Skip to main content
Top

2018 | OriginalPaper | Chapter

13. Nano Transition Metal Alloy Functionalized Lithium Manganese Oxide Cathodes-System for Enhanced Lithium-Ion Battery Power Densities

Authors : Natasha Ross, Emmanuel Iwuoha

Published in: Emerging Trends in Chemical Sciences

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A new generation of battery technologies is necessary to address the challenges of the increasingly complex energy systems our society requires. A lithium-ion battery (LIB) is an advanced battery technology that uses lithium ions as a key component of its electrochemistry. Manganese oxide cathode material of rechargeable lithium-ion batteries offers a unique blend of lower cost and toxicity compared to the normally used cobalt, and has been demonstrated to be safer on overcharge. The common disadvantages affecting its performance are amendable through morphological and electrochemical properties changes. In this research work, alloy nanoparticles were synthesized and used as coating material with the objective to improve the microstructure and catalytic activities of pristine LiMn2O4. Co-precipitation and calcination methods were used to coat the LiMn2O4. The pristine LiMn2O4 and modified materials were examined using a combination of spectroscopic and microscopic techniques along with in detail galvanostatic charge–discharge tests. Microscopic results revealed that the novel composite cathode materials had high phase purity, well-crystallized particles and consistent morphological structures with narrow size distributions. The LiPtAuxMn2−xO4 cathode effectively accommodated the structural transformations, which occur during Li+ ion insertion with exchange current density i 0 (A cm−2) of 1.83 × 10−4 and 3.18 × 10−4 for LiMn2O4. The enhancement of the capacity retention and higher electrode coulombic efficiency of the LiPtAuxMn2−xO4 were significant, especially at high C rate. At enlarged cycling potential ranges the LiMxMn2−xO4 (x = 0.02) sample delivered relevant discharge capacity of 90 mAh g−1 compared to LiMn2O4 (45 mAh g−1).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Stevenson KJ (2012) The origin, development, and future of the lithium-ion battery. J Solid State Electrochem 16:2017–2018CrossRef Stevenson KJ (2012) The origin, development, and future of the lithium-ion battery. J Solid State Electrochem 16:2017–2018CrossRef
2.
go back to reference Tavassol H, Jones EMC, Sottos NR, Gewirth AA (2016) Electrochemical stiffness in lithium-ion batteries. Nat Mater 15:1182–1187CrossRef Tavassol H, Jones EMC, Sottos NR, Gewirth AA (2016) Electrochemical stiffness in lithium-ion batteries. Nat Mater 15:1182–1187CrossRef
3.
go back to reference Nguyen VH, Gu H-B (2014) LiFePO4 batteries with enhanced lithium-ion-diffusion ability due to graphene addition. J Appl Electrochem 44:1153–1163CrossRef Nguyen VH, Gu H-B (2014) LiFePO4 batteries with enhanced lithium-ion-diffusion ability due to graphene addition. J Appl Electrochem 44:1153–1163CrossRef
4.
go back to reference Julien CM, Mauger A, Zaghib K, Groult H (2014) Comparative issues of cathode materials for Li-ion batteries. Inorganics 2:132–154CrossRef Julien CM, Mauger A, Zaghib K, Groult H (2014) Comparative issues of cathode materials for Li-ion batteries. Inorganics 2:132–154CrossRef
5.
go back to reference Nitta N, Wu F, Tae Lee J, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18:252–264CrossRef Nitta N, Wu F, Tae Lee J, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18:252–264CrossRef
6.
go back to reference Arico AS, Scrosati B, Tarascon JM, Van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377CrossRef Arico AS, Scrosati B, Tarascon JM, Van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377CrossRef
8.
go back to reference Yu W, Porosoff MD, Chen JG (2012) Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chem Rev 112:5780–5817CrossRef Yu W, Porosoff MD, Chen JG (2012) Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chem Rev 112:5780–5817CrossRef
9.
go back to reference Stamenkovic VR, Fowler B, Mun BS, Wang GF, Ross PN, Lucas CA, Markovic NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493–497CrossRef Stamenkovic VR, Fowler B, Mun BS, Wang GF, Ross PN, Lucas CA, Markovic NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493–497CrossRef
10.
go back to reference Jellinek J (2008) Nanoalloys: from theory to application. Faraday Discuss 138:1CrossRef Jellinek J (2008) Nanoalloys: from theory to application. Faraday Discuss 138:1CrossRef
11.
go back to reference Ceylan A, Jastrzembski K, Shah SI (2006) Enhanced solubility Ag-Cu nanoparticles and their thermal transport properties. Metal Mater Trans A 37:2033–2038CrossRef Ceylan A, Jastrzembski K, Shah SI (2006) Enhanced solubility Ag-Cu nanoparticles and their thermal transport properties. Metal Mater Trans A 37:2033–2038CrossRef
12.
go back to reference Redjala T, Remita H, Apostolescu G, Mostafavi M, Thomazeau C, Usio D (2006) Bimetallic Au-Pd and Ag-Pd clusters synthesised by γ or electron beam radiolysis and study of the reactivity/structure relationships in the selective hydrogenation of buta-1,3-diene. Gas Oil Sci Technol Rev 61:789–797CrossRef Redjala T, Remita H, Apostolescu G, Mostafavi M, Thomazeau C, Usio D (2006) Bimetallic Au-Pd and Ag-Pd clusters synthesised by γ or electron beam radiolysis and study of the reactivity/structure relationships in the selective hydrogenation of buta-1,3-diene. Gas Oil Sci Technol Rev 61:789–797CrossRef
13.
go back to reference Burda C, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102CrossRef Burda C, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102CrossRef
14.
go back to reference Zhao D, Xu B-Q (2006) Enhancement of Pt utilization in electrocatalysts by using gold nanoparticles. Angew Chem 45:4955–4959CrossRef Zhao D, Xu B-Q (2006) Enhancement of Pt utilization in electrocatalysts by using gold nanoparticles. Angew Chem 45:4955–4959CrossRef
15.
go back to reference Li Y, Yin F, Chen Y, Palmer RE, Johnston RL (2008) Structures and optical properties of 4–5 nm bimetallic AgAu nanoparticles. Faraday Discuss 138:363–373CrossRef Li Y, Yin F, Chen Y, Palmer RE, Johnston RL (2008) Structures and optical properties of 4–5 nm bimetallic AgAu nanoparticles. Faraday Discuss 138:363–373CrossRef
16.
go back to reference Qian D, Xu B, Cho H-M, Hatsukade T, Carroll KJ, Meng YS (2012) Lithium lanthanum titanium oxides: a fast ionic conductive coating for lithium-ion battery cathodes. Chem Mater 24:2744–2751CrossRef Qian D, Xu B, Cho H-M, Hatsukade T, Carroll KJ, Meng YS (2012) Lithium lanthanum titanium oxides: a fast ionic conductive coating for lithium-ion battery cathodes. Chem Mater 24:2744–2751CrossRef
17.
go back to reference Ozawa K (1994) Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system. Solid State Ionics 69:212–221CrossRef Ozawa K (1994) Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system. Solid State Ionics 69:212–221CrossRef
18.
go back to reference Han DW, Ryu WH, Kim WK, Eom JY, Kwon HS (2013) Effects of Li and Cl codoping on the electrochemical performance and structural stability of LiMn2O4 cathode materials for hybrid electric vehicle applications. J Phys Chem C 117:4913–4919CrossRef Han DW, Ryu WH, Kim WK, Eom JY, Kwon HS (2013) Effects of Li and Cl codoping on the electrochemical performance and structural stability of LiMn2O4 cathode materials for hybrid electric vehicle applications. J Phys Chem C 117:4913–4919CrossRef
19.
go back to reference Xu H, Zhang H, Mu Y, Feng Y, Wang Y (2015) General and green strategy toward high performance positive electrode materials for rechargeable Li ion batteries with crop stalks as the host carbon matrices. ACS Sustainable Chem Eng 3:1650–1657CrossRef Xu H, Zhang H, Mu Y, Feng Y, Wang Y (2015) General and green strategy toward high performance positive electrode materials for rechargeable Li ion batteries with crop stalks as the host carbon matrices. ACS Sustainable Chem Eng 3:1650–1657CrossRef
20.
go back to reference Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4301CrossRef Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4301CrossRef
21.
go back to reference Hao X, Gourdon O, Liddle BJ, Bartlett BM (2012) Improved electrode kinetics in lithium manganospinel nanoparticles synthesized by hydrothermal methods: identifying and eliminating oxygen vacancies. J Mater Chem 22:1578–1591CrossRef Hao X, Gourdon O, Liddle BJ, Bartlett BM (2012) Improved electrode kinetics in lithium manganospinel nanoparticles synthesized by hydrothermal methods: identifying and eliminating oxygen vacancies. J Mater Chem 22:1578–1591CrossRef
22.
go back to reference Hausbrand R, Cherkashinin G, Ehrenberg H, Gröting M, Albe K, Hess C, Jaegermann W (2015) Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches. Mat Sci Eng B 192:3–25CrossRef Hausbrand R, Cherkashinin G, Ehrenberg H, Gröting M, Albe K, Hess C, Jaegermann W (2015) Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches. Mat Sci Eng B 192:3–25CrossRef
23.
go back to reference Ma S, Hou X, Lin Z, Huang Y, Gao Y, Hu S, Shen J (2016) One-pot facile co-precipitation synthesis of the layered Li1+x (Mn0.6Ni0.2Co0.2)1−x O2 as cathode materials with outstanding performance for lithium-ion batteries. J Solid State Electrochem 20:95–103CrossRef Ma S, Hou X, Lin Z, Huang Y, Gao Y, Hu S, Shen J (2016) One-pot facile co-precipitation synthesis of the layered Li1+x (Mn0.6Ni0.2Co0.2)1−x O2 as cathode materials with outstanding performance for lithium-ion batteries. J Solid State Electrochem 20:95–103CrossRef
24.
go back to reference Dhindsa K (2015) Enhancement in electrochemical performance of advanced battery electrodes using carbon-nanomaterial composites. Wayne State University Dissertations, Paper 1126 Dhindsa K (2015) Enhancement in electrochemical performance of advanced battery electrodes using carbon-nanomaterial composites. Wayne State University Dissertations, Paper 1126
25.
go back to reference Xu Z, Carlton CE, Allard LF, Shao-Horn Y, Hamad-Schifferli K (2010) Direct colloidal route for Pt-covered AuPt bimetallic nanoparticles. J Phys Chem Lett 17:2514–2518CrossRef Xu Z, Carlton CE, Allard LF, Shao-Horn Y, Hamad-Schifferli K (2010) Direct colloidal route for Pt-covered AuPt bimetallic nanoparticles. J Phys Chem Lett 17:2514–2518CrossRef
26.
go back to reference Jamnik J, Maier J (2001) Generalised equivalent circuits for mass and charge transport: chemical capacitance and its implications. Phys Chem Chem Phys 3:1668–1678CrossRef Jamnik J, Maier J (2001) Generalised equivalent circuits for mass and charge transport: chemical capacitance and its implications. Phys Chem Chem Phys 3:1668–1678CrossRef
27.
go back to reference Luo J, Petkov V, Kariuki NN, Wang L, Njoki P, Mott D, Lin Y, Zhong C.J (2005) Article phase properties of carbon-supported gold−platinum nanoparticles with different bimetallic compositions. Chem Mater 17:3086–3091 Luo J, Petkov V, Kariuki NN, Wang L, Njoki P, Mott D, Lin Y, Zhong C.J (2005) Article phase properties of carbon-supported gold−platinum nanoparticles with different bimetallic compositions. Chem Mater 17:3086–3091
28.
go back to reference Habas SE, Radmilovic V, Somorjai GA, Yang P (2007) Shaping binary metal nanocrystals through epitaxial seeded growth. Nat Mater 6:692–697CrossRef Habas SE, Radmilovic V, Somorjai GA, Yang P (2007) Shaping binary metal nanocrystals through epitaxial seeded growth. Nat Mater 6:692–697CrossRef
29.
go back to reference Zacharias NA, Nevers DR, Skelton C, Knackstedt K, Stephenson D. E, Wheeler DR (2013) Direct measurements of effective ionic transport in porous Li-ion electrodes. J Electrochem Soc 160:A306 Zacharias NA, Nevers DR, Skelton C, Knackstedt K, Stephenson D. E, Wheeler DR (2013) Direct measurements of effective ionic transport in porous Li-ion electrodes. J Electrochem Soc 160:A306
30.
go back to reference Julien C, Pereira-Ramos JP, Momchilov A (2012) New trends in intercalation compounds for energy storage. Technology and engineering. Springer Science & Business Media, Heidelberg, p 654. ISBN 9401003890 Julien C, Pereira-Ramos JP, Momchilov A (2012) New trends in intercalation compounds for energy storage. Technology and engineering. Springer Science & Business Media, Heidelberg, p 654. ISBN 9401003890
31.
go back to reference Thirunakaran R, Gopukumar S, Rajalakshmi R (2009) Cerium and zinc: Dual-doped LiMn2O4 spinels as cathode material for use in lithium rechargeable batteries. J Power Sources 187:565–574CrossRef Thirunakaran R, Gopukumar S, Rajalakshmi R (2009) Cerium and zinc: Dual-doped LiMn2O4 spinels as cathode material for use in lithium rechargeable batteries. J Power Sources 187:565–574CrossRef
32.
go back to reference Liu W, Shi Q, Qu Q, Gao T, Zhu G, Shao J, Zheng H (2017) Improved Li-ion diffusion and stability of a LiNi0.5Mn1.5O4 cathode through in situ co-doping with dual-metal cations and incorporation of a superionic conductor. J Mater Chem A 5:145–154CrossRef Liu W, Shi Q, Qu Q, Gao T, Zhu G, Shao J, Zheng H (2017) Improved Li-ion diffusion and stability of a LiNi0.5Mn1.5O4 cathode through in situ co-doping with dual-metal cations and incorporation of a superionic conductor. J Mater Chem A 5:145–154CrossRef
33.
go back to reference Zhang X, Zheng H, Battaglia V, Axelbaum RL (2011) Electrochemical performance of spinel LiMn2O4 cathode materials made by flame-assisted spray technology. J Power Sources 196:3640–3645CrossRef Zhang X, Zheng H, Battaglia V, Axelbaum RL (2011) Electrochemical performance of spinel LiMn2O4 cathode materials made by flame-assisted spray technology. J Power Sources 196:3640–3645CrossRef
34.
go back to reference Kong J-Z, Ren C, Tai G, Zhou F (2014) Ultrathin ZnO coating for improved electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material. J Power Sources 266:433–439CrossRef Kong J-Z, Ren C, Tai G, Zhou F (2014) Ultrathin ZnO coating for improved electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material. J Power Sources 266:433–439CrossRef
35.
go back to reference Loftager S, García-Lastra JM, Vegge T (2017) A density functional theory study of the carbon-coating effects on lithium iron borate battery electrodes. Phys Chem Chem Phys 19:2087–2094CrossRef Loftager S, García-Lastra JM, Vegge T (2017) A density functional theory study of the carbon-coating effects on lithium iron borate battery electrodes. Phys Chem Chem Phys 19:2087–2094CrossRef
Metadata
Title
Nano Transition Metal Alloy Functionalized Lithium Manganese Oxide Cathodes-System for Enhanced Lithium-Ion Battery Power Densities
Authors
Natasha Ross
Emmanuel Iwuoha
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-60408-4_13

Premium Partners