Skip to main content
Top

2019 | OriginalPaper | Chapter

25. MXenes for Transparent Conductive Electrodes and Transparent Energy Storage Devices

Authors : Chuanfang (John) Zhang, Valeria Nicolosi

Published in: 2D Metal Carbides and Nitrides (MXenes)

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The rapid development of portable smart electronics demands advanced components including displays and power sources. Central to these components is the quest of novel materials that can perform well as both transparent conductive electrodes (TCEs) and transparent energy storage devices. This is quite challenging, as the sheet resistance dramatically increases when thinning down the film thickness, leading to poor optoelectronic and electrochemical charge storage properties, known as percolation effects. Producing TCEs without percolation problems is quite crucial for the development of high-performance touch screens, displays, etc. This chapter briefly introduces some typical TCEs, outlines the fundamentals, and focuses on MXenes as potential TCE material. Based on that, this chapter also discusses the fabrication of transparent energy storage devices, specifically transparent solid-state supercapacitors. The excellent optoelectronic properties coupled with impressively performance on capacitive charge storage indicate that MXenes are great candidates for producing state-of-the-art TCEs and transparent energy storage devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kim, Y. H., et al. (2015). Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending. ACS Nano, 9, 10453–10460.CrossRef Kim, Y. H., et al. (2015). Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending. ACS Nano, 9, 10453–10460.CrossRef
2.
go back to reference Bae, S., et al. (2010). Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 5, 574–578.CrossRef Bae, S., et al. (2010). Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 5, 574–578.CrossRef
3.
go back to reference King, P. J., Higgins, T. M., De, S., Nicoloso, N., & Coleman, J. N. (2012). Percolation effects in supercapacitors with thin, transparent carbon nanotube electrodes. ACS Nano, 6, 1732–1741.CrossRef King, P. J., Higgins, T. M., De, S., Nicoloso, N., & Coleman, J. N. (2012). Percolation effects in supercapacitors with thin, transparent carbon nanotube electrodes. ACS Nano, 6, 1732–1741.CrossRef
4.
go back to reference Naguib, M., et al. (2011). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 23, 4248–4253.CrossRef Naguib, M., et al. (2011). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 23, 4248–4253.CrossRef
5.
go back to reference Naguib, M., & Gogotsi, Y. (2015). Synthesis of two-dimensional materials by selective extraction. Accounts of Chemical Research, 48, 128–135.CrossRef Naguib, M., & Gogotsi, Y. (2015). Synthesis of two-dimensional materials by selective extraction. Accounts of Chemical Research, 48, 128–135.CrossRef
6.
go back to reference Naguib, M., et al. (2012). Two-dimensional transition metal carbides. ACS Nano, 6, 1322–1331.CrossRef Naguib, M., et al. (2012). Two-dimensional transition metal carbides. ACS Nano, 6, 1322–1331.CrossRef
7.
go back to reference Ghidiu, M., Lukatskaya, M. R., Zhao, M.-Q., Gogotsi, Y., & Barsoum, M. W. (2014). Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 516, 78–81.CrossRef Ghidiu, M., Lukatskaya, M. R., Zhao, M.-Q., Gogotsi, Y., & Barsoum, M. W. (2014). Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 516, 78–81.CrossRef
8.
go back to reference Dong, Y., et al. (2017). Metallic MXenes: A new family of materials for flexible triboelectric nanogenerators. Nano Energy, 44, 103–110.CrossRef Dong, Y., et al. (2017). Metallic MXenes: A new family of materials for flexible triboelectric nanogenerators. Nano Energy, 44, 103–110.CrossRef
9.
go back to reference Zhang, C. J., et al. (2017). Transparent, Flexible, and Conductive 2D Titanium Carbide (MXene) Films with High Volumetric Capacitance. Advanced Materials, 29, 1702678.CrossRef Zhang, C. J., et al. (2017). Transparent, Flexible, and Conductive 2D Titanium Carbide (MXene) Films with High Volumetric Capacitance. Advanced Materials, 29, 1702678.CrossRef
10.
go back to reference Lukatskaya, M. R., et al. (2015). Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Advanced Energy Materials, 5, 1500589.CrossRef Lukatskaya, M. R., et al. (2015). Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Advanced Energy Materials, 5, 1500589.CrossRef
11.
go back to reference Yu, L., Shearer, C., & Shapter, J. (2016). Recent development of carbon nanotube transparent conductive films. Chemical Reviews, 116, 13413–13453.CrossRef Yu, L., Shearer, C., & Shapter, J. (2016). Recent development of carbon nanotube transparent conductive films. Chemical Reviews, 116, 13413–13453.CrossRef
12.
go back to reference De, S., & Coleman, J. N. (2011). The effects of percolation in nanostructured transparent conductors. MRS Bulletin, 36, 774–781.CrossRef De, S., & Coleman, J. N. (2011). The effects of percolation in nanostructured transparent conductors. MRS Bulletin, 36, 774–781.CrossRef
13.
go back to reference De, S., et al. (2009). Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios. ACS Nano, 3, 1767–1774.CrossRef De, S., et al. (2009). Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios. ACS Nano, 3, 1767–1774.CrossRef
14.
go back to reference Jiang, S., et al. (2018). Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes. Science Advances, 4, eaap9264.CrossRef Jiang, S., et al. (2018). Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes. Science Advances, 4, eaap9264.CrossRef
15.
go back to reference Zheng, Q., Li, Z., Yang, J., & Kim, J.-K. (2014). Graphene oxide-based transparent conductive films. Progress in Materials Science, 64, 200–247.CrossRef Zheng, Q., Li, Z., Yang, J., & Kim, J.-K. (2014). Graphene oxide-based transparent conductive films. Progress in Materials Science, 64, 200–247.CrossRef
16.
go back to reference Eda, G., Fanchini, G., & Chhowalla, M. (2008). Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnology, 3, 270–274.CrossRef Eda, G., Fanchini, G., & Chhowalla, M. (2008). Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnology, 3, 270–274.CrossRef
17.
go back to reference Wu, Z., et al. (2004). Transparent, conductive carbon nanotube films. Science, 305, 1273–1276.CrossRef Wu, Z., et al. (2004). Transparent, conductive carbon nanotube films. Science, 305, 1273–1276.CrossRef
18.
go back to reference Feng, C., et al. (2010). Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes. Advanced Functional Materials, 20, 885–891.CrossRef Feng, C., et al. (2010). Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes. Advanced Functional Materials, 20, 885–891.CrossRef
19.
go back to reference La Notte, L., et al. (2017). Laser-patterned functionalized CVD-graphene as highly transparent conductive electrodes for polymer solar cells. Nanoscale, 9, 62–69.CrossRef La Notte, L., et al. (2017). Laser-patterned functionalized CVD-graphene as highly transparent conductive electrodes for polymer solar cells. Nanoscale, 9, 62–69.CrossRef
20.
go back to reference Simien, D., et al. (2008). Influence of nanotube length on the optical and conductivity properties of thin single-wall carbon nanotube networks. ACS Nano, 2, 1879–1884.CrossRef Simien, D., et al. (2008). Influence of nanotube length on the optical and conductivity properties of thin single-wall carbon nanotube networks. ACS Nano, 2, 1879–1884.CrossRef
21.
go back to reference Becerril, H. A., et al. (2008). Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano, 2, 463–470.CrossRef Becerril, H. A., et al. (2008). Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano, 2, 463–470.CrossRef
22.
go back to reference Hecht, D. S., Hu, L., & Irvin, G. (2011). Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Advanced Materials, 23, 1482–1513.CrossRef Hecht, D. S., Hu, L., & Irvin, G. (2011). Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Advanced Materials, 23, 1482–1513.CrossRef
23.
go back to reference De, S., & Coleman, J. N. (2010). Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano, 4, 2713–2720.CrossRef De, S., & Coleman, J. N. (2010). Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano, 4, 2713–2720.CrossRef
24.
go back to reference De, S., et al. (2010). Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions. Small, 6, 458–464.CrossRef De, S., et al. (2010). Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions. Small, 6, 458–464.CrossRef
25.
go back to reference De, S., et al. (2009). Transparent, flexible, and highly conductive thin films based on polymer-nanotube composites. ACS Nano, 3, 714–720.CrossRef De, S., et al. (2009). Transparent, flexible, and highly conductive thin films based on polymer-nanotube composites. ACS Nano, 3, 714–720.CrossRef
26.
go back to reference Higgins, T. M., & Coleman, J. N. (2015). Avoiding resistance limitations in high-performance transparent supercapacitor electrodes based on large-area, high-conductivity PEDOT:PSS films. ACS Applied Materials & Interfaces, 7, 16495–16506.CrossRef Higgins, T. M., & Coleman, J. N. (2015). Avoiding resistance limitations in high-performance transparent supercapacitor electrodes based on large-area, high-conductivity PEDOT:PSS films. ACS Applied Materials & Interfaces, 7, 16495–16506.CrossRef
27.
go back to reference Lukatskaya, M. R., et al. (2017). Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nature Energy, 2, 17105.CrossRef Lukatskaya, M. R., et al. (2017). Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nature Energy, 2, 17105.CrossRef
28.
go back to reference Luo, J., et al. (2016). Sn4+ ion decorated highly conductive Ti3C2 MXene: Promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano, 10, 2491–2499.CrossRef Luo, J., et al. (2016). Sn4+ ion decorated highly conductive Ti3C2 MXene: Promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano, 10, 2491–2499.CrossRef
29.
go back to reference Naguib, M., et al. (2012). MXene: A promising transition metal carbide anode for lithium-ion batteries. Electrochemistry Communications, 16, 61–64.CrossRef Naguib, M., et al. (2012). MXene: A promising transition metal carbide anode for lithium-ion batteries. Electrochemistry Communications, 16, 61–64.CrossRef
30.
go back to reference Xie, X., et al. (2016). Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy, 26, 513–523.CrossRef Xie, X., et al. (2016). Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy, 26, 513–523.CrossRef
31.
go back to reference Shahzad, F., et al. (2016). Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 353, 1137–1140.CrossRef Shahzad, F., et al. (2016). Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 353, 1137–1140.CrossRef
32.
go back to reference Sun, R., et al. (2017). Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Advanced Functional Materials, 27, 1702807.CrossRef Sun, R., et al. (2017). Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Advanced Functional Materials, 27, 1702807.CrossRef
33.
go back to reference Liu, J., et al. (2017). Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Advanced Materials, 29, 1702367.CrossRef Liu, J., et al. (2017). Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Advanced Materials, 29, 1702367.CrossRef
34.
go back to reference Ren, C. E., et al. (2015). Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. Journal of Physical Chemistry Letters, 6, 4026–4031.CrossRef Ren, C. E., et al. (2015). Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. Journal of Physical Chemistry Letters, 6, 4026–4031.CrossRef
35.
go back to reference Mashtalir, O., et al. (2013). Intercalation and delamination of layered carbides and carbonitrides. Nature Communications, 4, 1716.CrossRef Mashtalir, O., et al. (2013). Intercalation and delamination of layered carbides and carbonitrides. Nature Communications, 4, 1716.CrossRef
36.
go back to reference Halim, J., et al. (2014). Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chemistry of Materials, 26, 2374–2381.CrossRef Halim, J., et al. (2014). Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chemistry of Materials, 26, 2374–2381.CrossRef
37.
go back to reference Hantanasirisakul, K., et al. (2016). Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties. Advanced Electronic Materials, 2, 1600050.CrossRef Hantanasirisakul, K., et al. (2016). Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties. Advanced Electronic Materials, 2, 1600050.CrossRef
38.
go back to reference Ali, A., Belaidi, A., Ali, S., Helal, M. I., & Mahmoud, K. A. (2016). Transparent and conductive Ti3C2Tx (MXene) thin film fabrication by electrohydrodynamic atomization technique. Journal of Materials Science: Materials in Electronics, 27, 5440–5445. Ali, A., Belaidi, A., Ali, S., Helal, M. I., & Mahmoud, K. A. (2016). Transparent and conductive Ti3C2Tx (MXene) thin film fabrication by electrohydrodynamic atomization technique. Journal of Materials Science: Materials in Electronics, 27, 5440–5445.
39.
go back to reference Mariano, M., et al. (2016). Solution-processed titanium carbide MXene films examined as highly transparent conductors. Nanoscale, 8, 16371–16378.CrossRef Mariano, M., et al. (2016). Solution-processed titanium carbide MXene films examined as highly transparent conductors. Nanoscale, 8, 16371–16378.CrossRef
40.
go back to reference Dillon, A. D., et al. (2016). Highly conductive optical quality solution-processed films of 2D titanium carbide. Advanced Functional Materials, 26, 4162–4168.CrossRef Dillon, A. D., et al. (2016). Highly conductive optical quality solution-processed films of 2D titanium carbide. Advanced Functional Materials, 26, 4162–4168.CrossRef
41.
go back to reference Champagne, A., Shi, L., Ouisse, T., Hackens, B., & Charlier, J.-C. (2018). Electronic and vibrational properties of V2C-based MXenes: From experiments to first-principles modeling. Physical Review B, 97, 115439.CrossRef Champagne, A., Shi, L., Ouisse, T., Hackens, B., & Charlier, J.-C. (2018). Electronic and vibrational properties of V2C-based MXenes: From experiments to first-principles modeling. Physical Review B, 97, 115439.CrossRef
42.
go back to reference Ying, G., Kota, S., Dillon, A. D., Fafarman, A. T., & Barsoum, M. W. (2018). Conductive transparent V2CTx (MXene) films. FlatChem, 8, 25–30.CrossRef Ying, G., Kota, S., Dillon, A. D., Fafarman, A. T., & Barsoum, M. W. (2018). Conductive transparent V2CTx (MXene) films. FlatChem, 8, 25–30.CrossRef
43.
go back to reference Ying, G., Dillon, A. D., Fafarman, A. T., & Barsoum, M. W. (2017). Transparent, conductive solution processed spincast 2D Ti2CTx (MXene) films. Materials Research Letters, 5, 391–398.CrossRef Ying, G., Dillon, A. D., Fafarman, A. T., & Barsoum, M. W. (2017). Transparent, conductive solution processed spincast 2D Ti2CTx (MXene) films. Materials Research Letters, 5, 391–398.CrossRef
44.
go back to reference Miranda, A., Halim, J., Barsoum, M. W., & Lorke, A. (2016). Electronic properties of freestanding Ti3C2Tx MXene monolayers. Applied Physics Letters, 108, 033102.CrossRef Miranda, A., Halim, J., Barsoum, M. W., & Lorke, A. (2016). Electronic properties of freestanding Ti3C2Tx MXene monolayers. Applied Physics Letters, 108, 033102.CrossRef
45.
go back to reference Bruce, P. G., Scrosati, B., & Tarascon, J.-M. (2008). Nanomaterials for rechargeable lithium batteries. Angewandte Chemie International Edition, 47, 2930–2946.CrossRef Bruce, P. G., Scrosati, B., & Tarascon, J.-M. (2008). Nanomaterials for rechargeable lithium batteries. Angewandte Chemie International Edition, 47, 2930–2946.CrossRef
46.
go back to reference Kanninen, P., et al. (2016). Transparent and flexible high-performance supercapacitors based on single-walled carbon nanotube films. Nanotechnology, 27, 235403.CrossRef Kanninen, P., et al. (2016). Transparent and flexible high-performance supercapacitors based on single-walled carbon nanotube films. Nanotechnology, 27, 235403.CrossRef
47.
go back to reference Scardaci, V., Coull, R., & Coleman, J. N. (2010). Very thin transparent, conductive carbon nanotube films on flexible substrates. Applied Physics Letters, 97, 023114.CrossRef Scardaci, V., Coull, R., & Coleman, J. N. (2010). Very thin transparent, conductive carbon nanotube films on flexible substrates. Applied Physics Letters, 97, 023114.CrossRef
48.
go back to reference Niu, Z., et al. (2013). A repeated halving approach to fabricate ultrathin single-walled carbon nanotube films for transparent supercapacitors. Small, 9, 518–524.CrossRef Niu, Z., et al. (2013). A repeated halving approach to fabricate ultrathin single-walled carbon nanotube films for transparent supercapacitors. Small, 9, 518–524.CrossRef
49.
go back to reference Jung, H. Y., Karimi, M. B., Hahm, M. G., Ajayan, P. M., & Jung, Y. J. (2012). Transparent, flexible supercapacitors from nano-engineered carbon films. Scientific Reports, 2, 773.CrossRef Jung, H. Y., Karimi, M. B., Hahm, M. G., Ajayan, P. M., & Jung, Y. J. (2012). Transparent, flexible supercapacitors from nano-engineered carbon films. Scientific Reports, 2, 773.CrossRef
50.
go back to reference Lee, K., et al. (2016). Highly transparent and flexible supercapacitors using graphene-graphene quantum dots chelate. Nano Energy, 26, 746–754.CrossRef Lee, K., et al. (2016). Highly transparent and flexible supercapacitors using graphene-graphene quantum dots chelate. Nano Energy, 26, 746–754.CrossRef
51.
go back to reference Fan, X., Chen, T., & Dai, L. (2014). Graphene networks for high-performance flexible and transparent supercapacitors. RSC Advances, 4, 36996.CrossRef Fan, X., Chen, T., & Dai, L. (2014). Graphene networks for high-performance flexible and transparent supercapacitors. RSC Advances, 4, 36996.CrossRef
52.
go back to reference Gao, Y., et al. (2013). Transparent, flexible, and solid-state supercapacitors based on graphene electrodes. APL Materials, 1, 012101.CrossRef Gao, Y., et al. (2013). Transparent, flexible, and solid-state supercapacitors based on graphene electrodes. APL Materials, 1, 012101.CrossRef
53.
go back to reference Liu, Y.-H., et al. (2017). High-performance, ultra-flexible and transparent embedded metallic mesh electrodes by selective electrodeposition for all-solid-state supercapacitor applications. Journal of Materials Chemistry A, 5, 9032–9041.CrossRef Liu, Y.-H., et al. (2017). High-performance, ultra-flexible and transparent embedded metallic mesh electrodes by selective electrodeposition for all-solid-state supercapacitor applications. Journal of Materials Chemistry A, 5, 9032–9041.CrossRef
54.
go back to reference Chen, P., & Shen, G. (2009). Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneous films. Applied Physics Letters, 94, 43113.CrossRef Chen, P., & Shen, G. (2009). Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneous films. Applied Physics Letters, 94, 43113.CrossRef
55.
go back to reference Ryu, I., et al. (2014). Coaxial RuO2-ITO nanopillars for transparent supercapacitor application. Langmuir, 30, 1704–1709.CrossRef Ryu, I., et al. (2014). Coaxial RuO2-ITO nanopillars for transparent supercapacitor application. Langmuir, 30, 1704–1709.CrossRef
56.
go back to reference Sugimoto, W., Yokoshima, K., Ohuchi, K., Murakami, Y., & Takasu, Y. (2006). Fabrication of thin-film, flexible, and transparent electrodes composed of ruthenic acid nanosheets by electrophoretic deposition and application to electrochemical capacitors. Journal of the Electrochemical Society, 153, A255.CrossRef Sugimoto, W., Yokoshima, K., Ohuchi, K., Murakami, Y., & Takasu, Y. (2006). Fabrication of thin-film, flexible, and transparent electrodes composed of ruthenic acid nanosheets by electrophoretic deposition and application to electrochemical capacitors. Journal of the Electrochemical Society, 153, A255.CrossRef
57.
go back to reference Lin, H., et al. (2013). Conducting polymer composite film incorporated with aligned carbon nanotubes for transparent, flexible and efficient supercapacitor. Scientific Reports, 3, 1353.CrossRef Lin, H., et al. (2013). Conducting polymer composite film incorporated with aligned carbon nanotubes for transparent, flexible and efficient supercapacitor. Scientific Reports, 3, 1353.CrossRef
58.
go back to reference Ge, J., Cheng, G., & Chen, L. (2011). Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films. Nanoscale, 3, 3084–3088.CrossRef Ge, J., Cheng, G., & Chen, L. (2011). Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films. Nanoscale, 3, 3084–3088.CrossRef
59.
go back to reference Zhang, C., et al. (2016). Highly flexible and transparent solid-state supercapacitors based on RuO2/PEDOT: PSS conductive ultrathin films. Nano Energy, 28, 495–505.CrossRef Zhang, C., et al. (2016). Highly flexible and transparent solid-state supercapacitors based on RuO2/PEDOT: PSS conductive ultrathin films. Nano Energy, 28, 495–505.CrossRef
60.
go back to reference Chen, T., Peng, H., Durstock, M., & Dai, L. (2014). High-performance transparent and stretchable all-solid supercapacitors based on highly aligned carbon nanotube sheets. Scientific Reports, 4, 3612.CrossRef Chen, T., Peng, H., Durstock, M., & Dai, L. (2014). High-performance transparent and stretchable all-solid supercapacitors based on highly aligned carbon nanotube sheets. Scientific Reports, 4, 3612.CrossRef
61.
go back to reference Yan, J., Liu, J., Fan, Z., Wei, T., & Zhang, L. (2012). High-performance supercapacitor electrodes based on highly corrugated graphene sheets. Carbon, 50, 2179–2188.CrossRef Yan, J., Liu, J., Fan, Z., Wei, T., & Zhang, L. (2012). High-performance supercapacitor electrodes based on highly corrugated graphene sheets. Carbon, 50, 2179–2188.CrossRef
Metadata
Title
MXenes for Transparent Conductive Electrodes and Transparent Energy Storage Devices
Authors
Chuanfang (John) Zhang
Valeria Nicolosi
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-19026-2_25