Skip to main content
Top

2019 | OriginalPaper | Chapter

Nanocatalysis for Green Chemistry

Authors : Layla Filiciotto, Rafael Luque

Published in: Green Chemistry and Chemical Engineering

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Excerpt

Catalysis
Increase of the reaction rate by means of an additional organic/inorganic/hybrid substance called catalyst, which remains unaltered during the course of the reaction.
Green Chemistry
Philosophy focused on the design, development, and implementation of environmentally friendly, harmless, and economical chemical processes.
Nanocatalysis
Enhancement of the reaction rate by means of a solid substance of nanometer dimensions.
Nanoparticle
Organic/inorganic/hybrid material of nanoscale dimensions.
Sustainability
Ability to implement and perpetuate industrial and social practices with the protection of the environment as a focus.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Landes DS (2003) The unbound Prometheus: technological change and industrial development in western Europe from 1750 to the present, 2nd edn. Cambridge University Press, CambridgeCrossRef Landes DS (2003) The unbound Prometheus: technological change and industrial development in western Europe from 1750 to the present, 2nd edn. Cambridge University Press, CambridgeCrossRef
2.
go back to reference (a) Eerkes-Medrano D, Thompson RC, Aldridge DC (2015) Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res 75:63–82; (b) Law KL, Thompson RC (2014) Microplastics in the seas. Science 345:144–145PubMedCrossRef (a) Eerkes-Medrano D, Thompson RC, Aldridge DC (2015) Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res 75:63–82; (b) Law KL, Thompson RC (2014) Microplastics in the seas. Science 345:144–145PubMedCrossRef
3.
go back to reference van Cauwenberghe L, Janssen C (2014) Microplastics in bivalves cultured for human consumption. Environ Pollut 193:65–70PubMedCrossRef van Cauwenberghe L, Janssen C (2014) Microplastics in bivalves cultured for human consumption. Environ Pollut 193:65–70PubMedCrossRef
4.
go back to reference NASA, climate.nasa.org. Accessed on 28 Nov 2017 NASA, climate.nasa.org. Accessed on 28 Nov 2017
5.
go back to reference Anastas PT, Beach ES (2009) Changing the course of chemistry. In: Anastas PT, Levy IJ, Parent KE (eds) Green chemistry education, vol 1011. American Chemical Society, Washington, DC, pp 1–18CrossRef Anastas PT, Beach ES (2009) Changing the course of chemistry. In: Anastas PT, Levy IJ, Parent KE (eds) Green chemistry education, vol 1011. American Chemical Society, Washington, DC, pp 1–18CrossRef
6.
go back to reference Solomon S, Ivy DJ, Mills MJ, Neely RR III, Schmidt A (2016) Emergence of healing in the Antarctic ozone layer. Science 353:269–274PubMedCrossRef Solomon S, Ivy DJ, Mills MJ, Neely RR III, Schmidt A (2016) Emergence of healing in the Antarctic ozone layer. Science 353:269–274PubMedCrossRef
7.
go back to reference Anastas PT (1994) Benign by design chemistry. In: Anastas PT, Farris CA (eds) Benign by design: alternative synthetic design for pollution prevention, vol 577. American Chemical Society, Washington, DC, pp 2–22CrossRef Anastas PT (1994) Benign by design chemistry. In: Anastas PT, Farris CA (eds) Benign by design: alternative synthetic design for pollution prevention, vol 577. American Chemical Society, Washington, DC, pp 2–22CrossRef
8.
go back to reference Cathcart C (1990) Green chemistry in the emerald isle. Chem Ind 5:684–687 Cathcart C (1990) Green chemistry in the emerald isle. Chem Ind 5:684–687
9.
go back to reference Sheldon RA (1992) Organic synthesis. Past, present and future. Chem Ind 23:903–906 Sheldon RA (1992) Organic synthesis. Past, present and future. Chem Ind 23:903–906
10.
11.
go back to reference Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York
12.
13.
go back to reference (a) Lindstrӧm B, Pettersson LJ (2003) A brief history of catalysts. CATTECH 7:130–138; (b) Berzelius JJ (1835) Årsberättelsen om framsteg i fysik och kemi. Royal Swedish Academy of SciencesCrossRef (a) Lindstrӧm B, Pettersson LJ (2003) A brief history of catalysts. CATTECH 7:130–138; (b) Berzelius JJ (1835) Årsberättelsen om framsteg i fysik och kemi. Royal Swedish Academy of SciencesCrossRef
14.
go back to reference Fürstner A (2000) Olefin metathesis and beyond. Angew Chem Int Ed 39:3012–3043CrossRef Fürstner A (2000) Olefin metathesis and beyond. Angew Chem Int Ed 39:3012–3043CrossRef
15.
go back to reference de Vries JG, Jackson SD (2012) Homogeneous and heterogeneous catalysis in industry. Cat Sci Technol 2:2009CrossRef de Vries JG, Jackson SD (2012) Homogeneous and heterogeneous catalysis in industry. Cat Sci Technol 2:2009CrossRef
16.
go back to reference (a) Moores A (2009) Atom economy – principles and some examples. In: Anastas PT, Crabtree RH (eds) Green catalysis: homogeneous catalysis, vol 1. Wiley-VCH Verlag GmbH, Weinheim, pp 1–13; (b) Rothenberg G (2008) Introduction. In: Catalysis: concepts and green applications. Wiley-VCH Verlag GmbH & Co., Weinheim, pp 1–38 (a) Moores A (2009) Atom economy – principles and some examples. In: Anastas PT, Crabtree RH (eds) Green catalysis: homogeneous catalysis, vol 1. Wiley-VCH Verlag GmbH, Weinheim, pp 1–13; (b) Rothenberg G (2008) Introduction. In: Catalysis: concepts and green applications. Wiley-VCH Verlag GmbH & Co., Weinheim, pp 1–38
17.
go back to reference Yoon NM, Gyoung YS (1985) Reaction of diisobutylaluminum hydride with selected organic compounds containing representative functional groups. J Org Chem 50:2443–2450CrossRef Yoon NM, Gyoung YS (1985) Reaction of diisobutylaluminum hydride with selected organic compounds containing representative functional groups. J Org Chem 50:2443–2450CrossRef
18.
go back to reference Noyori R, Ohkuma T, Kitamura M, Takaya H, Sayo N, Kumobayashi H, Akutagawa S (1987) Asymmetric hydrogenation of β-keto carboxylic esters. A practical, purely chemical access to β-hydroxy esters in high enantiomeric purity. J Am Chem Soc 109:5856–5858CrossRef Noyori R, Ohkuma T, Kitamura M, Takaya H, Sayo N, Kumobayashi H, Akutagawa S (1987) Asymmetric hydrogenation of β-keto carboxylic esters. A practical, purely chemical access to β-hydroxy esters in high enantiomeric purity. J Am Chem Soc 109:5856–5858CrossRef
19.
go back to reference Koskimies S, Haimala T (1989) Procedure for producing hydroquinone. US Patent US4801758 A, Neste Oy Koskimies S, Haimala T (1989) Procedure for producing hydroquinone. US Patent US4801758 A, Neste Oy
20.
go back to reference Shelley S (2007) A renewable route to propylene glycol. Chem Eng Prog 103:6–9 Shelley S (2007) A renewable route to propylene glycol. Chem Eng Prog 103:6–9
21.
go back to reference (a) Martin AE, Murphy FH (2000) Glycols, propylene glycols. In: Kirk-Othmer encyclopedia of chemical technology. Wiley, New York; (b) Ludwig S, Manfred E (1997) Preparation of 1, 2 propanediol. US Patent US5616817; (c) Casale B, Gomez AM (1994) Catalytic method of hydrogenating glycerol. US Patent US5276181; (d) Casale B, Gomez AM (1993) Method of hydrogenating glycerol. US Patent US5214219; (e) Tessie C (1987) Production of propanediols. US Patent US4642394 (a) Martin AE, Murphy FH (2000) Glycols, propylene glycols. In: Kirk-Othmer encyclopedia of chemical technology. Wiley, New York; (b) Ludwig S, Manfred E (1997) Preparation of 1, 2 propanediol. US Patent US5616817; (c) Casale B, Gomez AM (1994) Catalytic method of hydrogenating glycerol. US Patent US5276181; (d) Casale B, Gomez AM (1993) Method of hydrogenating glycerol. US Patent US5214219; (e) Tessie C (1987) Production of propanediols. US Patent US4642394
22.
go back to reference Dasari MA, Kiatsimkul P-P, Sutterlin WR, Supper GJ (2005) Low-pressure hydrogenolysis of glycerol to propylene glycol. Appl Catal A 281:225–231CrossRef Dasari MA, Kiatsimkul P-P, Sutterlin WR, Supper GJ (2005) Low-pressure hydrogenolysis of glycerol to propylene glycol. Appl Catal A 281:225–231CrossRef
23.
go back to reference Chiu C-W, Tekeei A, Ronco JM, Banks M-L, Supper GJ (2008) Reducing byproduct formation during conversion of glycerol to propylene glycol. Ind Eng Chem Res 47:6878–6884CrossRef Chiu C-W, Tekeei A, Ronco JM, Banks M-L, Supper GJ (2008) Reducing byproduct formation during conversion of glycerol to propylene glycol. Ind Eng Chem Res 47:6878–6884CrossRef
24.
go back to reference Brahmachari G (2015) Room temperature organic synthesis. Elsevier, Amsterdam Brahmachari G (2015) Room temperature organic synthesis. Elsevier, Amsterdam
25.
go back to reference (a) Dallinger D, Kappe CO (2017) Why flow means green – evaluating the merits of continuous processing in the context of sustainability. Curr Opin Green Sustain Chem 7:6–12; (b) Movsisyan M, Delbeke EIP, Berton JKET, Battilocchio C, Ley SV, Stevens CV (2016) Taming hazardous chemistry by continuous flow technology. Chem Soc Rev 45:4892–4928. (c) Gutmann B, Cantillo D, Kappe CO (2015) Continuous-flow technology–a tool for the safe manufacturing of active pharmaceutical ingredients 54:6688–6728. (d) Kockmann N, Roberge DM (2009) Harsh reaction conditions in continuous-flow microreactors for pharmaceutical production. Chem Eng Technol 32:1682–1694CrossRef (a) Dallinger D, Kappe CO (2017) Why flow means green – evaluating the merits of continuous processing in the context of sustainability. Curr Opin Green Sustain Chem 7:6–12; (b) Movsisyan M, Delbeke EIP, Berton JKET, Battilocchio C, Ley SV, Stevens CV (2016) Taming hazardous chemistry by continuous flow technology. Chem Soc Rev 45:4892–4928. (c) Gutmann B, Cantillo D, Kappe CO (2015) Continuous-flow technology–a tool for the safe manufacturing of active pharmaceutical ingredients 54:6688–6728. (d) Kockmann N, Roberge DM (2009) Harsh reaction conditions in continuous-flow microreactors for pharmaceutical production. Chem Eng Technol 32:1682–1694CrossRef
26.
go back to reference Krey U, Owen A (2007) The Clausius-Clayperon Equation. In: Basic Theoretical Physics. Springer, Berlin, Heidelberg, pp 369–370 Krey U, Owen A (2007) The Clausius-Clayperon Equation. In: Basic Theoretical Physics. Springer, Berlin, Heidelberg, pp 369–370
27.
go back to reference Hone CA, O’Kearney-McMullan A, Munday R, Kappe CO (2017) A continuous-flow process for palladium-catalyzed olefin cleavage by using oxygen within the explosive regime. ChemCatChem 9:3298–3302CrossRef Hone CA, O’Kearney-McMullan A, Munday R, Kappe CO (2017) A continuous-flow process for palladium-catalyzed olefin cleavage by using oxygen within the explosive regime. ChemCatChem 9:3298–3302CrossRef
28.
go back to reference (a) Glotz G, Lebl R, Dallinger D, Kappe CO (2017) Integration of bromine and cyanogen bromide generators for the continuous-flow synthesis of cyclic Guanidines. Angew Chem Int Ed 56:13786–13789; (b) Dallinger D, Kappe CO (2017) Lab-scale production of anhydrous diazomethane using membrane separation technology. Nat Protoc 12:2138–2147CrossRef (a) Glotz G, Lebl R, Dallinger D, Kappe CO (2017) Integration of bromine and cyanogen bromide generators for the continuous-flow synthesis of cyclic Guanidines. Angew Chem Int Ed 56:13786–13789; (b) Dallinger D, Kappe CO (2017) Lab-scale production of anhydrous diazomethane using membrane separation technology. Nat Protoc 12:2138–2147CrossRef
29.
go back to reference Chiranjeevi T, Pragya R, Gupta S, Gokak DT, Bhargava S (2016) Minimization of waste spent catalyst in refineries. Procedia Environ Sci 35:610–617CrossRef Chiranjeevi T, Pragya R, Gupta S, Gokak DT, Bhargava S (2016) Minimization of waste spent catalyst in refineries. Procedia Environ Sci 35:610–617CrossRef
30.
go back to reference Cornils B, Herrmann WA, Beller M, Paciello R (2017) Applied homogeneous catalysis with organometallic compounds, Part 3: recent developments in homogeneous catalysis. Wiley, HobokenCrossRef Cornils B, Herrmann WA, Beller M, Paciello R (2017) Applied homogeneous catalysis with organometallic compounds, Part 3: recent developments in homogeneous catalysis. Wiley, HobokenCrossRef
31.
go back to reference Gürsel IV, Noël T, Wang Q, Hessel V (2015) Separation/recycling methods for homogeneous transition metal catalysts in continuous flow. Green Chem 17:2012–2026CrossRef Gürsel IV, Noël T, Wang Q, Hessel V (2015) Separation/recycling methods for homogeneous transition metal catalysts in continuous flow. Green Chem 17:2012–2026CrossRef
32.
go back to reference (a) Mercer SM, Robert T, Dixon DV, Jessop PG (2012) Recycling of a homogeneous catalyst using switchable water. Cat Sci Technol 2:1315–1318; (b) Jessop PG (2003) Homogeneous catalysis and catalyst recovery using supercritical carbon dioxide and ionic liquids. J Synt Org Chem Jpn 61:484–488CrossRef (a) Mercer SM, Robert T, Dixon DV, Jessop PG (2012) Recycling of a homogeneous catalyst using switchable water. Cat Sci Technol 2:1315–1318; (b) Jessop PG (2003) Homogeneous catalysis and catalyst recovery using supercritical carbon dioxide and ionic liquids. J Synt Org Chem Jpn 61:484–488CrossRef
33.
go back to reference Gladysz JA (2002) Introduction: recoverable catalysts and reagents–perspective and prospective. Chem Rev 102:3215–3216PubMedCrossRef Gladysz JA (2002) Introduction: recoverable catalysts and reagents–perspective and prospective. Chem Rev 102:3215–3216PubMedCrossRef
34.
go back to reference Polshettiwar V, Len C, Fihri A (2009) Silica-supported palladium: sustainable catalysts for cross-coupling reactions. Coord Chem Rev 253:2599–2626CrossRef Polshettiwar V, Len C, Fihri A (2009) Silica-supported palladium: sustainable catalysts for cross-coupling reactions. Coord Chem Rev 253:2599–2626CrossRef
35.
go back to reference Ragno D, Di Carmine G, Brandolese A, Bortolini O, Giovannini PP, Massi A (2017) Immobilization of privileged triazolium carbene catalyst for batch and flow stereoselective Umpolung processes. ACS Catal 7:6365–6375CrossRef Ragno D, Di Carmine G, Brandolese A, Bortolini O, Giovannini PP, Massi A (2017) Immobilization of privileged triazolium carbene catalyst for batch and flow stereoselective Umpolung processes. ACS Catal 7:6365–6375CrossRef
36.
go back to reference Grosso-Giordano NA, Yeh AJ, Okrut A, Xiao DJ, Grandjean F, Long GJ, Zones SI, Katz A (2017) Effect of defect site preorganization on Fe(III) grafting and stability: a comparative study of delaminated zeolite vs amorphous silica supports. Chem Mat 29:6480–6492CrossRef Grosso-Giordano NA, Yeh AJ, Okrut A, Xiao DJ, Grandjean F, Long GJ, Zones SI, Katz A (2017) Effect of defect site preorganization on Fe(III) grafting and stability: a comparative study of delaminated zeolite vs amorphous silica supports. Chem Mat 29:6480–6492CrossRef
37.
go back to reference Pelletier JDA, Basset J-M (2016) Catalysis by design: well-defined single-site heterogeneous catalysts. Acc Chem Res 49:664–677PubMedCrossRef Pelletier JDA, Basset J-M (2016) Catalysis by design: well-defined single-site heterogeneous catalysts. Acc Chem Res 49:664–677PubMedCrossRef
38.
go back to reference Hubner S, de Vries JG, Farina V (2016) Why does industry not use immobilized transition metal complexes as catalysts? Adv Synth Catal 358:3–25CrossRef Hubner S, de Vries JG, Farina V (2016) Why does industry not use immobilized transition metal complexes as catalysts? Adv Synth Catal 358:3–25CrossRef
39.
go back to reference (a) Thomas JM (2010) The advantages of exploring the interface between heterogeneous and homogeneous catalysis. Chem Cat Chem 2:127–132; (b) Astruc D (2008) Nanoparticles and catalysis. Wiley-VCH Verlag GmbH & Co., Weinheim (a) Thomas JM (2010) The advantages of exploring the interface between heterogeneous and homogeneous catalysis. Chem Cat Chem 2:127–132; (b) Astruc D (2008) Nanoparticles and catalysis. Wiley-VCH Verlag GmbH & Co., Weinheim
40.
go back to reference Hager T (2008) The alchemy of air: a Jewish genius, a doomed tycoon, and the scientific discovery that fed the world but fueled the rise of Hitler, 1st edn. Harmony Books, New York Hager T (2008) The alchemy of air: a Jewish genius, a doomed tycoon, and the scientific discovery that fed the world but fueled the rise of Hitler, 1st edn. Harmony Books, New York
41.
go back to reference Leigh GJ (2004) The world’s greatest fix: a history of nitrogen and agriculture. Oxford University Press, New York Leigh GJ (2004) The world’s greatest fix: a history of nitrogen and agriculture. Oxford University Press, New York
42.
go back to reference (a) Appl M (2011) Ammonia, 2. Production processes. In: Elvers B (ed) Ullmann’s encyclopedia of industrial chemistry. VCH Verlag GmbH & Co. KGaA, Weinheim; (b) Rodriguez M M, Bill E, Brennessel WW, Holland PL (2011) N2 reduction and hydrogenation to ammonia by a molecular iron-potassium complex. Science 334:780–783; (c) Smil V (1999) Detonator of the population explosion. Nature 400:415 (a) Appl M (2011) Ammonia, 2. Production processes. In: Elvers B (ed) Ullmann’s encyclopedia of industrial chemistry. VCH Verlag GmbH & Co. KGaA, Weinheim; (b) Rodriguez M M, Bill E, Brennessel WW, Holland PL (2011) N2 reduction and hydrogenation to ammonia by a molecular iron-potassium complex. Science 334:780–783; (c) Smil V (1999) Detonator of the population explosion. Nature 400:415
43.
go back to reference Tanaka N (2017) Seeing nanometer-sized world. In: Electron nano-imaging. Springer, Tokyo, pp 3–15CrossRef Tanaka N (2017) Seeing nanometer-sized world. In: Electron nano-imaging. Springer, Tokyo, pp 3–15CrossRef
44.
go back to reference Boudart M, Aldag A, Benson JE, Doughart N, Harkins CG (1966) On specific activity of platinum catalysts. J Catal 6:92–99CrossRef Boudart M, Aldag A, Benson JE, Doughart N, Harkins CG (1966) On specific activity of platinum catalysts. J Catal 6:92–99CrossRef
45.
go back to reference Schwank J (1985) Gold in bimetallic catalysts. Gold Bull 18:2–10; Schwank J (1983) Catalytic gold: applications of elemental gold in heterogeneous catalysis. Gold Bull 16:103–110CrossRef Schwank J (1985) Gold in bimetallic catalysts. Gold Bull 18:2–10; Schwank J (1983) Catalytic gold: applications of elemental gold in heterogeneous catalysis. Gold Bull 16:103–110CrossRef
46.
go back to reference (a) Haruta M (1997) Size- and support-dependency in the catalysis of gold. Catal Tod 36:153–166; (b) Haruta M, Yamada N, Kobayashi T, Iijima S (1989) Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J Catal 115:301–309CrossRef (a) Haruta M (1997) Size- and support-dependency in the catalysis of gold. Catal Tod 36:153–166; (b) Haruta M, Yamada N, Kobayashi T, Iijima S (1989) Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J Catal 115:301–309CrossRef
47.
go back to reference Klabunde KJ (2001) Introduction to nanotechnology. In: Klabunde KJ (ed) Nanoscale materials and chemistry. Wiley, Hoboken, pp 1–13CrossRef Klabunde KJ (2001) Introduction to nanotechnology. In: Klabunde KJ (ed) Nanoscale materials and chemistry. Wiley, Hoboken, pp 1–13CrossRef
48.
go back to reference Caldorera-Moore M, Guimard N, Shi L, Roy K (2010) Designer nanoparticles: incorporating size, shape, and triggered release into nanoscale drug carriers. Expert Opin Drug Deliv 7:479–495PubMedPubMedCentralCrossRef Caldorera-Moore M, Guimard N, Shi L, Roy K (2010) Designer nanoparticles: incorporating size, shape, and triggered release into nanoscale drug carriers. Expert Opin Drug Deliv 7:479–495PubMedPubMedCentralCrossRef
49.
go back to reference (a) Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9:385–406; (b) Somorjai GA, Frei H, Park JY (2009) Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques. J Am Chem Soc 131:16589–16605PubMedPubMedCentral (a) Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9:385–406; (b) Somorjai GA, Frei H, Park JY (2009) Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques. J Am Chem Soc 131:16589–16605PubMedPubMedCentral
50.
go back to reference Schmid G (2001) Metals. In: Klabunde KJ (ed) Nanoscale materials in chemistry. Wiley, Hoboken, pp 15–59CrossRef Schmid G (2001) Metals. In: Klabunde KJ (ed) Nanoscale materials in chemistry. Wiley, Hoboken, pp 15–59CrossRef
51.
go back to reference Zhuang H, Tkalych AJ, Carter EA (2016) Surface energy as a descriptor of catalytic activity. J Phys Chem C 120:23698–23706CrossRef Zhuang H, Tkalych AJ, Carter EA (2016) Surface energy as a descriptor of catalytic activity. J Phys Chem C 120:23698–23706CrossRef
52.
go back to reference Liu B, Wang P, Lopes A, Jin L, Zhong W, Pei Y, Suib SL, He J (2017) Au-carbon electronic interaction mediated selective oxidation of styrene. ACS Catal 7:3483–3488CrossRef Liu B, Wang P, Lopes A, Jin L, Zhong W, Pei Y, Suib SL, He J (2017) Au-carbon electronic interaction mediated selective oxidation of styrene. ACS Catal 7:3483–3488CrossRef
53.
go back to reference Sreeprasad TS, Pradeep T (2013) Noble metal nanoparticles. In: Vajtai R (ed) Springer handbook of nanomaterials. Springer, Berlin/Heidelberg Sreeprasad TS, Pradeep T (2013) Noble metal nanoparticles. In: Vajtai R (ed) Springer handbook of nanomaterials. Springer, Berlin/Heidelberg
54.
go back to reference (a) Min BK, Friend CM (2007) Heterogeneous gold-based catalysis for green chemistry: low-temperature CO oxidation and propene oxidation. Chem Rev 107:2709–2724; (b) Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. 104:293–346PubMedCrossRef (a) Min BK, Friend CM (2007) Heterogeneous gold-based catalysis for green chemistry: low-temperature CO oxidation and propene oxidation. Chem Rev 107:2709–2724; (b) Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. 104:293–346PubMedCrossRef
55.
go back to reference Arena F, Di Chio R, Filiciotto L, Trunfio G, Espro C, Palella A, Patti A, Spadaro L (2017) Probing the functionality of nanostructured MnCeOx catalysts in the carbon monoxide oxidation: Part II. Reaction mechanism and kinetic modeling. Appl Catal B 218:803–809CrossRef Arena F, Di Chio R, Filiciotto L, Trunfio G, Espro C, Palella A, Patti A, Spadaro L (2017) Probing the functionality of nanostructured MnCeOx catalysts in the carbon monoxide oxidation: Part II. Reaction mechanism and kinetic modeling. Appl Catal B 218:803–809CrossRef
56.
go back to reference Kalidindi SB, Jagirdar BR (2012) Nanocatalysis and prospects of green chemistry. ChemSusChem 5:65–75PubMedCrossRef Kalidindi SB, Jagirdar BR (2012) Nanocatalysis and prospects of green chemistry. ChemSusChem 5:65–75PubMedCrossRef
57.
go back to reference Falsig H, Hvolbæk B, Kristensen IS, Jiang T, Bligaard T, Christensen CH, Nørskov JK (2008) Trends in the catalytic CO oxidation activity of nanoparticles. Angew Chem Int Ed 47:4835–4839CrossRef Falsig H, Hvolbæk B, Kristensen IS, Jiang T, Bligaard T, Christensen CH, Nørskov JK (2008) Trends in the catalytic CO oxidation activity of nanoparticles. Angew Chem Int Ed 47:4835–4839CrossRef
58.
go back to reference Hvolbæk B, Janssens TVW, Clausen BS, Falsig H, Christensen CH, Nørskov JK (2007) Catalytic activity of Au nanoparticles. NanoToday 2:14–18CrossRef Hvolbæk B, Janssens TVW, Clausen BS, Falsig H, Christensen CH, Nørskov JK (2007) Catalytic activity of Au nanoparticles. NanoToday 2:14–18CrossRef
59.
go back to reference Joo SH, Park JY, Tsung C-K, Yamada Y, Yang P, Somorjai GA (2009) Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. Nat Mater 8:126–131PubMedCrossRef Joo SH, Park JY, Tsung C-K, Yamada Y, Yang P, Somorjai GA (2009) Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. Nat Mater 8:126–131PubMedCrossRef
60.
go back to reference Polshettiwar V, Varma RS (2010) Green chemistry by nano-catalysis. Green Chem 12:743–754CrossRef Polshettiwar V, Varma RS (2010) Green chemistry by nano-catalysis. Green Chem 12:743–754CrossRef
61.
go back to reference Herzing AA, Kiely CJ, Carley AF, Landon P, Hutchings GJ (2008) Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 321:1331–1335PubMedCrossRef Herzing AA, Kiely CJ, Carley AF, Landon P, Hutchings GJ (2008) Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 321:1331–1335PubMedCrossRef
62.
go back to reference (a) Enache DI, Edwards JK, Landon P, Solsona-Espriu B, Carley AF, Herzing AA, Watanabe M, Kiely CJ, Knight W, Hutchings GJ (2006) Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. Science 311:362–365; (b) Hughes MD, Xu T-J, Jenkins P, McMorn P, Landon P, Enache DI, Carley AF, Attard GA, Hutchings GJ, King F, Stitt EH, Johnston P, Griffin K, Kiely CJ (2005) Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature 437:1132–1135PubMedCrossRef (a) Enache DI, Edwards JK, Landon P, Solsona-Espriu B, Carley AF, Herzing AA, Watanabe M, Kiely CJ, Knight W, Hutchings GJ (2006) Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. Science 311:362–365; (b) Hughes MD, Xu T-J, Jenkins P, McMorn P, Landon P, Enache DI, Carley AF, Attard GA, Hutchings GJ, King F, Stitt EH, Johnston P, Griffin K, Kiely CJ (2005) Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature 437:1132–1135PubMedCrossRef
63.
go back to reference Corma A, Serna P (2006) Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 313:332–334PubMedCrossRef Corma A, Serna P (2006) Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 313:332–334PubMedCrossRef
64.
go back to reference Grirrane A, Corma A, Garcia H (2008) Gold-catalyzed synthesis of aromatic Azo compounds from anilines and Nitroaromatics. Science 322:1661–1664PubMedCrossRef Grirrane A, Corma A, Garcia H (2008) Gold-catalyzed synthesis of aromatic Azo compounds from anilines and Nitroaromatics. Science 322:1661–1664PubMedCrossRef
65.
go back to reference Centi G, Perathoner S (2003) Catalysis and sustainable (green) chemistry. Catal Today 77:287–297CrossRef Centi G, Perathoner S (2003) Catalysis and sustainable (green) chemistry. Catal Today 77:287–297CrossRef
66.
go back to reference Edwards JK, Hutchings GJ (2008) Palladium and gold-palladium catalysts for the direct synthesis of hydrogen peroxide. Angew Chem Int Ed 47:9192–9198CrossRef Edwards JK, Hutchings GJ (2008) Palladium and gold-palladium catalysts for the direct synthesis of hydrogen peroxide. Angew Chem Int Ed 47:9192–9198CrossRef
67.
go back to reference Arrigo R, Schuster ME, Abate S, Giorgianni G, Centi G, Perathoner S, Wrabetz S, Pfeifer V, Antonietti M, Schlӧgl R (2016) Pd supported on carbon nitride boosts the direct hydrogen peroxide synthesis. ACS Catal 6:6959–6966CrossRef Arrigo R, Schuster ME, Abate S, Giorgianni G, Centi G, Perathoner S, Wrabetz S, Pfeifer V, Antonietti M, Schlӧgl R (2016) Pd supported on carbon nitride boosts the direct hydrogen peroxide synthesis. ACS Catal 6:6959–6966CrossRef
68.
go back to reference Liu Q, Lun JH (2006) The roles of chloride ions in the direct formation of H2O2 from H2 and O2 over a Pd/SiO2 catalyst in a H2SO4/ethanol system. J Catal 239:237–243CrossRef Liu Q, Lun JH (2006) The roles of chloride ions in the direct formation of H2O2 from H2 and O2 over a Pd/SiO2 catalyst in a H2SO4/ethanol system. J Catal 239:237–243CrossRef
69.
go back to reference Lee JW, Kim JK, Kang TH, Lee EJ, Song IK (2017) Direct synthesis of hydrogen peroxide from hydrogen and oxygen over palladium catalyst supported on heteropolyacid-containing ordered mesoporous carbon. Catal Tod 293–294:49–55CrossRef Lee JW, Kim JK, Kang TH, Lee EJ, Song IK (2017) Direct synthesis of hydrogen peroxide from hydrogen and oxygen over palladium catalyst supported on heteropolyacid-containing ordered mesoporous carbon. Catal Tod 293–294:49–55CrossRef
70.
go back to reference Seo M, Lee D-W, Han SS, Lee K-Y (2017) Direct synthesis of hydrogen peroxide from hydrogen and oxygen over mesoporous silica-shell-coated, palladium-nanocrystal-grafted SiO2 nanobeads. ACS Catal 7:3039–3048CrossRef Seo M, Lee D-W, Han SS, Lee K-Y (2017) Direct synthesis of hydrogen peroxide from hydrogen and oxygen over mesoporous silica-shell-coated, palladium-nanocrystal-grafted SiO2 nanobeads. ACS Catal 7:3039–3048CrossRef
71.
go back to reference Lari GM, Puertolas B, Shahrokhi M, Lopez N, Perez-Ramirez J (2016) Hybrid palladium nanoparticles for direct hydrogen peroxide synthesis: the key role of the ligand. Angew Chem Int Ed 56:1775–1779CrossRef Lari GM, Puertolas B, Shahrokhi M, Lopez N, Perez-Ramirez J (2016) Hybrid palladium nanoparticles for direct hydrogen peroxide synthesis: the key role of the ligand. Angew Chem Int Ed 56:1775–1779CrossRef
72.
go back to reference Landon P, Collier PJ, Papworth AJ, Kiely CJ, Hutchings GJ (2002) Direct formation of hydrogen peroxide from H2/O2 using a gold catalyst. Chem Commun 0:2058–2059CrossRef Landon P, Collier PJ, Papworth AJ, Kiely CJ, Hutchings GJ (2002) Direct formation of hydrogen peroxide from H2/O2 using a gold catalyst. Chem Commun 0:2058–2059CrossRef
73.
go back to reference Okumura M, Kitagawa Y, Yagamuchi K, Akita T, Tsubota S, Haruta M (2003) Direct production of hydrogen peroxide from H2 and O2 over highly dispersed au catalysts. Chem Lett 32:822–823CrossRef Okumura M, Kitagawa Y, Yagamuchi K, Akita T, Tsubota S, Haruta M (2003) Direct production of hydrogen peroxide from H2 and O2 over highly dispersed au catalysts. Chem Lett 32:822–823CrossRef
74.
go back to reference Landon P, Collier PJ, Carley AF, Chadwick D, Papworth AJ, Burrows A, Kiely CJ, Hutchings GJ (2003) Direct synthesis of hydrogen peroxide from H2 and O2 using Pd and Au catalysts. Phys Chem Chem Phys 5:1917–1923CrossRef Landon P, Collier PJ, Carley AF, Chadwick D, Papworth AJ, Burrows A, Kiely CJ, Hutchings GJ (2003) Direct synthesis of hydrogen peroxide from H2 and O2 using Pd and Au catalysts. Phys Chem Chem Phys 5:1917–1923CrossRef
75.
go back to reference Choudhary VR, Samanta C, Choudhary TV (2006) Direct oxidation of H2 to H2O2 over Pd-based catalysts: influence of oxidation state, support and metal additives. Appl Catal A 308:128–133CrossRef Choudhary VR, Samanta C, Choudhary TV (2006) Direct oxidation of H2 to H2O2 over Pd-based catalysts: influence of oxidation state, support and metal additives. Appl Catal A 308:128–133CrossRef
76.
go back to reference Rodriguez-Gomez A, Platero F, Caballero A, Colon G (2018) Improving the direct synthesis of hydrogen peroxide from hydrogen and oxygen over Au-Pd/SBA-15 catalysts by selective functionalization. Mol Catal 445:142–151CrossRef Rodriguez-Gomez A, Platero F, Caballero A, Colon G (2018) Improving the direct synthesis of hydrogen peroxide from hydrogen and oxygen over Au-Pd/SBA-15 catalysts by selective functionalization. Mol Catal 445:142–151CrossRef
77.
go back to reference Yook S, Kwon HC, Kim YG, Choi W, Choi M (2017) Significant roles of carbon pore and surface structure in AuPd/C catalyst for achieving high chemoselectivity in direct hydrogen peroxide synthesis. ACS Sustain Chem Eng 5:1208–1216CrossRef Yook S, Kwon HC, Kim YG, Choi W, Choi M (2017) Significant roles of carbon pore and surface structure in AuPd/C catalyst for achieving high chemoselectivity in direct hydrogen peroxide synthesis. ACS Sustain Chem Eng 5:1208–1216CrossRef
78.
go back to reference Corma A, Garcia H (2008) Supported gold nanoparticles as catalysts for organic reactions. Chem Soc Rev 37:2096–2126PubMedCrossRef Corma A, Garcia H (2008) Supported gold nanoparticles as catalysts for organic reactions. Chem Soc Rev 37:2096–2126PubMedCrossRef
79.
go back to reference Suzuki K, Yamaguchi T, Matsushita K, Iitsuka C, Miura J, Akaogi T, Ishida H (2013) Aerobic oxidative esterification of aldehydes with alcohols by gold–nickel oxide nanoparticle catalysts with a core–shell structure. ACS Catal 3:1845–1849CrossRef Suzuki K, Yamaguchi T, Matsushita K, Iitsuka C, Miura J, Akaogi T, Ishida H (2013) Aerobic oxidative esterification of aldehydes with alcohols by gold–nickel oxide nanoparticle catalysts with a core–shell structure. ACS Catal 3:1845–1849CrossRef
80.
go back to reference Freakley SJ, He Q, Kiely CJ, Hutchings GJ (2015) Gold catalysis: a reflection on where we are now. Catal Lett 145:71–79CrossRef Freakley SJ, He Q, Kiely CJ, Hutchings GJ (2015) Gold catalysis: a reflection on where we are now. Catal Lett 145:71–79CrossRef
81.
82.
go back to reference Enthaler S, Junge K, Beller M (2008) Sustainable metal catalysis with iron: from rust to a rising star? Angew Chem Int Ed 47:3317–3321CrossRef Enthaler S, Junge K, Beller M (2008) Sustainable metal catalysis with iron: from rust to a rising star? Angew Chem Int Ed 47:3317–3321CrossRef
83.
go back to reference Phua P-H, Lefort L, Boogers JAF, Tristany M, de Vries JG (2009) Soluble iron nanoparticles as cheap and environmentally benign alkene and alkyne hydrogenation catalysts. Chem Commun 0:3747–3749CrossRef Phua P-H, Lefort L, Boogers JAF, Tristany M, de Vries JG (2009) Soluble iron nanoparticles as cheap and environmentally benign alkene and alkyne hydrogenation catalysts. Chem Commun 0:3747–3749CrossRef
84.
go back to reference Stein M, Wieland J, Steurer P, Tӧlle F, Mülhaupt R (2011) Iron nanoparticles supported on chemically-derived graphene: catalytic hydrogenation with magnetic catalyst separation. Adv Synth Catal 353:523–527CrossRef Stein M, Wieland J, Steurer P, Tӧlle F, Mülhaupt R (2011) Iron nanoparticles supported on chemically-derived graphene: catalytic hydrogenation with magnetic catalyst separation. Adv Synth Catal 353:523–527CrossRef
85.
go back to reference Kelsen V, Wendt B, Wekmeister S, Junge K, Beller M, Chaudret B (2013) The use of ultrasmall iron(0) nanoparticles as catalysts for the selective hydrogenation of unsaturated C–C bonds. Chem Commun 49:3416–3418CrossRef Kelsen V, Wendt B, Wekmeister S, Junge K, Beller M, Chaudret B (2013) The use of ultrasmall iron(0) nanoparticles as catalysts for the selective hydrogenation of unsaturated C–C bonds. Chem Commun 49:3416–3418CrossRef
86.
go back to reference Dinç M, Metin Ö, Özkar S (2012) Water soluble polymer stabilized Iron(0) nanoclusters: a cost-effective and magnetically recoverable catalyst for hydrogen generation from the hydrolysis of sodium borohydride and ammonia borane. Catal Today 183:10–16CrossRef Dinç M, Metin Ö, Özkar S (2012) Water soluble polymer stabilized Iron(0) nanoclusters: a cost-effective and magnetically recoverable catalyst for hydrogen generation from the hydrolysis of sodium borohydride and ammonia borane. Catal Today 183:10–16CrossRef
87.
go back to reference Hudson R, Hamasaka G, Osako T, Yamada YMA, Li C-J, Uozumi Y, Moores A (2013) Highly efficient iron(0) nanoparticle catalyzed hydrogenation in water in flow. Green Chem 15:2141–2148CrossRef Hudson R, Hamasaka G, Osako T, Yamada YMA, Li C-J, Uozumi Y, Moores A (2013) Highly efficient iron(0) nanoparticle catalyzed hydrogenation in water in flow. Green Chem 15:2141–2148CrossRef
88.
go back to reference Hudson R, Rivière A, Cirtiu CM, Luska KL, Moores A (2012) Iron-iron oxide core–shell nanoparticles are active and magnetically recyclable olefin and alkyne hydrogenation catalysts in protic and aqueous media. Chem Commun 48:3360–3362CrossRef Hudson R, Rivière A, Cirtiu CM, Luska KL, Moores A (2012) Iron-iron oxide core–shell nanoparticles are active and magnetically recyclable olefin and alkyne hydrogenation catalysts in protic and aqueous media. Chem Commun 48:3360–3362CrossRef
89.
go back to reference (a) Roberts SM (2007) Catalysts for fine chemical synthesis. Wiley– VCH Verlag GmbH & Co. KGaA, Weinheim; (b) Bäckvall JE (2004) Modern oxidation methods. Wiley– VCH Verlag GmbH & Co. KGaA, Weinheim; (c) Jorgensen KA (1989) Transition-metal-catalysed epoxidations. Chem Rev 89:431–458; (d) Sheldon RA, Kochi JK (1981) Metal catalyzed oxidation of organic compounds. Academic Press, New York (a) Roberts SM (2007) Catalysts for fine chemical synthesis. Wiley– VCH Verlag GmbH & Co. KGaA, Weinheim; (b) Bäckvall JE (2004) Modern oxidation methods. Wiley– VCH Verlag GmbH & Co. KGaA, Weinheim; (c) Jorgensen KA (1989) Transition-metal-catalysed epoxidations. Chem Rev 89:431–458; (d) Sheldon RA, Kochi JK (1981) Metal catalyzed oxidation of organic compounds. Academic Press, New York
90.
go back to reference (a) Pineda A, Balu AM, Campelo JM, Romero AA, Carmona D, Balas F, Santamaria F, Luque R (2011) A dry milling approach for the synthesis of highly active nanoparticles supported on porous materials. ChemSusChem 4:1561–1565; (b) Abate S, Centi G, Perathoner S, Melada S, Pinna G, Strukul G (2006) The issue of selectivity in the direct synthesis of H2O2 from H2 and O2: the role of the catalyst in relation to the kinetics of reaction 33:207–224PubMedCrossRef (a) Pineda A, Balu AM, Campelo JM, Romero AA, Carmona D, Balas F, Santamaria F, Luque R (2011) A dry milling approach for the synthesis of highly active nanoparticles supported on porous materials. ChemSusChem 4:1561–1565; (b) Abate S, Centi G, Perathoner S, Melada S, Pinna G, Strukul G (2006) The issue of selectivity in the direct synthesis of H2O2 from H2 and O2: the role of the catalyst in relation to the kinetics of reaction 33:207–224PubMedCrossRef
91.
go back to reference Shi F, Tse MK, Pohl M-M, Brückner A, Zhang S, Beller M (2007) Tuning catalytic activity between homogeneous and heterogeneous catalysis: improved activity and selectivity of free nano- Fe2O3 in selective oxidations. Angew Chem Int Ed 46:8866–8868CrossRef Shi F, Tse MK, Pohl M-M, Brückner A, Zhang S, Beller M (2007) Tuning catalytic activity between homogeneous and heterogeneous catalysis: improved activity and selectivity of free nano- Fe2O3 in selective oxidations. Angew Chem Int Ed 46:8866–8868CrossRef
92.
go back to reference Rajabi F, Naresian S, Primo A, Luque R (2011) Efficient and highly selective aqueous oxidation of sulfides to sulfoxides at room temperature catalysed by supported iron oxide nanoparticles on SBA-15. Adv Synth Catal 353:2060–2066CrossRef Rajabi F, Naresian S, Primo A, Luque R (2011) Efficient and highly selective aqueous oxidation of sulfides to sulfoxides at room temperature catalysed by supported iron oxide nanoparticles on SBA-15. Adv Synth Catal 353:2060–2066CrossRef
93.
go back to reference Rak MJ, Lerro M, Moores A (2014) Hollow iron oxide nanoshells are active and selective catalysts for the partial oxidation of styrene with molecular oxygen. Chem Commun 50:12482–12485CrossRef Rak MJ, Lerro M, Moores A (2014) Hollow iron oxide nanoshells are active and selective catalysts for the partial oxidation of styrene with molecular oxygen. Chem Commun 50:12482–12485CrossRef
94.
go back to reference Hermanek M, Zboril R, Medrik I, Pechousek J, Gregor C (2007) Catalytic efficiency of Iron(III) oxides in decomposition of hydrogen peroxide: competition between the surface area and crystallinity of nanoparticles. J Am Chem Soc 129:10929–10936PubMedCrossRef Hermanek M, Zboril R, Medrik I, Pechousek J, Gregor C (2007) Catalytic efficiency of Iron(III) oxides in decomposition of hydrogen peroxide: competition between the surface area and crystallinity of nanoparticles. J Am Chem Soc 129:10929–10936PubMedCrossRef
95.
go back to reference Filiciotto L, Balu AM, Romero AA, Rodríguez-Castellón E, van der Waal JC, Luque R (2017) Benign-by-design preparation of humin-based iron oxide catalytic nanocomposites. Green Chem 19:4423–4434CrossRef Filiciotto L, Balu AM, Romero AA, Rodríguez-Castellón E, van der Waal JC, Luque R (2017) Benign-by-design preparation of humin-based iron oxide catalytic nanocomposites. Green Chem 19:4423–4434CrossRef
96.
go back to reference Filiciotto L, Balu AM, van der Waal JC, Luque R (2018) Catalytic insights into the production of biomass-derived side products methyl levulinate, furfural and humins. Catal Today 302C:2–15CrossRef Filiciotto L, Balu AM, van der Waal JC, Luque R (2018) Catalytic insights into the production of biomass-derived side products methyl levulinate, furfural and humins. Catal Today 302C:2–15CrossRef
97.
go back to reference Choudhary VR, Sansare SD, Gaikwad AG (2002) Direct oxidation of H2 to H2O2 and decomposition of H2O2 over oxidized and reduced Pd-containing zeolite catalysts in acidi medium. Catal Lett 84:81–87CrossRef Choudhary VR, Sansare SD, Gaikwad AG (2002) Direct oxidation of H2 to H2O2 and decomposition of H2O2 over oxidized and reduced Pd-containing zeolite catalysts in acidi medium. Catal Lett 84:81–87CrossRef
98.
go back to reference (a) Rodriguez JA, Fernandez-Garcia M (2007) Synthesis, properties, and applications of oxide nanomaterials. Wiley, Hoboken, pp 287–378; (b) Samsonov VM., Bazulev AN, Sdobnyakov NY (2003) On applicability of Gibbs thermodynamics to nanoparticles. Centr Eur J Phys 1:474–484CrossRef (a) Rodriguez JA, Fernandez-Garcia M (2007) Synthesis, properties, and applications of oxide nanomaterials. Wiley, Hoboken, pp 287–378; (b) Samsonov VM., Bazulev AN, Sdobnyakov NY (2003) On applicability of Gibbs thermodynamics to nanoparticles. Centr Eur J Phys 1:474–484CrossRef
99.
go back to reference Campbell CT, Parker SC, Starr DE (2002) The effect of size dependent nanoparticle energetic on catalyst sintering. Science 298:811–814PubMedCrossRef Campbell CT, Parker SC, Starr DE (2002) The effect of size dependent nanoparticle energetic on catalyst sintering. Science 298:811–814PubMedCrossRef
100.
go back to reference Xie X, Li Y, Liu Z-Q, Haruta M, Shen W (2009) Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458:746–749PubMedCrossRef Xie X, Li Y, Liu Z-Q, Haruta M, Shen W (2009) Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458:746–749PubMedCrossRef
101.
go back to reference Arena F, Gatti G, Martra G, Coluccia S, Stievano L, Spadaro L, Famulari P, Parmaliana A (2005) Structure and reactivity in the selective oxidation of methane to formaldehyde of low-loaded FeOx/SiO2 catalysts. J Catal 231:365–380CrossRef Arena F, Gatti G, Martra G, Coluccia S, Stievano L, Spadaro L, Famulari P, Parmaliana A (2005) Structure and reactivity in the selective oxidation of methane to formaldehyde of low-loaded FeOx/SiO2 catalysts. J Catal 231:365–380CrossRef
102.
go back to reference Arena F, Di Chio R, Fazio B, Espro C, Spiccia L, Palella A, Spadato L (2017) Probing the functionality of nanostructured MnCeOx catalysts in the carbon monoxide oxidation: Part I. Influence of cerium addition on structure and CO oxidation activity. Appl Catal B 210:14–22CrossRef Arena F, Di Chio R, Fazio B, Espro C, Spiccia L, Palella A, Spadato L (2017) Probing the functionality of nanostructured MnCeOx catalysts in the carbon monoxide oxidation: Part I. Influence of cerium addition on structure and CO oxidation activity. Appl Catal B 210:14–22CrossRef
103.
go back to reference Arena F, Trunfio G, Negro J, Spadaro L (2007) Synthesis of highly dispersed MnCeOx catalysts via a nover “redox-precipitation” route. Mat Res Bull 43:530–545 Arena F, Trunfio G, Negro J, Spadaro L (2007) Synthesis of highly dispersed MnCeOx catalysts via a nover “redox-precipitation” route. Mat Res Bull 43:530–545
104.
go back to reference Arena F (2014) Multipurpose composite MnCeOx catalysts for environmental applications. Cat Sci Technol 4:1890–1898CrossRef Arena F (2014) Multipurpose composite MnCeOx catalysts for environmental applications. Cat Sci Technol 4:1890–1898CrossRef
105.
go back to reference Kong F-D, Zhang S, Yin G-P, Zhang N, Wang Z-B, Du C-Y (2012) Pt/porous-IrO2 nanocomposite as promising electrocatalyst for unitized regenerative fuel cell. Electrochem Commun 14:63–66CrossRef Kong F-D, Zhang S, Yin G-P, Zhang N, Wang Z-B, Du C-Y (2012) Pt/porous-IrO2 nanocomposite as promising electrocatalyst for unitized regenerative fuel cell. Electrochem Commun 14:63–66CrossRef
106.
go back to reference Jӧrissen L (2006) Bifunctional oxygen/air electrodes. J Power Sources 155:23–32CrossRef Jӧrissen L (2006) Bifunctional oxygen/air electrodes. J Power Sources 155:23–32CrossRef
107.
go back to reference Gorlin Y, Jaramillo TF (2010) A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J Am Chem Soc 132:13612–13614PubMedCrossRef Gorlin Y, Jaramillo TF (2010) A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J Am Chem Soc 132:13612–13614PubMedCrossRef
108.
go back to reference Meng Y, Song W, Huang H, Ren Z, Chen R-Y, Suib SL (2014) Structure-property relationship of bifunctional MnO2 nanostructures: highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media. J Am Chem Soc 136:11452–11464PubMedCrossRef Meng Y, Song W, Huang H, Ren Z, Chen R-Y, Suib SL (2014) Structure-property relationship of bifunctional MnO2 nanostructures: highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media. J Am Chem Soc 136:11452–11464PubMedCrossRef
109.
go back to reference Osgood H, Devaguptapu SV, Xu H, Cho J, Wu G (2016) Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. NanoToday 11:601–625CrossRef Osgood H, Devaguptapu SV, Xu H, Cho J, Wu G (2016) Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. NanoToday 11:601–625CrossRef
110.
go back to reference Croswell K (1996) Alchemy of the heavens, 1st edn. Anchor Doubleday, Broadway, New York Croswell K (1996) Alchemy of the heavens, 1st edn. Anchor Doubleday, Broadway, New York
111.
go back to reference Inagaki M, Feiyu K (2006) Carbon materials science and engineering: from fundamental to applications. Tsinghua University Press, Beijing Inagaki M, Feiyu K (2006) Carbon materials science and engineering: from fundamental to applications. Tsinghua University Press, Beijing
112.
go back to reference Serp P, Machado B (2015) Carbon (nano)materials for catalysis. In: Nanostructured carbon materials for catalysis. The Royal Society of Chemistry, Cambridge Serp P, Machado B (2015) Carbon (nano)materials for catalysis. In: Nanostructured carbon materials for catalysis. The Royal Society of Chemistry, Cambridge
113.
go back to reference (a) Machado BF, Serp P (2012) Graphene-based materials for catalysis. Cat Sci Technol 2:54–75; (b) Dreyer R, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240CrossRef (a) Machado BF, Serp P (2012) Graphene-based materials for catalysis. Cat Sci Technol 2:54–75; (b) Dreyer R, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240CrossRef
114.
go back to reference Ennaert T, van Aelst J, Dijkmans J, De Clercq R, Schutyser W, Dusselier M, Verboekend D, Sels BF (2016) Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Chem Soc Rev 45:584–611PubMedCrossRef Ennaert T, van Aelst J, Dijkmans J, De Clercq R, Schutyser W, Dusselier M, Verboekend D, Sels BF (2016) Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Chem Soc Rev 45:584–611PubMedCrossRef
115.
go back to reference Haddon RC, Palmer RE, Kroto HW, Sermon PA (1993) The fullerenes: powerful carbon-based electron acceptors. Philos Transact A Math Phys Eng 343:53–62CrossRef Haddon RC, Palmer RE, Kroto HW, Sermon PA (1993) The fullerenes: powerful carbon-based electron acceptors. Philos Transact A Math Phys Eng 343:53–62CrossRef
116.
go back to reference White RJ (2015) The search for functional porous carbons from sustainable precursors. In: White R (ed) Porous carbon materials from sustainable precursors. The Royal Society of Chemistry, Cambridge, pp 3–49CrossRef White RJ (2015) The search for functional porous carbons from sustainable precursors. In: White R (ed) Porous carbon materials from sustainable precursors. The Royal Society of Chemistry, Cambridge, pp 3–49CrossRef
117.
go back to reference Serp P (2009) Carbon nanotubes and nanofibers in catalysis. In: Serp P, Figueiredo JL (eds) Carbon materials for catalysis. Wiley, Hobokem, pp 309–372 Serp P (2009) Carbon nanotubes and nanofibers in catalysis. In: Serp P, Figueiredo JL (eds) Carbon materials for catalysis. Wiley, Hobokem, pp 309–372
118.
go back to reference (a) Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145; (b) Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136PubMedCrossRef (a) Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145; (b) Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136PubMedCrossRef
119.
go back to reference Philippot K, Serp P (2013) Concepts in nanocatalysis. In: Serp P, Philippot K (eds) Nanomaterials in catalysis, 1st edn. VCH Verlag GmbH & Co. KGaA, Weinheim Philippot K, Serp P (2013) Concepts in nanocatalysis. In: Serp P, Philippot K (eds) Nanomaterials in catalysis, 1st edn. VCH Verlag GmbH & Co. KGaA, Weinheim
120.
go back to reference Garrido E, Aymonier C, Roiban L, Ersen O, Labrugere C, Gaillard P, Lamirand-Majimel MJ (2015) Noble metals supported on carbon nanotubes using supercritical fluids for the preparation of composite materials: a look at the interface. Supercrit Fluids 101:110–116CrossRef Garrido E, Aymonier C, Roiban L, Ersen O, Labrugere C, Gaillard P, Lamirand-Majimel MJ (2015) Noble metals supported on carbon nanotubes using supercritical fluids for the preparation of composite materials: a look at the interface. Supercrit Fluids 101:110–116CrossRef
121.
go back to reference Chen Y, Haddon RC, Fang S, Rao AM, Eklund PC, Lee WH, Dickey EC, Grulke EA, Pendergrass JC, Chavan A, Haley BE, Smalley RE (1998) Chemical attachment of organic functional groups to single-walled carbon nanotube material. J Mater Res 13:2423–4231CrossRef Chen Y, Haddon RC, Fang S, Rao AM, Eklund PC, Lee WH, Dickey EC, Grulke EA, Pendergrass JC, Chavan A, Haley BE, Smalley RE (1998) Chemical attachment of organic functional groups to single-walled carbon nanotube material. J Mater Res 13:2423–4231CrossRef
122.
go back to reference (a) Mattevi C, Kima H, Chhowalla M (2011) A review of chemical vapour deposition of graphene on copper. J Mater Chem 21:3324–3334; (b) Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RR (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314; (c) Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669; (d) Rodriguez-Reinoso F (1998) The role of carbon materials in heterogeneous catalysis. Carbon 36:159–175CrossRef (a) Mattevi C, Kima H, Chhowalla M (2011) A review of chemical vapour deposition of graphene on copper. J Mater Chem 21:3324–3334; (b) Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RR (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314; (c) Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669; (d) Rodriguez-Reinoso F (1998) The role of carbon materials in heterogeneous catalysis. Carbon 36:159–175CrossRef
123.
go back to reference Ghosh P, Afre RA, Soga T, Jimbo T (2007) A simple method of producing single-walled carbon nanotubes from a natural precursor: eucalyptus oil. Mat Lett 61:3768–3770CrossRef Ghosh P, Afre RA, Soga T, Jimbo T (2007) A simple method of producing single-walled carbon nanotubes from a natural precursor: eucalyptus oil. Mat Lett 61:3768–3770CrossRef
124.
go back to reference (a) Zhao MQ, Zhang Q, Huang JQ, Nie JQ, Wei F (2010) Advanced materials from natural materials: synthesis of aligned carbon nanotubes on wollastonites. ChemSusChem 3:453–459; (b) Su DS (2009) The use of natural materials in nanocarbon synthesis. ChemSusChem 2:1009–1020PubMedCrossRef (a) Zhao MQ, Zhang Q, Huang JQ, Nie JQ, Wei F (2010) Advanced materials from natural materials: synthesis of aligned carbon nanotubes on wollastonites. ChemSusChem 3:453–459; (b) Su DS (2009) The use of natural materials in nanocarbon synthesis. ChemSusChem 2:1009–1020PubMedCrossRef
125.
go back to reference (a) Mao S, Pu H, Chen J (2012) Graphene oxide and its reduction: modeling and experimental progress. RSC Adv 2:2643–2662; (b) Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240CrossRef (a) Mao S, Pu H, Chen J (2012) Graphene oxide and its reduction: modeling and experimental progress. RSC Adv 2:2643–2662; (b) Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240CrossRef
126.
go back to reference (a) Navalon S, Dhakshinamoorthy A, Alvaro M, Antonietti M, Garcia H (2017) Active sites on graphene-based materials as metal-free catalysts. Chem Soc Rev 46:4501–4529. (b) Navalon S, Dhakshinamoorthy A, Alvaro M, Garcia H (2014) Carbocatalysis by graphene-based materials. Chem Rev 114:6179–6212; (c) Peng W, Liu S, Sun H, Yao Y, Zhi L, Wang S (2013) Synthesis of porous reduced graphene oxide as metal-free carbon for adsorption and catalytic oxidation of organics in water. J Mater Chem A 1:5854–5859; (d) Frank B, Zhang J, Blume R, Schlӧgl R, Su DS (2009) Heteroatoms increase the selectivity in oxidative dehydrogenation reactions on nanocarbons. Angew Chem Int Ed 48:6913–6917PubMedCrossRef (a) Navalon S, Dhakshinamoorthy A, Alvaro M, Antonietti M, Garcia H (2017) Active sites on graphene-based materials as metal-free catalysts. Chem Soc Rev 46:4501–4529. (b) Navalon S, Dhakshinamoorthy A, Alvaro M, Garcia H (2014) Carbocatalysis by graphene-based materials. Chem Rev 114:6179–6212; (c) Peng W, Liu S, Sun H, Yao Y, Zhi L, Wang S (2013) Synthesis of porous reduced graphene oxide as metal-free carbon for adsorption and catalytic oxidation of organics in water. J Mater Chem A 1:5854–5859; (d) Frank B, Zhang J, Blume R, Schlӧgl R, Su DS (2009) Heteroatoms increase the selectivity in oxidative dehydrogenation reactions on nanocarbons. Angew Chem Int Ed 48:6913–6917PubMedCrossRef
127.
go back to reference (a) Joo Y, Ahmed MS, Han HS, Jeon S (2017) Electrochemically reduced graphene-oxide supported bimetallic nanoparticles highly efficient for oxygen reduction reaction with excellent methanol tolerance. Int J Hydrog Energy 42:21751–21761; (b) Bohre A, Gupta D, Alam I, Sharma RK, Saha B (2017) Aerobic oxidation of isoeugenol to vanillin with copper oxide doped reduced graphene oxide. Chem Sel 2:3129–3136; (c) Fan W, Yu X, Lu HC, Bai H, Zhang C, Shi W (2016) Fabrication of TiO2/RGO/Cu2O heterostructure for photoelectrochemical hydrogen production. Appl Catal B 181:7–15CrossRef (a) Joo Y, Ahmed MS, Han HS, Jeon S (2017) Electrochemically reduced graphene-oxide supported bimetallic nanoparticles highly efficient for oxygen reduction reaction with excellent methanol tolerance. Int J Hydrog Energy 42:21751–21761; (b) Bohre A, Gupta D, Alam I, Sharma RK, Saha B (2017) Aerobic oxidation of isoeugenol to vanillin with copper oxide doped reduced graphene oxide. Chem Sel 2:3129–3136; (c) Fan W, Yu X, Lu HC, Bai H, Zhang C, Shi W (2016) Fabrication of TiO2/RGO/Cu2O heterostructure for photoelectrochemical hydrogen production. Appl Catal B 181:7–15CrossRef
128.
go back to reference (a) Guo C, Book-Newell B, Irudayaraj J (2011) Protein-directed reduction of graphene oxide and intracellular imaging. Chem Commun 47:12658–12660; (b) Kim YK, Kim MH, Min DH (2011) Biocompatible reduced graphene oxide prepared by using dextran as a multifunctional reducing agent. Chem Commun 47:3195–3197; (c) Bose S, Kuila T, Mishra AK, Kim NH, Lee JH (2012) Dual role of glycine as a chemical functionalizer and a reducing agent in the preparation of graphene: an environmentally friendly method. J Mater Chem 22:9696–9703CrossRef (a) Guo C, Book-Newell B, Irudayaraj J (2011) Protein-directed reduction of graphene oxide and intracellular imaging. Chem Commun 47:12658–12660; (b) Kim YK, Kim MH, Min DH (2011) Biocompatible reduced graphene oxide prepared by using dextran as a multifunctional reducing agent. Chem Commun 47:3195–3197; (c) Bose S, Kuila T, Mishra AK, Kim NH, Lee JH (2012) Dual role of glycine as a chemical functionalizer and a reducing agent in the preparation of graphene: an environmentally friendly method. J Mater Chem 22:9696–9703CrossRef
129.
go back to reference Li B, Su D (2014) The Nucleophilicity of the oxygen functional groups on carbon materials: a DFT analysis. Chem Eur J 20:7890–7894PubMedCrossRef Li B, Su D (2014) The Nucleophilicity of the oxygen functional groups on carbon materials: a DFT analysis. Chem Eur J 20:7890–7894PubMedCrossRef
130.
go back to reference (a) Tang WW, Zeng GM, Gong JL, Liang J, Xu P, Zhang C, Huang BB (2014) Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review. Sci Total Environ 468–468:1014–1027; (b) Klavins M, Dipane J, Babre K (2011) Humic substances as catalysts in condensation reactions. Chemosphere 44:737–742 (a) Tang WW, Zeng GM, Gong JL, Liang J, Xu P, Zhang C, Huang BB (2014) Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review. Sci Total Environ 468–468:1014–1027; (b) Klavins M, Dipane J, Babre K (2011) Humic substances as catalysts in condensation reactions. Chemosphere 44:737–742
131.
go back to reference (a) Wei L, Sevilla M, Fuertes AB, Mokaya R, Yushin G (2011) Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes. Adv Energy Mater 1:356–361; (b) Sevilla M, Fuertes AB. Mokaya R, Yushin G (2011) Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes. Adv Energy Mat 1:356–361CrossRef (a) Wei L, Sevilla M, Fuertes AB, Mokaya R, Yushin G (2011) Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes. Adv Energy Mater 1:356–361; (b) Sevilla M, Fuertes AB. Mokaya R, Yushin G (2011) Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes. Adv Energy Mat 1:356–361CrossRef
132.
go back to reference Baccile N, Laurent G, Babonneau F, Fayon F, Titirici M-M, Antonietti MJ (2009) Structural characterization of hydrothermal carbon spheres by advanced solid-state MAS 13C NMR investigations. Phys Chem C 113:9644–9654CrossRef Baccile N, Laurent G, Babonneau F, Fayon F, Titirici M-M, Antonietti MJ (2009) Structural characterization of hydrothermal carbon spheres by advanced solid-state MAS 13C NMR investigations. Phys Chem C 113:9644–9654CrossRef
133.
go back to reference Sevilla M, Fuertes AB (2009) The production of carbon materials by hydrothermal carbonization of cellulose. Chem Eur J 15:4195–4203PubMedCrossRef Sevilla M, Fuertes AB (2009) The production of carbon materials by hydrothermal carbonization of cellulose. Chem Eur J 15:4195–4203PubMedCrossRef
134.
go back to reference Zhang F, Li G-D, Chen S-L (2008) Effects of raw material texture and activation manner on surface area of porous carbons derived from biomass resources. J Colloid Interface Sci 327:108–114PubMedCrossRef Zhang F, Li G-D, Chen S-L (2008) Effects of raw material texture and activation manner on surface area of porous carbons derived from biomass resources. J Colloid Interface Sci 327:108–114PubMedCrossRef
135.
go back to reference Guiotoku M, Rambo CR, Hansel FA, Magalhaes WLE, Hotza D (2009) Microwave-assisted hydrothermal carbonization of lignocellulosic materials. Mater Lett 63:2707–2709CrossRef Guiotoku M, Rambo CR, Hansel FA, Magalhaes WLE, Hotza D (2009) Microwave-assisted hydrothermal carbonization of lignocellulosic materials. Mater Lett 63:2707–2709CrossRef
136.
go back to reference Demir-Cakan R, Bacille N, Antonietti M, Titirici MM (2009) Carboxylate-rich carbonaceous materials via one-step hydrothermal carbonization of glucose in the presence of acrylic acid. Chem Mater 21:484–490CrossRef Demir-Cakan R, Bacille N, Antonietti M, Titirici MM (2009) Carboxylate-rich carbonaceous materials via one-step hydrothermal carbonization of glucose in the presence of acrylic acid. Chem Mater 21:484–490CrossRef
137.
go back to reference (a) Han B, Zhang E, Cheng G, Zhang L, Wang D, Wang X (2018) Hydrothermal carbon superstructures enriched with carboxyl groups for highly efficient uranium removal. Chem Eng J 338:734–744; (b) Bai C-X, Shen F, Qi X-H (2017) Preparation of porous carbon directly from hydrothermal carbonization of fructose and phloroglucinol for adsorption of tetracycline. Chin Chem Lett 28:960–962CrossRef (a) Han B, Zhang E, Cheng G, Zhang L, Wang D, Wang X (2018) Hydrothermal carbon superstructures enriched with carboxyl groups for highly efficient uranium removal. Chem Eng J 338:734–744; (b) Bai C-X, Shen F, Qi X-H (2017) Preparation of porous carbon directly from hydrothermal carbonization of fructose and phloroglucinol for adsorption of tetracycline. Chin Chem Lett 28:960–962CrossRef
138.
go back to reference Huang B, Peng L, Yang F, Liu Y, Xie Z (2017) Improving ORR activity of carbon nanotubes by hydrothermal carbon deposition method. J Energy Chem 26:712–718CrossRef Huang B, Peng L, Yang F, Liu Y, Xie Z (2017) Improving ORR activity of carbon nanotubes by hydrothermal carbon deposition method. J Energy Chem 26:712–718CrossRef
139.
go back to reference (a) Qi X, Lian Y, Yan L, Smith RL Jr (2014) One-step preparation of carbonaceous solid acid catalysts by hydrothermal carbonization of glucose for cellulose hydrolysis. Catal Commun 57:50–54; (b) Wataniyakul P, Boonnoun P, Quitain AT, Sasaki M, Kida T, Laosiripojana N, Shotipruk A (2018) Preparation of hydrothermal carbon as cataltyst support for conversion of biomass to 5-hydroxymethylfurfural. Catal Commun 104:41–47CrossRef (a) Qi X, Lian Y, Yan L, Smith RL Jr (2014) One-step preparation of carbonaceous solid acid catalysts by hydrothermal carbonization of glucose for cellulose hydrolysis. Catal Commun 57:50–54; (b) Wataniyakul P, Boonnoun P, Quitain AT, Sasaki M, Kida T, Laosiripojana N, Shotipruk A (2018) Preparation of hydrothermal carbon as cataltyst support for conversion of biomass to 5-hydroxymethylfurfural. Catal Commun 104:41–47CrossRef
140.
go back to reference Titirici M-M, Thomas A, Antonietti M (2007) Replication and coating of silica templates by hydrothermal carbonization. Adv Funct Mater 17:1010–1018CrossRef Titirici M-M, Thomas A, Antonietti M (2007) Replication and coating of silica templates by hydrothermal carbonization. Adv Funct Mater 17:1010–1018CrossRef
141.
go back to reference Zhou X, Liu C-J (2018) Three-dimensional printing of porous carbon structures with tailorable pore sizes. Catal Today (in press) Zhou X, Liu C-J (2018) Three-dimensional printing of porous carbon structures with tailorable pore sizes. Catal Today (in press)
142.
go back to reference Huang C-H, Doong R-A (2012) Three-dimensional hierarchically ordered porous carbons with partially graphitic nanostructures for electrochemical capacitive energy storage. Microporous Mesoporous Mater 147:47–52CrossRef Huang C-H, Doong R-A (2012) Three-dimensional hierarchically ordered porous carbons with partially graphitic nanostructures for electrochemical capacitive energy storage. Microporous Mesoporous Mater 147:47–52CrossRef
143.
go back to reference Miao L, Zhu D, Zhao Y, Liu M, Duan H, Xiong W, Zhu Q, Li L, Lv Y, Gan L (2017) Design of carbon materials with ultramicro-, supermicro- and mesopores using solvent- and self-template strategy for supercapacitors. Microporous Mesoporous Mater 253:1–9CrossRef Miao L, Zhu D, Zhao Y, Liu M, Duan H, Xiong W, Zhu Q, Li L, Lv Y, Gan L (2017) Design of carbon materials with ultramicro-, supermicro- and mesopores using solvent- and self-template strategy for supercapacitors. Microporous Mesoporous Mater 253:1–9CrossRef
144.
go back to reference Luque R, Budarin V, Clark JH, Shuttleworth PS, White RJ (2011) Starbon® acids in alkylation and acetylation reactions: effect of the Brönsted-Lewis acidity. Catal Commun 12:1471–1476CrossRef Luque R, Budarin V, Clark JH, Shuttleworth PS, White RJ (2011) Starbon® acids in alkylation and acetylation reactions: effect of the Brönsted-Lewis acidity. Catal Commun 12:1471–1476CrossRef
145.
go back to reference Zuin VG, Budarin V, De bruyn M, Shuttleworth PS, Hunt AJ, Pluciennik C, Borisova A, Dodson J, Parker HL, Clark JH (2017) Polysaccharide-derived mesoporous materials (Starbon®) for sustainable separation of complex mixtures. Faraday Discuss 202:451–464PubMedCrossRef Zuin VG, Budarin V, De bruyn M, Shuttleworth PS, Hunt AJ, Pluciennik C, Borisova A, Dodson J, Parker HL, Clark JH (2017) Polysaccharide-derived mesoporous materials (Starbon®) for sustainable separation of complex mixtures. Faraday Discuss 202:451–464PubMedCrossRef
146.
go back to reference Clark JH, Budarin V, Dugmore T, Luque R, Macquarrie DJ, Strelko V (2008) Catalytic performance of carbonaceous materials in the esterification of succinic acid. Catal Commun 9:1709–1714CrossRef Clark JH, Budarin V, Dugmore T, Luque R, Macquarrie DJ, Strelko V (2008) Catalytic performance of carbonaceous materials in the esterification of succinic acid. Catal Commun 9:1709–1714CrossRef
147.
go back to reference Yeoman CJ, Han Y, Dodd D, Schroeder CM, Mackie RI, Cann IKO (2010) Thermostable enzymes as biocatalysts in the biofuels industry. In: Laskin AI, Sariaslani S, Gadd GM (eds) Advances in applied microbiology, vol 70. Elsevier, Burlington, pp 1–55CrossRef Yeoman CJ, Han Y, Dodd D, Schroeder CM, Mackie RI, Cann IKO (2010) Thermostable enzymes as biocatalysts in the biofuels industry. In: Laskin AI, Sariaslani S, Gadd GM (eds) Advances in applied microbiology, vol 70. Elsevier, Burlington, pp 1–55CrossRef
148.
go back to reference Chen D, Holmen A, Sui Z, Zhou X (2014) Carbon mediated catalysis: a review on oxidative dehydrogenation. Chin J Catal 35:824–841CrossRef Chen D, Holmen A, Sui Z, Zhou X (2014) Carbon mediated catalysis: a review on oxidative dehydrogenation. Chin J Catal 35:824–841CrossRef
149.
go back to reference (a) De S, Balu AM, van der Waal JC, Luque R (2015) Biomass-derived porous carbon materials: synthesis and catalytic applications. ChemCatChem 7:1608–1629; (b) Matos I, Bernardo M, Fonseca I (2017) Porous carbon: a versatile material for catalysis. Catal Today 285:194–203; (c) Filiciotto L, Luque R (2018) Biomass promises: a bumpy road to a renewable economy. Curr Green Chem 1:47–59CrossRef (a) De S, Balu AM, van der Waal JC, Luque R (2015) Biomass-derived porous carbon materials: synthesis and catalytic applications. ChemCatChem 7:1608–1629; (b) Matos I, Bernardo M, Fonseca I (2017) Porous carbon: a versatile material for catalysis. Catal Today 285:194–203; (c) Filiciotto L, Luque R (2018) Biomass promises: a bumpy road to a renewable economy. Curr Green Chem 1:47–59CrossRef
150.
go back to reference Yao Y (2018) Visible-light photocatalysis of carbon-based materials. IntechOpen Limited, LondonCrossRef Yao Y (2018) Visible-light photocatalysis of carbon-based materials. IntechOpen Limited, LondonCrossRef
Metadata
Title
Nanocatalysis for Green Chemistry
Authors
Layla Filiciotto
Rafael Luque
Copyright Year
2019
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-9060-3_1007