13:213–214CrossRef
11.
go back to reference Schneider D, Schmid S, Selzer M, Böhlke T, Nestler B (2015) Small strain elasto-plastic multiphase-field model. Comput Mech 55:27–35MathSciNetCrossRef Schneider D, Schmid S, Selzer M, Böhlke T, Nestler B (2015) Small strain elasto-plastic multiphase-field model. Comput Mech 55:27–35MathSciNetCrossRef
12.
go back to reference Ubachs RLJM, Schreurs PJG, Geers MGD (2004) A nonlocal diffuse interface model for microstructure evolution of tin–lead solder. J Mech Phys Solids 52:1763–1792CrossRef Ubachs RLJM, Schreurs PJG, Geers MGD (2004) A nonlocal diffuse interface model for microstructure evolution of tin–lead solder. J Mech Phys Solids 52:1763–1792CrossRef
13.
go back to reference Yamanaka A, Takaki T, Tomita Y (2008) Elastoplastic phase-field simulation of self- and plastic accommodations in cubic—tetragonal martensitic transformation. Mater Sci Eng A 491:378–384CrossRef Yamanaka A, Takaki T, Tomita Y (2008) Elastoplastic phase-field simulation of self- and plastic accommodations in cubic—tetragonal martensitic transformation. Mater Sci Eng A 491:378–384CrossRef
14.
go back to reference Gaubert A, Le Bouar Y, Finel A (2010) Coupling phase field and viscoplasticity to study rafting in Ni-based superalloys. Philos Mag 90:375–404CrossRef Gaubert A, Le Bouar Y, Finel A (2010) Coupling phase field and viscoplasticity to study rafting in Ni-based superalloys. Philos Mag 90:375–404CrossRef
15.
go back to reference De Rancourt V, Ammar K, Appolaire B, Forest S (2016) Homogenization of viscoplastic constitutive laws within a phase field approach. J Mech Phys Solids 88:291–319MathSciNetCrossRef De Rancourt V, Ammar K, Appolaire B, Forest S (2016) Homogenization of viscoplastic constitutive laws within a phase field approach. J Mech Phys Solids 88:291–319MathSciNetCrossRef
16.
go back to reference Yamanaka A, Takaki T (2009) Crystal plasticity phase-field simulation of deformation behavior and microstructure. In: Proc. X int. conf. on comput. plast. (vol 462, pp 1–4) Yamanaka A, Takaki T (2009) Crystal plasticity phase-field simulation of deformation behavior and microstructure. In: Proc. X int. conf. on comput. plast. (vol 462, pp 1–4)
17.
go back to reference Schmitt R, Kuhn C, Bhattacharya K (2014) Crystal plasticity and martensitic transformations—a phase field approach. Sci J Fundam Appl Eng Mech 34:23–38 Schmitt R, Kuhn C, Bhattacharya K (2014) Crystal plasticity and martensitic transformations—a phase field approach. Sci J Fundam Appl Eng Mech 34:23–38
18.
go back to reference Schmitt R, Kuhn C, Mueller R (2015) On a phase field approach for martensitic transformations in a crystal plastic material at a loaded surface. Contin Mech Thermodyn 29:957–968MathSciNetCrossRef Schmitt R, Kuhn C, Mueller R (2015) On a phase field approach for martensitic transformations in a crystal plastic material at a loaded surface. Contin Mech Thermodyn 29:957–968MathSciNetCrossRef
19.
go back to reference Leonard F, Desai R (1998) Spinodal decomposition and dislocation lines in thin films and bulk materials. Phys Rev B 58:8277–8288CrossRef Leonard F, Desai R (1998) Spinodal decomposition and dislocation lines in thin films and bulk materials. Phys Rev B 58:8277–8288CrossRef
20.
go back to reference Hu SY, Chen LQ (2001) A phase-field model for evolving microstructures with strong elastic inhomogeneity. Acta Mater 49:1879–1890CrossRef Hu SY, Chen LQ (2001) A phase-field model for evolving microstructures with strong elastic inhomogeneity. Acta Mater 49:1879–1890CrossRef
21.
go back to reference Wang YU, Jin YM, Cuitino AM, Khachaturyan AG (2001) Nanoscale phase field microelasticity theory of dislocations: model and 3D simulations. Acta Mater 49:1847–1857CrossRef Wang YU, Jin YM, Cuitino AM, Khachaturyan AG (2001) Nanoscale phase field microelasticity theory of dislocations: model and 3D simulations. Acta Mater 49:1847–1857CrossRef
22.
go back to reference Rodney D, Le Bouar Y, Finel A (2003) Phase field methods and dislocations. Acta Mater 51:17–30CrossRef Rodney D, Le Bouar Y, Finel A (2003) Phase field methods and dislocations. Acta Mater 51:17–30CrossRef
23.
go back to reference Zhou N, Shen C, Mills MJ, Wang Y (2007) Phase field modeling of channel dislocation activity and gamma prime rafting in single crystal Ni–Al. Acta Mater 55:5369–5381CrossRef Zhou N, Shen C, Mills MJ, Wang Y (2007) Phase field modeling of channel dislocation activity and gamma prime rafting in single crystal Ni–Al. Acta Mater 55:5369–5381CrossRef
24.
go back to reference Ammar K, Appolaire B, Cailletaud G, Forest S (2009) Combining phase field approach and homogenization methods for modelling phase transformation in elastoplastic media. Eur J Comput Mech 18:485–523CrossRef Ammar K, Appolaire B, Cailletaud G, Forest S (2009) Combining phase field approach and homogenization methods for modelling phase transformation in elastoplastic media. Eur J Comput Mech 18:485–523CrossRef
25.
go back to reference Nestler B, Garcke H, Stinner B (2005) Multicomponent alloy solidification: phase-field modeling and simulations. Phys Rev E 71:1–6CrossRef Nestler B, Garcke H, Stinner B (2005) Multicomponent alloy solidification: phase-field modeling and simulations. Phys Rev E 71:1–6CrossRef
26.
go back to reference Schneider D, Schwab F, Schoof E, Reiter A, Herrmann C, Selzer M, Böhlke T, Nestler B (2017) On the stress calculation within phase-field approaches: a model for finite deformations. Comput Mech 60(2):203–217MathSciNetCrossRef Schneider D, Schwab F, Schoof E, Reiter A, Herrmann C, Selzer M, Böhlke T, Nestler B (2017) On the stress calculation within phase-field approaches: a model for finite deformations. Comput Mech 60(2):203–217MathSciNetCrossRef
27.
go back to reference Beckermann C, Diepers H-J, Steinbach I, Karma A, Tong X (1999) Modeling melt convection in phase-field simulations of solidification. J Comput Phys 154:468–496CrossRef Beckermann C, Diepers H-J, Steinbach I, Karma A, Tong X (1999) Modeling melt convection in phase-field simulations of solidification. J Comput Phys 154:468–496CrossRef
28.
go back to reference Moelans N, Blanpain B, Wollants P (2008) Quantitative analysis of grain boundary properties in a generalized phase field model for grain growth in anisotropic systems. Phys Rev B 78:024113CrossRef Moelans N, Blanpain B, Wollants P (2008) Quantitative analysis of grain boundary properties in a generalized phase field model for grain growth in anisotropic systems. Phys Rev B 78:024113CrossRef
29.
go back to reference Steinbach I, Pezzolla F (1999) A generalized field method for multiphase transformations using interface fields. Phys D 134:385–393MathSciNetCrossRef Steinbach I, Pezzolla F (1999) A generalized field method for multiphase transformations using interface fields. Phys D 134:385–393MathSciNetCrossRef
30.
go back to reference Silhavy M (1997) The mechanics and thermodynamics of continuous media. Springer, BerlinCrossRef Silhavy M (1997) The mechanics and thermodynamics of continuous media. Springer, BerlinCrossRef
31.
go back to reference Moelans N (2011) A quantitative and thermodynamically consistent phase-field interpolation function for multi-phase systems. Acta Mater 59:1077–1086CrossRef Moelans N (2011) A quantitative and thermodynamically consistent phase-field interpolation function for multi-phase systems. Acta Mater 59:1077–1086CrossRef
32.
go back to reference Schneider D, Tschukin O, Choudhury A, Selzer M, Böhlke T, Nestler B (2015) Phase-field elasticity model based on mechanical jump conditions. Comput Mech 55:887–901MathSciNetCrossRef Schneider D, Tschukin O, Choudhury A, Selzer M, Böhlke T, Nestler B (2015) Phase-field elasticity model based on mechanical jump conditions. Comput Mech 55:887–901MathSciNetCrossRef
33.
go back to reference Ammar K, Appolaire B, Forest S, Cottura M, Bouar YL, Finel A (2014) Modelling inheritance of plastic deformation during migration of phase boundaries using a phase field method. Meccanica 49:2699–2717MathSciNetCrossRef Ammar K, Appolaire B, Forest S, Cottura M, Bouar YL, Finel A (2014) Modelling inheritance of plastic deformation during migration of phase boundaries using a phase field method. Meccanica 49:2699–2717MathSciNetCrossRef
34.
go back to reference Ostwald R, Bartel T, Menzel A (2011) A one-dimensional computational model for the interaction of phase-transformations and plasticity. Int J Struct Changes Sol 3:63–82 Ostwald R, Bartel T, Menzel A (2011) A one-dimensional computational model for the interaction of phase-transformations and plasticity. Int J Struct Changes Sol 3:63–82
35.
go back to reference Simo J C, Hughes T J R (1998) Computational inelasticity. Springer, New YorkMATH Simo J C, Hughes T J R (1998) Computational inelasticity. Springer, New YorkMATH
36.
go back to reference Schneider D (2017) Phasenfeldmodellierung mechanisch getriebener Grenzflaechenbewegungen in mehrphasigen Systemen, 2017 Schneider D (2017) Phasenfeldmodellierung mechanisch getriebener Grenzflaechenbewegungen in mehrphasigen Systemen, 2017
37.
go back to reference Yeddu HK, Lookman T, Saxena A (2013) Strain-induced martensitic transformation in stainless steels: a three-dimensional phase-field study. Acta Mater 61:6972–6982CrossRef Yeddu HK, Lookman T, Saxena A (2013) Strain-induced martensitic transformation in stainless steels: a three-dimensional phase-field study. Acta Mater 61:6972–6982CrossRef
38.
go back to reference Heo T, Chen L (2014) Phase-field modeling of displacive phase transformations in elastically anisotropic and inhomogeneous polycrystals. Acta Mater 76:68–81CrossRef Heo T, Chen L (2014) Phase-field modeling of displacive phase transformations in elastically anisotropic and inhomogeneous polycrystals. Acta Mater 76:68–81CrossRef
39.
go back to reference Xu G, Wang C, Beltrán J I, LLorca J, Cui Y (2016) Landau modeling of dynamical nucleation of martensite at grain boundaries under local stress. Comput Mater Sci 118:103–111CrossRef Xu G, Wang C, Beltrán J I, LLorca J, Cui Y (2016) Landau modeling of dynamical nucleation of martensite at grain boundaries under local stress. Comput Mater Sci 118:103–111CrossRef
40.
go back to reference Khachaturyan A G (1983) Theory of structural transformations in solids. Wiley, New York Khachaturyan A G (1983) Theory of structural transformations in solids. Wiley, New York
41.
go back to reference Yamanaka A, Takaki T, Tomita Y (2010) Elastoplastic phase-field simulation of martensitic transformation with plastic deformation in polycrystal. Int J Mech Sci 52:245–250CrossRef Yamanaka A, Takaki T, Tomita Y (2010) Elastoplastic phase-field simulation of martensitic transformation with plastic deformation in polycrystal. Int J Mech Sci 52:245–250CrossRef
42.
go back to reference Schneider D, Schoof E, Tschukin O, Reiter A, Herrmann C, Schwab F, Selzer M, Nestler B (2017) Small strain multiphase-field model accounting for configurational forces and mechanical jump conditions. Comput Mech 1–19. Schneider D, Schoof E, Tschukin O, Reiter A, Herrmann C, Schwab F, Selzer M, Nestler B (2017) Small strain multiphase-field model accounting for configurational forces and mechanical jump conditions. Comput Mech 1–19.
43.
go back to reference Schoof E, Schneider D, Streichhan N, Mittnacht T, Selzer M, Nestler B (2018) Multiphase-field modeling of martensitic phase transformation in a dual-phase microstructure. Int J Solids Struct 134:181–194CrossRef Schoof E, Schneider D, Streichhan N, Mittnacht T, Selzer M, Nestler B (2018) Multiphase-field modeling of martensitic phase transformation in a dual-phase microstructure. Int J Solids Struct 134:181–194CrossRef
44.
go back to reference Guo XH, Shi S-Q, Ma XQ (2005) Elastoplastic phase field model for microstructure evolution. Appl Phys Lett 87:221910CrossRef Guo XH, Shi S-Q, Ma XQ (2005) Elastoplastic phase field model for microstructure evolution. Appl Phys Lett 87:221910CrossRef
45.
go back to reference Yeddu HK, Borgenstam A, Hedström P, Agren J (2012) A phase-field study of the physical concepts of martensitic transformations in steels. Mater Sci Eng A 538:173–181CrossRef Yeddu HK, Borgenstam A, Hedström P, Agren J (2012) A phase-field study of the physical concepts of martensitic transformations in steels. Mater Sci Eng A 538:173–181CrossRef
Metadata
Title
Multiphase-field model of small strain elasto-plasticity according to the mechanical jump conditions
Authors
Christoph Herrmann
Ephraim Schoof
Daniel Schneider
Felix Schwab
Andreas Reiter
Michael Selzer
Britta Nestler
Publication date
05-04-2018
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 6/2018
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-018-1570-0

Other articles of this Issue 6/2018

Computational Mechanics 6/2018 Go to the issue