Skip to main content
Top

2024 | OriginalPaper | Chapter

3. Multiscale Modelling of Polymer Composites

Authors : Dheeraj Gunwant, Neeraj Bisht

Published in: Polymer Composites: From Computational to Experimental Aspects

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Polymers are increasingly replacing conventional materials at a fast pace. New and innovative products are being developed daily. Any useful application of these products requires knowledge of material properties and a thorough understanding of various mechanisms involved in failure of these materials. All these require material procurement and human resources. Simulation procedures can make this task much easier and involve less human involvement and material wastage. Polymers can be tested much before their actual physical development. Various simulation techniques have been developed trying to investigate the polymer at nano- to microlevel. All these methods have their own advantages and disadvantages. This chapter is a review of various methods being used today to understand polymer composites.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yang HS, Kim HJ, Son J, Park HJ, Lee BJ, Hwang TS (2004) Rice husk flour filled polypropylene composites, mechanical and morphological studies. Compos Struct 63:305–312CrossRef Yang HS, Kim HJ, Son J, Park HJ, Lee BJ, Hwang TS (2004) Rice husk flour filled polypropylene composites, mechanical and morphological studies. Compos Struct 63:305–312CrossRef
2.
go back to reference Premlal HGB, Ismail H, Baharin A (2002) Comparison of the mechanical properties of the rice husk powder filled polypropylene composites with talc filled polypropylene composites. Polym Test 21:833–839CrossRef Premlal HGB, Ismail H, Baharin A (2002) Comparison of the mechanical properties of the rice husk powder filled polypropylene composites with talc filled polypropylene composites. Polym Test 21:833–839CrossRef
3.
go back to reference Rosa SML, Santos EF, Ferreira CA, Nachtigall SMB (2009) Studies on the properties of rice husk filled PP composites-effect of Maleated PP. Mater Res 12(3):333–338CrossRef Rosa SML, Santos EF, Ferreira CA, Nachtigall SMB (2009) Studies on the properties of rice husk filled PP composites-effect of Maleated PP. Mater Res 12(3):333–338CrossRef
4.
go back to reference Bisht N, Gope PC (2018) Effect of alkali treatment on mechanical properties of rice husk flour reinforced epoxy bio-composite. Mater Today: Proc 5(11, Part 3):24330–24338 Bisht N, Gope PC (2018) Effect of alkali treatment on mechanical properties of rice husk flour reinforced epoxy bio-composite. Mater Today: Proc 5(11, Part 3):24330–24338
11.
go back to reference Wang F, Chen ZQ, Wei YQ, Zeng XG (2010) Numerical modeling of tensile behavior of fiber-reinforced polymer composites. J Compos Mater 44(19):2325–2340CrossRef Wang F, Chen ZQ, Wei YQ, Zeng XG (2010) Numerical modeling of tensile behavior of fiber-reinforced polymer composites. J Compos Mater 44(19):2325–2340CrossRef
12.
go back to reference Lee DC, Kwon G, Kim H, Lee HJ, Sung BJ (2012) Three-dimensional Monte Carlo simulation of the electrical conductivity of carbon nanotube/polymer composites. Appl Phys Express 5(4):045101CrossRef Lee DC, Kwon G, Kim H, Lee HJ, Sung BJ (2012) Three-dimensional Monte Carlo simulation of the electrical conductivity of carbon nanotube/polymer composites. Appl Phys Express 5(4):045101CrossRef
13.
go back to reference Yan D, Wen J, Xu G (2016) A Monte Carlo simulation and effective thermal conductivity calculation for unidirectional fiber reinforced CMC. Appl Therm Eng 94:827–835CrossRef Yan D, Wen J, Xu G (2016) A Monte Carlo simulation and effective thermal conductivity calculation for unidirectional fiber reinforced CMC. Appl Therm Eng 94:827–835CrossRef
14.
go back to reference Okabe T, Nishikawa M (2009) GLS strength prediction of glass-fiber-reinforced polypropylene. J Mater Sci 44:331–334CrossRef Okabe T, Nishikawa M (2009) GLS strength prediction of glass-fiber-reinforced polypropylene. J Mater Sci 44:331–334CrossRef
15.
go back to reference Bouaziz A, Zaïri F, Naït-Abdelaziz M, Gloaguen JM, Lefebvre JM (2007) Micromechanical modelling and experimental investigation of random discontinuous glass fiber polymer–matrix composites. Compos Sci Technol 67(15–16):3278–3285CrossRef Bouaziz A, Zaïri F, Naït-Abdelaziz M, Gloaguen JM, Lefebvre JM (2007) Micromechanical modelling and experimental investigation of random discontinuous glass fiber polymer–matrix composites. Compos Sci Technol 67(15–16):3278–3285CrossRef
16.
go back to reference Wang W, Jayatissa AH (2015) Computational and experimental study of electrical conductivity of graphene/poly (methyl methacrylate) nanocomposite using Monte Carlo method and percolation theory. Synth Met 204:141–147CrossRef Wang W, Jayatissa AH (2015) Computational and experimental study of electrical conductivity of graphene/poly (methyl methacrylate) nanocomposite using Monte Carlo method and percolation theory. Synth Met 204:141–147CrossRef
17.
go back to reference Oskouyi AB, Mertiny P (2011) Monte Carlo model for the study of percolation thresholds in composites filled with circular conductive nano-disks. Procedia Eng 10:403–408CrossRef Oskouyi AB, Mertiny P (2011) Monte Carlo model for the study of percolation thresholds in composites filled with circular conductive nano-disks. Procedia Eng 10:403–408CrossRef
18.
go back to reference Zabihi Z, Araghi H (2016) Monte Carlo simulations of effective electrical conductivity of graphene/poly (methyl methacrylate) nanocomposite: Landauer-Buttiker approach. Synth Met 217:87–93CrossRef Zabihi Z, Araghi H (2016) Monte Carlo simulations of effective electrical conductivity of graphene/poly (methyl methacrylate) nanocomposite: Landauer-Buttiker approach. Synth Met 217:87–93CrossRef
19.
go back to reference Fang C, Zhang J, Chen X, Weng GJ (2020) Calculating the electrical conductivity of graphene nanoplatelet polymer composites by a Monte Carlo method. Nanomaterials 10(6):1129PubMedPubMedCentralCrossRef Fang C, Zhang J, Chen X, Weng GJ (2020) Calculating the electrical conductivity of graphene nanoplatelet polymer composites by a Monte Carlo method. Nanomaterials 10(6):1129PubMedPubMedCentralCrossRef
20.
21.
go back to reference Spanos P, Elsbernd P, Ward B, Koenck T (2013) Estimation of the physical properties of nanocomposites by finite-element discretization and Monte Carlo simulation. Philos Trans R Soc A Math Phys Eng Sci 371(1993):20120494CrossRef Spanos P, Elsbernd P, Ward B, Koenck T (2013) Estimation of the physical properties of nanocomposites by finite-element discretization and Monte Carlo simulation. Philos Trans R Soc A Math Phys Eng Sci 371(1993):20120494CrossRef
22.
go back to reference Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9(9):646–652PubMedCrossRef Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9(9):646–652PubMedCrossRef
23.
go back to reference Hadipeykani M, Aghadavoudi F, Toghraie D (2020) A molecular dynamics simulation of the glass transition temperature and volumetric thermal expansion coefficient of thermoset polymer based epoxy nanocomposite reinforced by CNT: a statistical study. Physica A 546:123995CrossRef Hadipeykani M, Aghadavoudi F, Toghraie D (2020) A molecular dynamics simulation of the glass transition temperature and volumetric thermal expansion coefficient of thermoset polymer based epoxy nanocomposite reinforced by CNT: a statistical study. Physica A 546:123995CrossRef
25.
go back to reference Hutchings I, Shipway P (2017) Tribology: friction and wear of engineering materials. Butterworth-Heinemann Hutchings I, Shipway P (2017) Tribology: friction and wear of engineering materials. Butterworth-Heinemann
26.
go back to reference Hung PY, Lau KT, Cheng LK, Leng J, Hui D (2018) Impact response of hybrid carbon/glass fibre reinforced polymer composites designed for engineering applications. Compos B Eng 133:86–90CrossRef Hung PY, Lau KT, Cheng LK, Leng J, Hui D (2018) Impact response of hybrid carbon/glass fibre reinforced polymer composites designed for engineering applications. Compos B Eng 133:86–90CrossRef
27.
go back to reference Li Y, Wang Q, Wang S (2019) A review on enhancement of mechanical and tribological properties of polymer composites reinforced by carbon nanotubes and graphene sheet: molecular dynamics simulations. Compos B Eng 160:348–361CrossRef Li Y, Wang Q, Wang S (2019) A review on enhancement of mechanical and tribological properties of polymer composites reinforced by carbon nanotubes and graphene sheet: molecular dynamics simulations. Compos B Eng 160:348–361CrossRef
28.
go back to reference Wagner HD, Vaia RA (2004) Nanocomposites: issues at the interface. Mater Today 7(11):38–42CrossRef Wagner HD, Vaia RA (2004) Nanocomposites: issues at the interface. Mater Today 7(11):38–42CrossRef
29.
go back to reference Bandyopadhyay A, Valavala PK, Clancy TC, Wise KE, Odegard GM (2011) Molecular modeling of crosslinked epoxy polymers: the effect of crosslink density on thermomechanical properties. Polymer 52(11):2445–2452CrossRef Bandyopadhyay A, Valavala PK, Clancy TC, Wise KE, Odegard GM (2011) Molecular modeling of crosslinked epoxy polymers: the effect of crosslink density on thermomechanical properties. Polymer 52(11):2445–2452CrossRef
30.
go back to reference Singh PK, Sharma K, Kumar A, Shukla M (2017) Effects of functionalization on the mechanical properties of multiwalled carbon nanotubes: a molecular dynamics approach. J Compos Mater 51(5):671–680CrossRef Singh PK, Sharma K, Kumar A, Shukla M (2017) Effects of functionalization on the mechanical properties of multiwalled carbon nanotubes: a molecular dynamics approach. J Compos Mater 51(5):671–680CrossRef
31.
go back to reference Wei Q, Zhang Y, Wang Y, Yang M (2017) A molecular dynamic simulation method to elucidate the interaction mechanism of nano-SiO2 in polymer blends. J Mater Sci 52(21):12889–12901CrossRef Wei Q, Zhang Y, Wang Y, Yang M (2017) A molecular dynamic simulation method to elucidate the interaction mechanism of nano-SiO2 in polymer blends. J Mater Sci 52(21):12889–12901CrossRef
32.
go back to reference Wang Y, Yang G, Wang W, Zhu S, Guo L, Zhang Z, Li P (2019) Effects of different functional groups in graphene nanofiber on the mechanical property of polyvinyl alcohol composites by the molecular dynamic simulations. J Mol Liq 277:261–268CrossRef Wang Y, Yang G, Wang W, Zhu S, Guo L, Zhang Z, Li P (2019) Effects of different functional groups in graphene nanofiber on the mechanical property of polyvinyl alcohol composites by the molecular dynamic simulations. J Mol Liq 277:261–268CrossRef
33.
go back to reference Jiao W, Zheng T, Liu W, Jiao W, Wang R (2019) Molecular dynamics simulations of the effect of sizing agent on the interface property in carbon fiber reinforced vinyl ester resin composite. Appl Surf Sci 479:1192–1199CrossRef Jiao W, Zheng T, Liu W, Jiao W, Wang R (2019) Molecular dynamics simulations of the effect of sizing agent on the interface property in carbon fiber reinforced vinyl ester resin composite. Appl Surf Sci 479:1192–1199CrossRef
34.
go back to reference Stevens MJ (2001) Interfacial fracture between highly cross-linked polymer networks and a solid surface: effect of interfacial bond density. Macromolecules 34(8):2710–2718CrossRef Stevens MJ (2001) Interfacial fracture between highly cross-linked polymer networks and a solid surface: effect of interfacial bond density. Macromolecules 34(8):2710–2718CrossRef
35.
go back to reference Mansfield KF, Theodorou DN (1991) Atomistic simulation of a glassy polymer/graphite interface. Macromolecules 24(15):4295–4309CrossRef Mansfield KF, Theodorou DN (1991) Atomistic simulation of a glassy polymer/graphite interface. Macromolecules 24(15):4295–4309CrossRef
36.
go back to reference Hadden CM, Jensen BD, Bandyopadhyay A, Odegard GM, Koo A, Liang R (2013) Molecular modeling of EPON-862/graphite composites: interfacial characteristics for multiple crosslink densities. Compos Sci Technol 76:92–99CrossRef Hadden CM, Jensen BD, Bandyopadhyay A, Odegard GM, Koo A, Liang R (2013) Molecular modeling of EPON-862/graphite composites: interfacial characteristics for multiple crosslink densities. Compos Sci Technol 76:92–99CrossRef
37.
go back to reference Odegard GM, Clancy TC, Gates TS (2005) Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer 46(2):553–562CrossRef Odegard GM, Clancy TC, Gates TS (2005) Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer 46(2):553–562CrossRef
38.
go back to reference Ionita M (2012) Multiscale molecular modeling of SWCNTs/epoxy resin composites mechanical behaviour. Compos B Eng 43(8):3491–3496CrossRef Ionita M (2012) Multiscale molecular modeling of SWCNTs/epoxy resin composites mechanical behaviour. Compos B Eng 43(8):3491–3496CrossRef
39.
go back to reference Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19(3):155CrossRef Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19(3):155CrossRef
40.
go back to reference Elliott JA, Windle AH (2000) A dissipative particle dynamics method for modeling the geometrical packing of filler particles in polymer composites. J Chem Phys 113(22):10367–10376CrossRef Elliott JA, Windle AH (2000) A dissipative particle dynamics method for modeling the geometrical packing of filler particles in polymer composites. J Chem Phys 113(22):10367–10376CrossRef
41.
go back to reference Wang YC, Ju SP, Huang TJ, Wang HH (2011) Modeling of polyethylene, poly (l-lactide), and CNT composites: a dissipative particle dynamics study. Nanoscale Res Lett 6:1–8CrossRef Wang YC, Ju SP, Huang TJ, Wang HH (2011) Modeling of polyethylene, poly (l-lactide), and CNT composites: a dissipative particle dynamics study. Nanoscale Res Lett 6:1–8CrossRef
42.
go back to reference Chakraborty S, Choudhury CK, Roy S (2013) Morphology and dynamics of carbon nanotube in polycarbonate carbon nanotube composite from dissipative particle dynamics simulation. Macromolecules 46(9):3631–3638CrossRef Chakraborty S, Choudhury CK, Roy S (2013) Morphology and dynamics of carbon nanotube in polycarbonate carbon nanotube composite from dissipative particle dynamics simulation. Macromolecules 46(9):3631–3638CrossRef
43.
go back to reference Ketkaew R, Tantirungrotechai Y (2018) Dissipative particle dynamics study of SWCNT reinforced natural rubber composite system: an important role of self-avoiding model on mechanical properties. Macromol Theory Simul 27(3):1700093CrossRef Ketkaew R, Tantirungrotechai Y (2018) Dissipative particle dynamics study of SWCNT reinforced natural rubber composite system: an important role of self-avoiding model on mechanical properties. Macromol Theory Simul 27(3):1700093CrossRef
44.
go back to reference Kim YJ, Tan YF, Kim S (2018) Two-dimensional lattice Boltzmann modeling for effective thermal conductivity in carbon black filled composites. J Compos Mater 52(15):2047–2053CrossRef Kim YJ, Tan YF, Kim S (2018) Two-dimensional lattice Boltzmann modeling for effective thermal conductivity in carbon black filled composites. J Compos Mater 52(15):2047–2053CrossRef
45.
go back to reference Martys NS, Chen H (1996) Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Phys Rev E 53(1):743CrossRef Martys NS, Chen H (1996) Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Phys Rev E 53(1):743CrossRef
46.
go back to reference Kandhai D, Vidal DE, Hoekstra AG, Hoefsloot H, Iedema P, Sloot PMA (1998) A comparison between lattice-Boltzmann and finite-element simulations of fluid flow in static mixer reactors. Int J Mod Phys C 9(08):1123–1128CrossRef Kandhai D, Vidal DE, Hoekstra AG, Hoefsloot H, Iedema P, Sloot PMA (1998) A comparison between lattice-Boltzmann and finite-element simulations of fluid flow in static mixer reactors. Int J Mod Phys C 9(08):1123–1128CrossRef
47.
go back to reference Spaid MA, Phelan FR Jr (1997) Lattice Boltzmann methods for modeling microscale flow in fibrous porous media. Phys Fluids 9(9):2468–2474CrossRef Spaid MA, Phelan FR Jr (1997) Lattice Boltzmann methods for modeling microscale flow in fibrous porous media. Phys Fluids 9(9):2468–2474CrossRef
48.
go back to reference Fang WZ, Chen L, Gou JJ, Tao WQ (2016) Predictions of effective thermal conductivities for three-dimensional four-directional braided composites using the lattice Boltzmann method. Int J Heat Mass Transf 92:120–130CrossRef Fang WZ, Chen L, Gou JJ, Tao WQ (2016) Predictions of effective thermal conductivities for three-dimensional four-directional braided composites using the lattice Boltzmann method. Int J Heat Mass Transf 92:120–130CrossRef
49.
go back to reference Xie C, Wang J, Wang D, Pan N, Wang M (2015) Lattice Boltzmann modeling of thermal conduction in composites with thermal contact resistance. Commun Comput Phys 17(4):1037–1055CrossRef Xie C, Wang J, Wang D, Pan N, Wang M (2015) Lattice Boltzmann modeling of thermal conduction in composites with thermal contact resistance. Commun Comput Phys 17(4):1037–1055CrossRef
50.
go back to reference Runacher A, Kazemzadeh-Parsi MJ, Di Lorenzo D, Champaney V, Hascoet N, Ammar A, Chinesta F (2023) Describing and modeling rough composites surfaces by using topological data analysis and fractional Brownian motion. Polymers 15(6):1449PubMedPubMedCentralCrossRef Runacher A, Kazemzadeh-Parsi MJ, Di Lorenzo D, Champaney V, Hascoet N, Ammar A, Chinesta F (2023) Describing and modeling rough composites surfaces by using topological data analysis and fractional Brownian motion. Polymers 15(6):1449PubMedPubMedCentralCrossRef
51.
go back to reference Chinesta F, Leygue A, Bognet B, Ghnatios C, Poulhaon F, Bordeu F, Barasinski A, Poitou A, Chatel S, Maison-Le-Poec S (2014) First steps towards an advanced simulation of composites manufacturing by automated tape placement. Int J Mater Form 7:81–92CrossRef Chinesta F, Leygue A, Bognet B, Ghnatios C, Poulhaon F, Bordeu F, Barasinski A, Poitou A, Chatel S, Maison-Le-Poec S (2014) First steps towards an advanced simulation of composites manufacturing by automated tape placement. Int J Mater Form 7:81–92CrossRef
52.
go back to reference Rissanou AN, Bačová P, Harmandaris V (2019) Investigation of the properties of nanographene in polymer nanocomposites through molecular simulations: dynamics and anisotropic Brownian motion. Phys Chem Chem Phys 21(43):23843–23854PubMedCrossRef Rissanou AN, Bačová P, Harmandaris V (2019) Investigation of the properties of nanographene in polymer nanocomposites through molecular simulations: dynamics and anisotropic Brownian motion. Phys Chem Chem Phys 21(43):23843–23854PubMedCrossRef
53.
go back to reference Barbero Ever J (2013) Finite element analysis of composite materials using ANSYS® Barbero Ever J (2013) Finite element analysis of composite materials using ANSYS®
54.
go back to reference Tenek LT, Argyris J (1997) Finite element analysis for composite structures, vol 59. Springer Science & Business Media Tenek LT, Argyris J (1997) Finite element analysis for composite structures, vol 59. Springer Science & Business Media
55.
go back to reference Dandekar CR, Shin YC (2012) Modeling of machining of composite materials: a review. Int J Mach Tools Manuf 57:102–121CrossRef Dandekar CR, Shin YC (2012) Modeling of machining of composite materials: a review. Int J Mach Tools Manuf 57:102–121CrossRef
56.
go back to reference Tan W, Naya F, Yang L, Chang T, Falzon BG, Zhan L, Molina-Aldareguía JM, González C, Llorca J (2018) The role of interfacial properties on the intralaminar and interlaminar damage behaviour of unidirectional composite laminates: Experimental characterization and multiscale modelling. Compos B Eng 138:206–221CrossRef Tan W, Naya F, Yang L, Chang T, Falzon BG, Zhan L, Molina-Aldareguía JM, González C, Llorca J (2018) The role of interfacial properties on the intralaminar and interlaminar damage behaviour of unidirectional composite laminates: Experimental characterization and multiscale modelling. Compos B Eng 138:206–221CrossRef
57.
go back to reference Nurhaniza M, Ariffin MKA, Ali A, Mustapha F, Noraini AW (2010) Finite element analysis of composites materials for aerospace applications. In: IOP conference series: materials science and engineering, vol 11, no 1, p 012010. IOP Publishing Nurhaniza M, Ariffin MKA, Ali A, Mustapha F, Noraini AW (2010) Finite element analysis of composites materials for aerospace applications. In: IOP conference series: materials science and engineering, vol 11, no 1, p 012010. IOP Publishing
58.
go back to reference Wen Y, Yue X, Hunt JH, Shi J (2018) Feasibility analysis of composite fuselage shape control via finite element analysis. J Manuf Syst 46:272–281CrossRef Wen Y, Yue X, Hunt JH, Shi J (2018) Feasibility analysis of composite fuselage shape control via finite element analysis. J Manuf Syst 46:272–281CrossRef
59.
go back to reference Ghafarizadeh S, Chatelain JF, Lebrun G (2016) Finite element analysis of surface milling of carbon fiber-reinforced composites. Int J Adv Manuf Technol 87:399–409CrossRef Ghafarizadeh S, Chatelain JF, Lebrun G (2016) Finite element analysis of surface milling of carbon fiber-reinforced composites. Int J Adv Manuf Technol 87:399–409CrossRef
60.
go back to reference Ahmad F, Abbassi F, Park MK, Jung JW, Hong JW (2018) Finite element analysis for the evaluation of the low-velocity impact response of a composite plate. Adv Compos Mater Ahmad F, Abbassi F, Park MK, Jung JW, Hong JW (2018) Finite element analysis for the evaluation of the low-velocity impact response of a composite plate. Adv Compos Mater
61.
go back to reference Liu X, Wang L, Tang X (2013) Optimized linearization of chord and twist angle profiles for fixed-pitch fixed-speed wind turbine blades. Renew Energy 57:111–119CrossRef Liu X, Wang L, Tang X (2013) Optimized linearization of chord and twist angle profiles for fixed-pitch fixed-speed wind turbine blades. Renew Energy 57:111–119CrossRef
62.
go back to reference Wang L, Kolios A, Nishino T, Delafin PL, Bird T (2016) Structural optimisation of vertical-axis wind turbine composite blades based on finite element analysis and genetic algorithm. Compos Struct 153:123–138CrossRef Wang L, Kolios A, Nishino T, Delafin PL, Bird T (2016) Structural optimisation of vertical-axis wind turbine composite blades based on finite element analysis and genetic algorithm. Compos Struct 153:123–138CrossRef
63.
go back to reference Heydari-Meybodi M, Saber-Samandari S, Sadighi M (2016) 3D multiscale modeling to predict the elastic modulus of polymer/nanoclay composites considering realistic interphase property. Compos Interfaces 23(7):641–661CrossRef Heydari-Meybodi M, Saber-Samandari S, Sadighi M (2016) 3D multiscale modeling to predict the elastic modulus of polymer/nanoclay composites considering realistic interphase property. Compos Interfaces 23(7):641–661CrossRef
64.
go back to reference Li R, Chen Z, Wu W (2000) Generalized difference methods for differential equations: numerical analysis of finite volume methods. CRC Press Li R, Chen Z, Wu W (2000) Generalized difference methods for differential equations: numerical analysis of finite volume methods. CRC Press
65.
go back to reference Rappaz M, Bellet M, Deville MO, Snyder R (2003) Numerical modeling in materials science and engineering. Springer-Verlag, Berlin, pp 448–475CrossRef Rappaz M, Bellet M, Deville MO, Snyder R (2003) Numerical modeling in materials science and engineering. Springer-Verlag, Berlin, pp 448–475CrossRef
66.
go back to reference Song YS, Chung K, Kang TJ, Youn JR (2004) Prediction of permeability tensor for three dimensional circular braided preform by applying a finite volume method to a unit cell. Compos Sci Technol 64(10–11):1629–1636CrossRef Song YS, Chung K, Kang TJ, Youn JR (2004) Prediction of permeability tensor for three dimensional circular braided preform by applying a finite volume method to a unit cell. Compos Sci Technol 64(10–11):1629–1636CrossRef
67.
go back to reference Bansal Y, Pindera MJ (2006) Finite-volume direct averaging micromechanics of heterogeneous materials with elastic–plastic phases. Int J Plast 22(5):775–825CrossRef Bansal Y, Pindera MJ (2006) Finite-volume direct averaging micromechanics of heterogeneous materials with elastic–plastic phases. Int J Plast 22(5):775–825CrossRef
Metadata
Title
Multiscale Modelling of Polymer Composites
Authors
Dheeraj Gunwant
Neeraj Bisht
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0888-8_3

Premium Partners