Skip to main content
Top
Published in: Journal of Materials Science 7/2022

07-02-2022 | Energy materials

Nafion membranes reinforced by cellulose nanocrystals for fuel cell applications: aspect ratio and heat treatment effects on physical properties

Authors: Arayik Hambardzumyan, Marylène Vayer, Laurence Foulon, Miguel Pernes, Thierry Devers, Janick Bigarré, Véronique Aguié-Béghin

Published in: Journal of Materials Science | Issue 7/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study explored the improvement of the physicochemical properties (mechanical resistance, water uptake, swelling, etc.) of Nafion membranes by cellulose nanocrystals (CNCs). These composite membranes were prepared from Ramie and Tunicate nanocrystals with respective aspect ratios of about 28 and 106. It was demonstrated that, regardless of the type of nanocrystals, increasing the cellulose weight content from 0 to 10 wt% increased the water uptake and the thickness swelling and decreased the in-plane swelling of the composite membranes during water immersion. The mechanical performances of the composite membranes (tensile strength, elongation at break and Young’s modulus) were also enhanced, with the best compromise for Tunicate nanocrystals found to be 5 wt%. The effect of thermal annealing up to 150 °C on the Nafion-Tunicate 5 wt% composite was tested and compared to that of pure Nafion. With thermal annealing, a small decrease in water uptake capacity, protonic conductivity, ion exchange capacity and hydration number was observed for both membranes. At the sub-molecular level, FTIR data suggest that the heat treatment of Nafion-Tunicate membranes induces cross-linking reactions between sulfonic groups of Nafion chains and surface functional groups of CNCs, leading for example to sulfonic ester links. The exothermic peak observed by DSC can assign an increase of the crystalline phase of Nafion chains and especially in the vicinity of CNCs. All cross-linkages led to an improvement in the mechanical resistance of the membranes when thermal annealing was below 130 °C.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Bose S, Kuila T, Thi XLN, Kim NH, Lau KT, Lee JH (2011) Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges. Prog Polym Sci 36:813–843CrossRef Bose S, Kuila T, Thi XLN, Kim NH, Lau KT, Lee JH (2011) Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges. Prog Polym Sci 36:813–843CrossRef
2.
go back to reference Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC (2011) A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Appl Energy 88:981–1007CrossRef Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC (2011) A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Appl Energy 88:981–1007CrossRef
3.
go back to reference Kim DJ, Jo MJ, Nam SY (2015) A review of polymer-nanocomposite electrolyte membranes for fuel cell application. J Ind Eng Chem 21:36–52CrossRef Kim DJ, Jo MJ, Nam SY (2015) A review of polymer-nanocomposite electrolyte membranes for fuel cell application. J Ind Eng Chem 21:36–52CrossRef
4.
go back to reference Sapkota P, Boyer C, Dutta R, Cazorla C, Aguey-Zinsou KF (2020) Planar polymer electrolyte membrane fuel cells: powering portable devices from hydrogen. Sustain Energy Fuels 4:439–468CrossRef Sapkota P, Boyer C, Dutta R, Cazorla C, Aguey-Zinsou KF (2020) Planar polymer electrolyte membrane fuel cells: powering portable devices from hydrogen. Sustain Energy Fuels 4:439–468CrossRef
7.
go back to reference Hsu WY, Gierke TD (1983) Ion-transport and clustering in nafion perfluorinated membranes. J Membr Sci 13:307–326CrossRef Hsu WY, Gierke TD (1983) Ion-transport and clustering in nafion perfluorinated membranes. J Membr Sci 13:307–326CrossRef
8.
go back to reference Rubatat L, Gebel G, Diat O (2004) Fibrillar structure of nafion: matching Fourier and real space studies of corresponding films and solutions. Macromolecules 37:7772–7783CrossRef Rubatat L, Gebel G, Diat O (2004) Fibrillar structure of nafion: matching Fourier and real space studies of corresponding films and solutions. Macromolecules 37:7772–7783CrossRef
9.
go back to reference Bakangura E, Wu L, Ge L, Yang ZJ, Xu TW (2016) Mixed matrix proton exchange membranes for fuel cells: state of the art and perspectives. Prog Polym Sci 57:103–152CrossRef Bakangura E, Wu L, Ge L, Yang ZJ, Xu TW (2016) Mixed matrix proton exchange membranes for fuel cells: state of the art and perspectives. Prog Polym Sci 57:103–152CrossRef
10.
go back to reference Karimi MB, Mohammadi F, Hooshyari K (2019) Recent approaches to improve nafion performance for fuel cell applications: a review. Int J Hydrog Energy 44:28919–28938CrossRef Karimi MB, Mohammadi F, Hooshyari K (2019) Recent approaches to improve nafion performance for fuel cell applications: a review. Int J Hydrog Energy 44:28919–28938CrossRef
11.
go back to reference Tritt-Goc J, Lindner L, Bielejewski M, Markiewicz E, Pankiewicz R (2020) Synthesis, thermal properties, conductivity and lifetime of proton conductors based on nanocrystalline cellulose surface-functionalized with triazole and imidazole. Int J Hydrog Energy 45:13365–13375CrossRef Tritt-Goc J, Lindner L, Bielejewski M, Markiewicz E, Pankiewicz R (2020) Synthesis, thermal properties, conductivity and lifetime of proton conductors based on nanocrystalline cellulose surface-functionalized with triazole and imidazole. Int J Hydrog Energy 45:13365–13375CrossRef
12.
go back to reference Choudhury RR, Sahoo SK, Gohil JM (2020) Potential of bioinspired cellulose nanomaterials and nanocomposite membranes thereof for water treatment and fuel cell applications. Cellulose 27:6719–6746CrossRef Choudhury RR, Sahoo SK, Gohil JM (2020) Potential of bioinspired cellulose nanomaterials and nanocomposite membranes thereof for water treatment and fuel cell applications. Cellulose 27:6719–6746CrossRef
13.
go back to reference Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N et al (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107:3904–3951CrossRef Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N et al (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107:3904–3951CrossRef
14.
go back to reference Dickinson EJF, Smith G (2020) Modelling the proton-conductive membrane in practical polymer electrolyte membrane fuel cell (PEMFC) simulation: a review. Membranes 10:310CrossRef Dickinson EJF, Smith G (2020) Modelling the proton-conductive membrane in practical polymer electrolyte membrane fuel cell (PEMFC) simulation: a review. Membranes 10:310CrossRef
15.
go back to reference Safronova E, Golubenko D, Pourcelly G, Yaroslavtsev A (2015) Mechanical properties and influence of straining on ion conductivity of perfluorosulfonic acid Nafion (R)-type membranes depending on water uptake. J Membr Sci 473:218–225CrossRef Safronova E, Golubenko D, Pourcelly G, Yaroslavtsev A (2015) Mechanical properties and influence of straining on ion conductivity of perfluorosulfonic acid Nafion (R)-type membranes depending on water uptake. J Membr Sci 473:218–225CrossRef
16.
go back to reference Shi SW, Chen G, Wang ZF, Chen X (2013) Mechanical properties of Nafion 212 proton exchange membrane subjected to hygrothermal aging. J Power Sources 238:318–323CrossRef Shi SW, Chen G, Wang ZF, Chen X (2013) Mechanical properties of Nafion 212 proton exchange membrane subjected to hygrothermal aging. J Power Sources 238:318–323CrossRef
17.
go back to reference Theiler A, Karpenko-Jereb L (2015) Modelling of the mechanical durability of constrained nafion membrane under humidity cycling. Int J Hydrog Energy 40:9773–9782CrossRef Theiler A, Karpenko-Jereb L (2015) Modelling of the mechanical durability of constrained nafion membrane under humidity cycling. Int J Hydrog Energy 40:9773–9782CrossRef
18.
go back to reference Xiao P, Li JS, Tang HL, Wang Z, Pan M (2013) Physically stable and high performance Aquivion/PTFE composite membrane for high temperature fuel cell application. J Membr Sci 442:65–71CrossRef Xiao P, Li JS, Tang HL, Wang Z, Pan M (2013) Physically stable and high performance Aquivion/PTFE composite membrane for high temperature fuel cell application. J Membr Sci 442:65–71CrossRef
19.
go back to reference Amjadi M, Rowshanzamir S, Peighambardoust SJ, Sedghi S (2012) Preparation, characterization and cell performance of durable nafion/SiO2 hybrid membrane for high-temperature polymeric fuel cells. J Power Sources 210:350–357CrossRef Amjadi M, Rowshanzamir S, Peighambardoust SJ, Sedghi S (2012) Preparation, characterization and cell performance of durable nafion/SiO2 hybrid membrane for high-temperature polymeric fuel cells. J Power Sources 210:350–357CrossRef
20.
go back to reference Dresch MA, Isidoro RA, Linardi M, Rey JFQ, Fonseca FC, Santiago EI (2013) Influence of sol-gel media on the properties of nafion-SiO2 hybrid electrolytes for high performance proton exchange membrane fuel cells operating at high temperature and low humidity. Electrochim Acta 94:353–359CrossRef Dresch MA, Isidoro RA, Linardi M, Rey JFQ, Fonseca FC, Santiago EI (2013) Influence of sol-gel media on the properties of nafion-SiO2 hybrid electrolytes for high performance proton exchange membrane fuel cells operating at high temperature and low humidity. Electrochim Acta 94:353–359CrossRef
21.
go back to reference Gerasimova E, Safronova E, Ukshe A, Dobrovolsky Y, Yaroslavtsev A (2016) Electrocatalytic and transport properties of hybrid Nafion (R) membranes doped with silica and cesium acid salt of phosphotungstic acid in hydrogen fuel cells. Chem Eng J 305:121–128CrossRef Gerasimova E, Safronova E, Ukshe A, Dobrovolsky Y, Yaroslavtsev A (2016) Electrocatalytic and transport properties of hybrid Nafion (R) membranes doped with silica and cesium acid salt of phosphotungstic acid in hydrogen fuel cells. Chem Eng J 305:121–128CrossRef
22.
go back to reference Tang HL, Pan M (2008) Synthesis and characterization of a self-assembled nafion/silica nanocomposite membrane for polymer electrolyte membrane fuel cells. J Phys Chem C 112:11556–11568CrossRef Tang HL, Pan M (2008) Synthesis and characterization of a self-assembled nafion/silica nanocomposite membrane for polymer electrolyte membrane fuel cells. J Phys Chem C 112:11556–11568CrossRef
23.
go back to reference Tang HL, Wan Z, Pan M, Jiang SP (2007) Self-assembled Nafion-silica nanoparticles for elevated-high temperature polymer electrolyte membrane fuel cells. Electrochem Commun 9:2003–2008CrossRef Tang HL, Wan Z, Pan M, Jiang SP (2007) Self-assembled Nafion-silica nanoparticles for elevated-high temperature polymer electrolyte membrane fuel cells. Electrochem Commun 9:2003–2008CrossRef
24.
go back to reference Santiago EI, Isidoro RA, Dresch MA, Matos BR, Linardi M, Fonseca FC (2009) Nafion-TiO2 hybrid electrolytes for stable operation of PEM fuel cells at high temperature. Electrochim Acta 54:4111–4117CrossRef Santiago EI, Isidoro RA, Dresch MA, Matos BR, Linardi M, Fonseca FC (2009) Nafion-TiO2 hybrid electrolytes for stable operation of PEM fuel cells at high temperature. Electrochim Acta 54:4111–4117CrossRef
25.
go back to reference Taghizadeh MT, Vatanparast M (2016) Ultrasonic-assisted synthesis of ZrO2 nanoparticles and their application to improve the chemical stability of Nafion membrane in proton exchange membrane (PEM) fuel cells. J Colloid Interface Sci 483:1–10CrossRef Taghizadeh MT, Vatanparast M (2016) Ultrasonic-assisted synthesis of ZrO2 nanoparticles and their application to improve the chemical stability of Nafion membrane in proton exchange membrane (PEM) fuel cells. J Colloid Interface Sci 483:1–10CrossRef
26.
go back to reference Fatyeyeva K, Bigarre J, Blondel B, Galiano H, Gaud D, Lecardeur M et al (2011) Grafting of p-styrene sulfonate and 1,3-propane sultone onto Laponite for proton exchange membrane fuel cell application. J Membr Sci 366:33–42CrossRef Fatyeyeva K, Bigarre J, Blondel B, Galiano H, Gaud D, Lecardeur M et al (2011) Grafting of p-styrene sulfonate and 1,3-propane sultone onto Laponite for proton exchange membrane fuel cell application. J Membr Sci 366:33–42CrossRef
27.
go back to reference Zhang B, Cao Y, Jiang ST, Li Z, He GW, Wu H (2016) Enhanced proton conductivity of Nafion nanohybrid membrane incorporated with phosphonic acid functionalized graphene oxide at elevated temperature and low humidity. J Membr Sci 518:243–253CrossRef Zhang B, Cao Y, Jiang ST, Li Z, He GW, Wu H (2016) Enhanced proton conductivity of Nafion nanohybrid membrane incorporated with phosphonic acid functionalized graphene oxide at elevated temperature and low humidity. J Membr Sci 518:243–253CrossRef
28.
go back to reference Yin CS, Xiong BY, Liu QC, Li JJ, Qian LB, Zhou YW et al (2019) Lateral-aligned sulfonated carbon-nanotubes/Nafion composite membranes with high proton conductivity and improved mechanical properties. J Membr Sci 591:117356CrossRef Yin CS, Xiong BY, Liu QC, Li JJ, Qian LB, Zhou YW et al (2019) Lateral-aligned sulfonated carbon-nanotubes/Nafion composite membranes with high proton conductivity and improved mechanical properties. J Membr Sci 591:117356CrossRef
29.
go back to reference Teixeira FC, de Sa AI, Teixeira APS, Rangel CM (2019) Nafion phosphonic acid composite membranes for proton exchange membranes fuel cells. Appl Surf Sci 487:889–897CrossRef Teixeira FC, de Sa AI, Teixeira APS, Rangel CM (2019) Nafion phosphonic acid composite membranes for proton exchange membranes fuel cells. Appl Surf Sci 487:889–897CrossRef
30.
go back to reference Tsai JC, Lin CK (2011) Effect of PTFE content in gas diffusion layer based on Nafion (R)/PTFE membrane for low humidity proton exchange membrane fuel cell. J Taiwan Inst Chem Eng 42:945–951CrossRef Tsai JC, Lin CK (2011) Effect of PTFE content in gas diffusion layer based on Nafion (R)/PTFE membrane for low humidity proton exchange membrane fuel cell. J Taiwan Inst Chem Eng 42:945–951CrossRef
31.
go back to reference Albu AM, Maior I, Nicolae CA, Bocaneala FL (2016) Novel Pva proton conducting membranes doped with polyaniline generated by in-situ polymerization. Electrochim Acta 211:911–917CrossRef Albu AM, Maior I, Nicolae CA, Bocaneala FL (2016) Novel Pva proton conducting membranes doped with polyaniline generated by in-situ polymerization. Electrochim Acta 211:911–917CrossRef
32.
go back to reference Malinowski M, Iwan A, Parafiniuk K, Gorecki L, Pasciak G (2015) Electrochemical properties of PEM fuel cells based on nafion-polybenzimidazole-imidazole hybrid membranes. Int J Hydrog Energy 40:833–840CrossRef Malinowski M, Iwan A, Parafiniuk K, Gorecki L, Pasciak G (2015) Electrochemical properties of PEM fuel cells based on nafion-polybenzimidazole-imidazole hybrid membranes. Int J Hydrog Energy 40:833–840CrossRef
33.
go back to reference Molla S, Compan V (2011) Performance of composite nafion/PVA membranes for direct methanol fuel cells. J Power Sources 196:2699–2708CrossRef Molla S, Compan V (2011) Performance of composite nafion/PVA membranes for direct methanol fuel cells. J Power Sources 196:2699–2708CrossRef
34.
go back to reference Park HS, Kim YJ, Hong WH, Lee HK (2006) Physical and electrochemical properties of nafion/polypyrrole composite membrane for DMFC. J Membr Sci 272:28–36CrossRef Park HS, Kim YJ, Hong WH, Lee HK (2006) Physical and electrochemical properties of nafion/polypyrrole composite membrane for DMFC. J Membr Sci 272:28–36CrossRef
35.
go back to reference Yao J, Xu GX, Zhao ZM, Guo J, Li SH, Cai WW et al (2019) An enhanced proton conductivity and reduced methanol permeability composite membrane prepared by sulfonated covalent organic nanosheets/Nafion. Int J Hydrog Energy 44:24985–24996CrossRef Yao J, Xu GX, Zhao ZM, Guo J, Li SH, Cai WW et al (2019) An enhanced proton conductivity and reduced methanol permeability composite membrane prepared by sulfonated covalent organic nanosheets/Nafion. Int J Hydrog Energy 44:24985–24996CrossRef
36.
go back to reference Ru CY, Gu YY, Duan YT, Na H, Zhao CJ (2019) Nafion based semi-interpenetrating polymer network membranes from a cross-linkable SPAEK and a fluorinated epoxy resin for DMFCs. Electrochim Acta 324:134873CrossRef Ru CY, Gu YY, Duan YT, Na H, Zhao CJ (2019) Nafion based semi-interpenetrating polymer network membranes from a cross-linkable SPAEK and a fluorinated epoxy resin for DMFCs. Electrochim Acta 324:134873CrossRef
38.
go back to reference Eichhorn SJ, Gandini A (2010) Materials from renewable resources. Mrs. Bulletin 35:187–190 Eichhorn SJ, Gandini A (2010) Materials from renewable resources. Mrs. Bulletin 35:187–190
39.
go back to reference Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem-Int Edition 50:5438–5466CrossRef Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem-Int Edition 50:5438–5466CrossRef
40.
go back to reference Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227CrossRef Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227CrossRef
41.
go back to reference Hambardzumyan A, Foulon L, Bercu NB, Pernes M, Maigret JE, Molinari M et al (2015) Organosolv lignin as natural grafting additive to improve the water resistance of films using cellulose nanocrystals. Chem Eng J 264:780–788CrossRef Hambardzumyan A, Foulon L, Bercu NB, Pernes M, Maigret JE, Molinari M et al (2015) Organosolv lignin as natural grafting additive to improve the water resistance of films using cellulose nanocrystals. Chem Eng J 264:780–788CrossRef
42.
go back to reference Hambardzumyan A, Foulon L, Chabbert B, Aguie-Beghin V (2012) Natural organic UV-absorbent coatings based on cellulose and lignin: designed effects on spectroscopic properties. Biomacromol 13:4081–4088CrossRef Hambardzumyan A, Foulon L, Chabbert B, Aguie-Beghin V (2012) Natural organic UV-absorbent coatings based on cellulose and lignin: designed effects on spectroscopic properties. Biomacromol 13:4081–4088CrossRef
43.
go back to reference Aguié-Béghin V., Paës G., Molinari M., Chabbert B. Films and coatings from lignocellulosic polymers (2017) In edible films and coatings. Fundamentals and applications, Montero M. P., Gomez-Guillen M. C., Lopez-Caballero M. E., Barbosa-Canovas G. V., Eds. CRC Press Taylor & Francis Group: 2017; pp 143–160. Aguié-Béghin V., Paës G., Molinari M., Chabbert B. Films and coatings from lignocellulosic polymers (2017) In edible films and coatings. Fundamentals and applications, Montero M. P., Gomez-Guillen M. C., Lopez-Caballero M. E., Barbosa-Canovas G. V., Eds. CRC Press Taylor & Francis Group: 2017; pp 143–160.
45.
go back to reference Da Silva PD, Ruggiero R, Morais LC, Machado AEH, Mazeau K (2004) Theoretical and experimental studies on the adsorption of aromatic compounds onto cellulose. Langmuir 20:3151–3158CrossRef Da Silva PD, Ruggiero R, Morais LC, Machado AEH, Mazeau K (2004) Theoretical and experimental studies on the adsorption of aromatic compounds onto cellulose. Langmuir 20:3151–3158CrossRef
48.
go back to reference Wang LK, Zuo XH, Raut A, Isseroff R, Xue Y, Zhou YC et al (2019) Operation of proton exchange membrane (PEM) fuel cells using natural cellulose fiber membranes. Sustain Energy Fuels 3:2725–2732CrossRef Wang LK, Zuo XH, Raut A, Isseroff R, Xue Y, Zhou YC et al (2019) Operation of proton exchange membrane (PEM) fuel cells using natural cellulose fiber membranes. Sustain Energy Fuels 3:2725–2732CrossRef
50.
go back to reference Hasani-Sadrabadi MM, Dashtimoghadam E, Nasseri R, Karkhaneh A, Majedi FS, Mokarram N et al (2014) Cellulose nanowhiskers to regulate the microstructure of perfluorosulfonate ionomers for high-performance fuel cells. J Mater Chem A 2:11334–11340CrossRef Hasani-Sadrabadi MM, Dashtimoghadam E, Nasseri R, Karkhaneh A, Majedi FS, Mokarram N et al (2014) Cellulose nanowhiskers to regulate the microstructure of perfluorosulfonate ionomers for high-performance fuel cells. J Mater Chem A 2:11334–11340CrossRef
51.
go back to reference Jiang GP, Zhang J, Qiao JL, Jiang YM, Zarrin H, Chen ZW et al (2015) Bacterial nanocellulose/Nafion composite membranes for low temperature polymer electrolyte fuel cells. J Power Sources 273:697–706CrossRef Jiang GP, Zhang J, Qiao JL, Jiang YM, Zarrin H, Chen ZW et al (2015) Bacterial nanocellulose/Nafion composite membranes for low temperature polymer electrolyte fuel cells. J Power Sources 273:697–706CrossRef
52.
go back to reference Aguié-Béghin V, Molinari M, Hambardzumyan A, Foulon L, Habibi Y, Heim T, Bossey R and Douillard R (2009), Preparation of ordered films from cellulose nanocrystals In Model cellulosic surfaces ACS symposium series book 1019 eds. Roman M, ACS division of cellulose and renewable material pp. 313. Aguié-Béghin V, Molinari M, Hambardzumyan A, Foulon L, Habibi Y, Heim T, Bossey R and Douillard R (2009), Preparation of ordered films from cellulose nanocrystals In Model cellulosic surfaces ACS symposium series book 1019 eds. Roman M, ACS division of cellulose and renewable material pp. 313.
53.
go back to reference Marcuello C, Foulon L, Chabbert B, Molinari M, Aguie-Beghin V (2018) Langmuir-Blodgett Procedure to Precisely Control the Coverage of Functionalized AFM Cantilevers for SMFS Measurements: application with cellulose nanocrystals. Langmuir 34:9376–9386CrossRef Marcuello C, Foulon L, Chabbert B, Molinari M, Aguie-Beghin V (2018) Langmuir-Blodgett Procedure to Precisely Control the Coverage of Functionalized AFM Cantilevers for SMFS Measurements: application with cellulose nanocrystals. Langmuir 34:9376–9386CrossRef
54.
go back to reference Iwamoto S, Kai WH, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromol 10:2571–2576CrossRef Iwamoto S, Kai WH, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromol 10:2571–2576CrossRef
56.
go back to reference Lahiji RR, Xu X, Reifenberger R, Raman A, Rudie A, Moon RJ (2010) Atomic force microscopy characterization of cellulose nanocrystals. Langmuir 26:4480–4488CrossRef Lahiji RR, Xu X, Reifenberger R, Raman A, Rudie A, Moon RJ (2010) Atomic force microscopy characterization of cellulose nanocrystals. Langmuir 26:4480–4488CrossRef
57.
go back to reference Fox JD, Capadona JR, Marasco PD, Rowan SJ (2013) Bioinspired water-enhanced mechanical gradient nanocomposite films that mimic the architecture and properties of the squid beak. J Am Chem Soc 135:5167–5174CrossRef Fox JD, Capadona JR, Marasco PD, Rowan SJ (2013) Bioinspired water-enhanced mechanical gradient nanocomposite films that mimic the architecture and properties of the squid beak. J Am Chem Soc 135:5167–5174CrossRef
58.
go back to reference Gindl W, Keckes J (2004) Tensile properties of cellulose acetate butyrate composites reinforced with bacterial cellulose. Compos Sci Technol 64:2407–2413CrossRef Gindl W, Keckes J (2004) Tensile properties of cellulose acetate butyrate composites reinforced with bacterial cellulose. Compos Sci Technol 64:2407–2413CrossRef
59.
go back to reference Cao F, Schwartz TJ, McClelland DJ, Krishna SH, Dumesic JA, Huber GW (2015) Dehydration of cellulose to levoglucosenone using polar aprotic solvents. Energy Environ Sci 8:1808–1815CrossRef Cao F, Schwartz TJ, McClelland DJ, Krishna SH, Dumesic JA, Huber GW (2015) Dehydration of cellulose to levoglucosenone using polar aprotic solvents. Energy Environ Sci 8:1808–1815CrossRef
60.
go back to reference Zhu C, Krumm C, Facas GG, Neurock M, Dauenhauer PJ (2017) Energetics of cellulose and cyclodextrin glycosidic bond cleavage. React Chem Eng 2:201–214CrossRef Zhu C, Krumm C, Facas GG, Neurock M, Dauenhauer PJ (2017) Energetics of cellulose and cyclodextrin glycosidic bond cleavage. React Chem Eng 2:201–214CrossRef
61.
go back to reference de Almeida SH, Kawano Y (1999) Thermal behavior of nafion membranes. J Therm Anal Calorim 58:569–577CrossRef de Almeida SH, Kawano Y (1999) Thermal behavior of nafion membranes. J Therm Anal Calorim 58:569–577CrossRef
62.
go back to reference Jung H-Y, Won KJ (2012) Role of the glass transition temperature of Nafion 117 membrane in the preparation of the membrane electrode assembly in a direct methanol fuel cell (DMFC). Int J Hydrog Energy 37:12580–12585CrossRef Jung H-Y, Won KJ (2012) Role of the glass transition temperature of Nafion 117 membrane in the preparation of the membrane electrode assembly in a direct methanol fuel cell (DMFC). Int J Hydrog Energy 37:12580–12585CrossRef
63.
go back to reference Lin H-L, Yu TL, Huang C-H, Lin T-L (2005) Morphology study of Nafion membranes prepared by solutions casting. J Polym Sci Part B-Polym Phys 43:3044–3057CrossRef Lin H-L, Yu TL, Huang C-H, Lin T-L (2005) Morphology study of Nafion membranes prepared by solutions casting. J Polym Sci Part B-Polym Phys 43:3044–3057CrossRef
64.
go back to reference Molla S, Compan V (2011) Polyvinyl alcohol nanofiber reinforced Nafion membranes for fuel cell applications. J Membr Sci 372:191–200CrossRef Molla S, Compan V (2011) Polyvinyl alcohol nanofiber reinforced Nafion membranes for fuel cell applications. J Membr Sci 372:191–200CrossRef
65.
go back to reference Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40CrossRef Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40CrossRef
66.
go back to reference Abidi N, Cabrales L, Haigler CH (2014) Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. Carbohyd Polym 100:9–16CrossRef Abidi N, Cabrales L, Haigler CH (2014) Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. Carbohyd Polym 100:9–16CrossRef
67.
go back to reference Grube M, Shvirksts K, Denina I, Ruklisa M, Semjonovs P (2016) Fourier-transform infrared spectroscopic analyses of cellulose from different bacterial cultivations using microspectroscopy and a high-throughput screening device. Vib Spectrosc 84:53–57CrossRef Grube M, Shvirksts K, Denina I, Ruklisa M, Semjonovs P (2016) Fourier-transform infrared spectroscopic analyses of cellulose from different bacterial cultivations using microspectroscopy and a high-throughput screening device. Vib Spectrosc 84:53–57CrossRef
68.
go back to reference Kacurakova M, Smith AC, Gidley MJ, Wilson RH (2002) Molecular interactions in bacterial cellulose composites studied by 1D FT-IR and dynamic 2D FT-IR spectroscopy. Carbohyd Res 337:1145–1153CrossRef Kacurakova M, Smith AC, Gidley MJ, Wilson RH (2002) Molecular interactions in bacterial cellulose composites studied by 1D FT-IR and dynamic 2D FT-IR spectroscopy. Carbohyd Res 337:1145–1153CrossRef
69.
go back to reference Alentiev A, Kostina J, Bondarenko G (2006) Chemical aging of nafion: FTIR study. Desalination 200:32–33CrossRef Alentiev A, Kostina J, Bondarenko G (2006) Chemical aging of nafion: FTIR study. Desalination 200:32–33CrossRef
70.
go back to reference Collette FM, Lorentz C, Gebel G, Thominette F (2009) Hygrothermal aging of nafion (R). J Membr Sci 330:21–29CrossRef Collette FM, Lorentz C, Gebel G, Thominette F (2009) Hygrothermal aging of nafion (R). J Membr Sci 330:21–29CrossRef
71.
go back to reference Samir M, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromol 6:612–626CrossRef Samir M, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromol 6:612–626CrossRef
72.
go back to reference Gruger A, Regis A, Schmatko T, Colomban P (2001) Nanostructure of nafion (R) membranes at different states of hydration–an IR and Raman study. Vib Spectrosc 26:215–225CrossRef Gruger A, Regis A, Schmatko T, Colomban P (2001) Nanostructure of nafion (R) membranes at different states of hydration–an IR and Raman study. Vib Spectrosc 26:215–225CrossRef
Metadata
Title
Nafion membranes reinforced by cellulose nanocrystals for fuel cell applications: aspect ratio and heat treatment effects on physical properties
Authors
Arayik Hambardzumyan
Marylène Vayer
Laurence Foulon
Miguel Pernes
Thierry Devers
Janick Bigarré
Véronique Aguié-Béghin
Publication date
07-02-2022
Publisher
Springer US
Published in
Journal of Materials Science / Issue 7/2022
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-022-06921-6

Other articles of this Issue 7/2022

Journal of Materials Science 7/2022 Go to the issue

Premium Partners