Skip to main content
Top

2016 | Book

Multivariable Dynamic Calculus on Time Scales

insite
SEARCH

About this book

This book offers the reader an overview of recent developments of multivariable dynamic calculus on time scales, taking readers beyond the traditional calculus texts. Covering topics from parameter-dependent integrals to partial differentiation on time scales, the book’s nine pedagogically oriented chapters provide a pathway to this active area of research that will appeal to students and researchers in mathematics and the physical sciences. The authors present a clear and well-organized treatment of the concept behind the mathematics and solution techniques, including many practical examples and exercises.

Table of Contents

Frontmatter
Chapter 1. Time Scales
Abstract
A time scale is an arbitrary nonempty closed subset of the real numbers.
Martin Bohner, Svetlin G. Georgiev
Chapter 2. Differential Calculus of Functions of One Variable
Abstract
Assume that \(f:{\mathbb {T}}\rightarrow {\mathbb {R}}\) is a function and let \(t\in {\mathbb {T}}^{\kappa }\).
Martin Bohner, Svetlin G. Georgiev
Chapter 3. Integral Calculus of Functions of One Variable

A function \(f:{\mathbb {T}}\rightarrow {\mathbb {R}}\) is called regulated provided its right-sided limits exist (finite) at all right-dense points in \({\mathbb {T}}\) and its left-sided limits exist (finite) at all left-dense points in \({\mathbb {T}}\).

Martin Bohner, Svetlin G. Georgiev
Chapter 4. Sequences and Series of Functions
Abstract
Suppose that \(f_n:{\mathbb {T}}\rightarrow {\mathbb {R}}\), \(n\in {\mathbb {N}}\), \(S\subset {\mathbb {T}}\).
Martin Bohner, Svetlin G. Georgiev
Chapter 5. Parameter-Dependent Integrals
Abstract
Let \({\mathbb {T}}_1\) and \({\mathbb {T}}_2\) be time scales.
Martin Bohner, Svetlin G. Georgiev
Chapter 6. Partial Differentiation on Time Scales

Let \(n\in {\mathbb {N}}\) be fixed. For each \(i\in \{1,2,\ldots ,n\}\), we denote by \({\mathbb {T}}_i\) a time scale.

Martin Bohner, Svetlin G. Georgiev
Chapter 7. Multiple Integration on Time Scales
Abstract
Let \({\mathbb {T}}_i\), \(i\in \{1,2,\ldots ,n\}\), be time scales. For \(i\in \{1,2,\ldots ,n\}\), let \(\sigma _i\), \(\rho _i\), and \(\varDelta _i\) denote the forward jump operator, the backward jump operator, and the delta differentiation, respectively, on \({\mathbb {T}}_i\).
Martin Bohner, Svetlin G. Georgiev
Chapter 8. Line Integrals
Abstract
Let \({\mathbb {T}}\) be a time scale with the forward jump operator \(\sigma \) and the delta operator \(\varDelta \). Let \(a,b\in {\mathbb {T}}\) with \(a<b\). Assume that \(\phi _i:[a,b]\rightarrow {\mathbb {R}}\) is continuous, \(i\in \{1,\ldots ,m\}\).
Martin Bohner, Svetlin G. Georgiev
Chapter 9. Surface Integrals
Abstract
Let \({\mathbb {T}}_i\), \(i\in \{1,\ldots , n\}\), be time scales. Suppose \(\varOmega \subset {\mathbb {T}}_1\times \ldots \times {\mathbb {T}}_n\). Let \(\phi _i:\varOmega \rightarrow {\mathbb {R}}\) be continuous functions on \(\varOmega \).
Martin Bohner, Svetlin G. Georgiev
Backmatter
Metadata
Title
Multivariable Dynamic Calculus on Time Scales
Authors
Martin Bohner
Svetlin G. Georgiev
Copyright Year
2016
Electronic ISBN
978-3-319-47620-9
Print ISBN
978-3-319-47619-3
DOI
https://doi.org/10.1007/978-3-319-47620-9

Premium Partner